

An Ideal Guitar Tuner: Optimizing Consonance
by Minimizing Beating

Cassi J L Burton

Physics 492R Capstone Project Report
September 16, 2015

Dr. Dallin S Durfee

Contents
List of Figures .. 4

Acknowledgements ... 5

Abstract ... 6

Copyright ... 7

Chapter 1. Introduction .. 8

1.1 The Physics of Consonance ... 8

1.1.1 Beating ... 8

1.1.2 Intervals.. 10

1.1.3 Chords .. 10

1.1.4 Harmonics .. 11

1.1.5 Harmonics on the Guitar .. 13

1.1.6 Beating across Harmonics .. 13

1.1.7 Adjusting Frequencies to Minimize Beating .. 14

1.2 Understanding the Guitar ... 17

1.2.1 Common Conventions .. 17

1.2.2 Unfulfilled Intonation Needs of Guitarists ... 18

1.2.3 Fulfilling Intonation Needs of Guitarists: Currently Available Resources 20

1.2.4 This Project as a Resource.. 20

Chapter 2. Methods .. 22

2.1 The Algorithm for Minimization of Beating .. 22

2.1.1 An Overview ... 22

2.1.2 Using Least Squares Optimization for a Small Matrix .. 25

2.1.3 Using Least Squares Optimization for a Large Matrix .. 28

2.2 The Android App ... 30

Chapter 3. Results and Discussion .. 32

3.1 Quantitative Analysis of Results ... 32

3.1.1 E Major Optimization ... 32

3.1.2 E Major and A Major Optimization .. 33

3.1.3 E Major, A Major, and G Major Optimization .. 34

3.2 Qualitative Analysis of Results .. 35

Chapter 4. Conclusions ... 36

4.1 General Conclusions .. 36

4.2 Suggestions for Future Research .. 36

References .. 38

Appendix A: Android App Renderings .. 39

Appendix B: Android App Code... 42

AndroidManifest.xml .. 42

activity_main.xml .. 43

MainActivity.java .. 44

CustomListAdapter.java .. 45

my_list_images.xml .. 46

Optimization.java .. 47

List of Figures
Figure 1. Two waves close in frequency interfering with each other. .. 9

Figure 2. Beat rates between notes making up an A minor chord ... 11

Figure 3. The shapes of the first five harmonics of a string. ... 12

Figure 4. Harmonics of the equal temperament notes A and E. .. 14

Figure 5. Harmonics of 440, 660, and 670 Hz. ... 14

Figure 6. Consequences of adjusting a frequency. ... 15

Figure 7. Intervals of the equal temperament chromatic scale (Durfee & Colton, 2012). 17

Figure 8. Diagram representing the neck of the guitar. .. 18

Figure 9. Voicing and frequencies of the open E major chord. .. 22

Figure 10. String frequencies before and after optimization of the E major chord. 30

Figure 11. Beat rates before and after optimization. ... 32

Figure 12. Beats before and after optimization for the use of E major and A major.. 33

Figure 13. Beats before and after optimization for the use of E major, A major, and G major. 35

Figure 14. Android app home page rendering. ... 39

Figure 15. Chord selection within the Android App.. ... 40

Figure 16. The calculated frequencies of each string. .. 41

Acknowledgements

I would like to express my profound appreciation to Dr. Dallin Durfee for his contributions. It

was his vision that enabled this project to become a reality from its beginning, and his broad

spectrum of invaluable talents that brought it to life. His unfailing work ethic, endless creativity,

and musical ability were all major factors in the success of this research. Furthermore, his

experience and in-depth knowledge of music ensured the musical value of the end result.

Dr. Durfee’s dedication to his students and his remarkable efficacy in teaching are exceptional in

the academic world. I am privileged to have had him as an advisor and professor throughout my

undergraduate experience.

I am grateful to have worked with every one of my professors at BYU. They equipped me over

the years with the skills and knowledge that culminated in this project. I would also like to thank

the BYU Department of Physics and Astronomy for providing the materials and technology that

made this project possible.

Finally, I fondly acknowledge the love and support of my family. My beloved husband has

sustained me with his constant patience and encouragement. The uplifting friendship of my

mother, the love of my father, and the unwavering support of my grandfather have sustained me

in my academic efforts.

It has been my privilege to compile this report and gain the knowledge involved by working on

this project.

Abstract

An Ideal Guitar Tuner: Optimizing Intonation by Minimizing Beating

Cassi J L Burton

Department of Physics and Astronomy

Bachelor of Science

In music, consonance is the quality of sound sought after by musicians to create pure-

sounding, pleasant music. The governing laws of physics behind consonance dictate that a guitar

cannot have perfect consonance across all chords. To make all chords reasonably consonant, the

equal temperament scale is accepted as the standard tuning scheme today. Its downfall is that it

does not provide the best possible consonance in any one song. Since a song is comprised of only

a few chords, creating consonance across all chords is not necessary—only across the chords

being used in a song. With physics, we can calculate the frequencies to which each of the strings

on a guitar should be tuned in order to optimize consonance across any set of chords. This report

discusses the calculation used to optimize consonance and the Android app that I’ve developed

to perform that calculation.

A senior capstone report submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree

Bachelor of Science

Department of Physics and Astronomy
Brigham Young University
September 2015
Copyright © 2015 Cassi J L Burton

All Rights Reserved

Chapter 1. Introduction

1.1 The Physics of Consonance

Music is both the art and science of sound—it is a phenomena created by combining

frequencies of sound waves in an aesthetically pleasing manner. At the foundation of music’s

pleasant quality is intonation. Intonation describes the interactions between frequencies that are

described as either dissonant (out of tune) or consonant (in tune). Throughout history, intonation

schemes have been developed by scientists, philosophers, and musicians in an effort to improve

the beauty and appeal of music. Musicians today still search for alternate tunings to better suit

their instruments or musical pieces by improving consonance. This project seeks to serve

guitarists by creating custom tuning frequencies for each guitar string that will optimize

consonance across a custom set of chords. Musicians will be able to access this innovative

intonation tool as a simple android app.

1.1.1 Beating

In order to understand how to better serve the modern musician by improving

consonance, we must first understand the fundamental physics that governs music and

consonance. The dominant underlying cause of human perception of intonation—and therefore

consonance—is a phenomenon called “beating”: the interaction between sound waves that can be

perceived by the human ear. The interacting frequencies that create music are the fundamental

frequencies, also known as “notes” or “pitches” that are played on an instrument and the

harmonics (discussed in Section 1.1.4) of a frequency. If we look at two pure sine waves

representing two different frequencies, we can see a simple visual representation of beating in

Figure 1.

Figure 1. Two waves close in frequency interfering with each other. The interfering waves, shown as the dotted lines, result in a
beat wave, shown as the solid line.

When two sound waves interact, constructive and destructive interference occurs. As a

peak of one wave lines up with the valley of the other wave, the amplitude of the resulting wave

is diminished: the waves interfere destructively. As the peaks of both waves line up, the

amplitude of the resulting wave increases: the waves interfere constructively. The resulting wave

has beats, which gets louder and softer at the beat frequency. The frequency at which the beats

occur in this resultant wave can be calculated as the difference between the two interacting

frequencies. For example, if two notes of frequencies 440 Hz and 460 Hz are played together, the

resulting beat frequency will be 20 Hz: 460 − 440 = 20 Hz.

sin x

sin 0.86 x

sin x

sin x sin 0.86 x

 Beating occurs between any two frequencies, but for the purposes of consonance in music

we narrow down the beating with which we are concerned to the beats whose frequencies are

between 0 and 50 Hz (McMurtney, Fleming, & Steffensen, 2013). This is the range of beat

frequencies that are processed by the human brain to result in dissonance. Outside of this range,

beating is not consciously heard so it does not have a perceptible effect on intonation. This is

because two frequencies that are relatively far from each other (enough that beats between them

are not perceived as dissonance) can be heard as separate notes instead of as their blended result.

1.1.2 Intervals

When two frequencies are far enough apart that the beating between their fundamental

frequencies is not processed as bad intonation, they are considered together to make up an

“interval”. Intervals are pleasant when beats caused by the interaction of the involved notes are

minimized—in other words, when they are consonant. We define intervals in music as the

distance between two notes of the given musical scale that is in use to make it easier to discuss

them. Any two notes can be considered an “interval” apart, but it is accepted in music that

intervals are predefined as specific ratios of frequencies. Most combinations of notes as defined

in various musical scales are related by the ratios of defined intervals.

We can calculate the beating that occurs in an interval just as we calculated beating that

occurs between any two random frequencies. Consider the combination of two frequencies

whose interval relation is described as a “minor third,” or the difference in frequency between

the tonic and the third note of a minor scale; the notes concert A at 440 Hz and C at 523.25 Hz

make up a minor third (see Figure 7). The beating between these fundamental frequencies would

be 83.25 Hz, a rate that wouldn’t result in audible dissonance between these two notes. On the

other hand, the relatively close frequencies of 440 and 450 Hz—which do not form a predefined

musical interval—would cause a beat frequency of 10 Hz. A beat rate of 10 Hz is within the

intonation-affecting range, so the two notes played together would cause dissonance.

1.1.3 Chords

As a more complicated example, consider beating across multiple notes spaced at

specific, predetermined intervals. In this example, we will look at beating within a “major triad”.

A major triad is a simple chord comprised of a root note, its third, and its fifth. We can take the

major third between 440 Hz (concert A) and 554.37 Hz (C♯) to use in this example. Adding a

fifth interval in relation to A to build a full major triad will include the frequency 659.25 Hz (E).

Considering only the fundamental frequencies that comprise the chord (excluding harmonics),

we calculate the beating between each of the note combinations:

Note 1 Note 2 Beating

440 Hz (A) 554.37 Hz (C♯) 114.37 Hz

440 Hz (A) 659.25 Hz (E) 219.25 Hz

554.37 Hz (C♯) 659.25 Hz (E) 104.88 Hz

Figure 2. Beat rates between notes making up an A minor chord. None of the beats outlined here will be heard as dissonance.

One can see that there is no audible beating between the frequencies with the current

considerations: none of the beat frequencies are within the intonation-affecting beat range of 0-

50 Hz. However, this situation is an idealized example of calculating beat rates within a chord to

familiarize us with the concept of beating across multiple intervals.

1.1.4 Harmonics

More complicated than the examples of beating we just looked at are real musical notes,

which are never “pure.” A note is comprised of many more frequencies than just its fundamental

frequency; these frequencies are called harmonics. In an ideal, “pure” harmonic series, the

harmonics are frequencies which are integer multiples of the fundamental frequency. In linear

resonators like the strings of a guitar or the air column of a trumpet, the harmonics are

approximately integer multiples of the fundamental frequency. We will consider the dispersion

which occurs in the instruments to be negligible in our calculations since we can approximate

our guitar strings as ideal strings—ideal strings are non-dispersive (Morin, Drafted 2009).

Every harmonic present in music beats against every other frequency, just as fundamental

frequencies do; this is why we made the distinction in the previous example that there is no

audible beating within a chord excluding harmonics.

Fundamental Tone 1st Harmonic

2nd Harmonic

3rd Harmonic

4th Harmonic

5th Harmonic

Figure 3. The shapes of the first five harmonics of a string.

Indicates a node

1.1.5 Harmonics on the Guitar

Looking at Figure 3, we see the representation of a string’s first five harmonics. A string

vibrates as a combination of the harmonic shapes represented, sounding a note. The ends of a

string will always be fixed on a musical instrument, dictating that a node on each end of the

string will be present in all harmonics. The two nodes present at the end of each guitar string are

forced by the nut (or a fret) and the bridge of the guitar. The frequency of the first harmonic of a

string—the one that only has the two forced nodes in its vibration—is known as the fundamental

frequency of a note; vibrations that occur at this frequency on a string make up the dominant

frequency that is heard in a note. One additional node on a vibrating string (as in the 2nd

Harmonic) will result in a note two times the fundamental frequency; two extra nodes (as in the

3rd Harmonic) will result in a note three times the fundamental frequency, and so on. Each of

these frequencies has the same properties as the fundamental frequencies we have discussed in

examples up to this point.

Guitarists—and many other string musicians—change the note of a string by placing a

finger on the string to shorten the string. This forces a node on the string, changing the

frequencies of its vibration. Any note played on a guitar string will consist of a combination of

the string’s harmonics.

1.1.6 Beating across Harmonics

Since harmonics are waves with the same properties as fundamental tones, they can also

beat against one another and affect intonation—they do so in the exact way the simpler

fundamental frequencies beat against one another. This complicates the beating that occurs

within even a single interval; the increased number of frequencies that must be considered

between any two random notes greatly increases the likelihood of dissonance between them.

With our new knowledge of harmonics, we now consider the beating between the fundamental

notes and their harmonics to find the beating that occurs. For example, let’s look at the

harmonics for the fundamental frequencies 440 Hz (A) and 659.25 Hz (E)—outlined in Figure 4.

Fundamental

Frequency (Hz)

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic

440 (Concert A) 880 1320 1760 2200

659.25 (E) 1318.5 1977.75 2637 3296.25

Figure 4. Harmonics of the equal temperament notes A and E.

Most of the beats between the harmonics of these two notes are negligible since they

don’t fall within the range relevant to intonation. However, the frequencies of the third harmonic

of A and the second harmonic of E are very close: 1320 and 1318.5 Hz respectively. This will

result in a beat frequency of 1.5 Hz and create audible dissonance when the notes are played

together.

1.1.7 Adjusting Frequencies to Minimize Beating

To improve intonation between the two notes in our example, we can adjust the

fundamental frequencies that are played by a small amount to improve the beating between the

harmonics. If we adjust the frequency of E to make the note exactly 3/2 times the frequency of

concert A, the second harmonic of E and the third harmonic of A will be at the exact same

frequency (outlined in Figure 5):

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 440 𝐻𝑧 ∗
2

3
,

= 660 Hz .

With this slight adjustment to the frequency of E, the beat frequency between the

harmonics of concern has gone to zero and all the other beat frequencies remain negligible, seen

in Figure 5. This type of interval relationship that improves intonation perfectly is called a “just”

interval. Just intervals are relationships that can be represented as ratios of small integers, such as

the 3/2 ratio that was used in this example (see Figure 7 for a complete list of just interval

relationships).

Fundamental

Frequency (Hz)

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic

440 (Concert A) 880 1320 1760 2200

660 (adjusted E) 1320 1980 2640 3300

659.25 (equal

temperament E)

1318.5 1977.75 2637 3296.25

Figure 5. Harmonics of 440, 660, and 670 Hz. The second harmonic of 660 Hz will not beat with the third harmonic of 440 Hz.

From this example, we see that we can adjust frequencies to minimize beating. As one

can see from investigating the fundamental physics of consonance, beating can be minimized

between two frequencies by manipulating tuning. However, physics also demonstrates that

tuning an instrument to create perfect consonance in multiple chords across keys is impossible.

Though some intervals can be adjusted to form just intervals, the consequence involves another

interval being adjusted in the wrong direction and causes beating to worsen. For example, if you

add to the previous example that you’d also like to play a second interval in relation to Concert A

(as in a suspended chord), we would have included the frequency 493.88 Hz (B). The fourth

harmonic of B is very close to the third harmonic of E (see Figure 6). Before the adjustment of E

to optimize consonance with A, the beat rate between E and B would have been 2.23 Hz. After

the adjustment of E, the beat rate between E and B is 4.48 Hz—much more pronounced beating

than before.

Fundamental

Frequency (Hz)

2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic

440 (Concert A) 880 1320 1760 2200

493.88 (B) 987.76 1481.64 1975.52 2469.40

660 (adjusted E) 1320 1980 2640 3300

659.25 (equal

temperament E)

1318.5 1977.75 2637 3296.25

Figure 6. Consequences of adjusting a frequency. Adjustment to reduce beating in one interval results in worse beating for
another.

This impossibility of perfection in consonance across multiple intervals is what drives the

need for musical scales. A musical scale attempts to create conditions such that any pair of notes and

their harmonics has the least amount of unpleasant beats as possible. More realistically stated, the

goal of a musical scale is to minimize unpleasant beating or to distribute the beating across all

intervals within the scale in the most pleasing manner.

 Scales have been developed throughout history by musicians, astronomers, and scientists in

attempts to optimize consonance and clarity of music (Durfee & Colton, 2012) by distributing beats

in various ways. The Ptolemaic scale, meantone scales, and compromise scales each prioritize

beating differently: the Ptolemaic scale focuses on creating beat-free intervals in one key, particular

meantone scales focus on minimizing beating in the major third intervals, and compromise scales do

just as you would think: compromise intonation in one place to improve it in another. The most

commonly used compromise scale today—the equal-temperament scale—is meant to provide equal

intonation across all keys. This enables musicians to switch keys or play another song without having

to retune or switch instruments.

 In order to be a perfect compromise of intonation across all keys, the frequencies of the equal

temperament scale must be equally separated in the way that we perceive pitch. Since we hear sound

logarithmically, frequencies of the equal temperament scale are separated by a factor of 21/12. That

gives twelve spacing of frequencies—known as “half steps”—between two notes that differ by an

octave. For example, between two octave C’s, all of the existing Western notes are B♯/C, C♯/D♭, D,

D♯/E♭, E/F♭, E♯/F, F♯/G♭, G, G♯/A♭, A, A♯/B♭, and B/C♭ respectively. Let’s take a moment to

observe the relationships of notes in this chromatic scale and create a foundation for understanding

the standard frequencies that can be played on a guitar. C and G form a fifth interval since G is the

fifth note in a proper C major scale: (1) C, (2) D, (3) E, (4) F, and (5) G. The two notes are separated

by 7 half steps as defined by the equal-temperament scale, so G’s frequency will be 27/12 times the

frequency of C. Thus, if middle C’s frequency is 261.6 Hz (as it is on the standard piano), then the

frequency of G—a fifth interval above middle C—will be 27/12 ∗ 261.6 = 391.99 Hz. The

frequency of every note in the equal temperament scale can be calculated based off of one chosen

frequency, as seen in this example. Today the standard equal temperament scale is based around the

frequency of “Concert A” that has been mentioned before in examples, set at 440 Hz. We will use

this standard in our discussion of this project.

Note Example Scale Interval Equal

Temperament

Frequency Factor

Just Interval

Frequency Ratio

1 C unison 1 1

2 C♯/D♭ minor second 21/12 16/15

3 D major second 22/12 9/8

4 D♯/E♭ minor third 23/12 6/5

5 E/F♭ major third 24/12 5/4

6 E♯/F perfect fourth 25/12 4/3

7 F♯/G♭ augmented

fourth

26/12 45/32

8 G perfect fifth 27/12 3/2

9 G♯/A♭ minor sixth 28/12 8/5

10 A major sixth 29/12 5/3

11 A♯/B♭ minor seventh 210/12 9/5

12 B/C♭ major seventh 211/12 15/8

13 B♯/C octave 212/12 2

Figure 7. Intervals of the equal temperament chromatic scale (Durfee & Colton, 2012).

1.2 Understanding the Guitar

1.2.1 Common Conventions

We need to be aware of a few common conventions to understand the needs of guitarists

and to apply the physics of sound to their instrumental situation. Though we anticipate deviating

from the equal temperament scale to improve intonation, we must still use its conventions: the

frets on a guitar are set at equal-temperament intervals. This way when a guitarist presses a string

down on the fingerboard on the first fret (the fret closest to the nut), the fret creates a node and

forces the string’s frequency to go up by an equal-temperament half step: the new frequency will

be a factor of 21/12 times the string’s original frequency for each fret up the neck that is utilized.

Since the frets are permanently set in place, we will need to alter the fundamental frequency of

the string rather than the fret it will be voiced with in order to adjust intonation. It is also

important to note that guitarists create chords by placing their fingers on multiple strings at

various frets and strumming several strings at the same time.

The guitar has six strings; they are typically tuned to the notes E, A, D, G, B, and E (see

Figure 7), which are standardly tuned to the equal temperament frequencies of 82.41, 110.00,

146.83, 196.00, 246.94, and 329.63 Hz respectively. We refer to the frequencies of each string as

f6, f5, f4, f3, f2, and f1 respectively. We will discuss frequency relationships between the strings in

terms of the string frequencies. For example, f6 and f5 are an interval of a fourth apart (five half-

steps), so we can say that 𝑓6 ∗ 2
5

12 = 𝑓5. In the modern tuning of the guitar, it is important to note

that f3 and f2 are unique in their frequency relationship, since they are only a major third apart:

𝑓3 ∗ 2
4

12 = 𝑓2. It is also convenient to refer to the frets numbered sequentially from one—starting

at the nut. Since each fret represents a half-step in the equal temperament scale, playing string f1

with the finger on the first fret would result in the frequency𝑓1 ∗ 2
1

12. Playing string f1 at the

fourth fret would result in the frequency 𝑓1 ∗ 2
4

12. This makes it easy to remember the effect that

each fret will have on the string’s original frequency: the new frequency of a string with original

frequency f, voiced with the finger on fret x, will be 𝑓 ∗ 2
𝑥

12.

Figure 8. Diagram representing the neck of the guitar. Strings and frets are labeled as referred to in this paper.

1.2.2 Unfulfilled Intonation Needs of Guitarists

Now that we understand the fundamental physics of sound and the standards of the

modern guitar, we can discuss the meaning of intonation for guitarists. It is accepted today that

perfectly matching the frequencies of the strings to the preset frequencies in the equal

temperament scale is the accepted definition of being in tune. But as we discussed earlier, the

equal temperament scale still produces beating when notes are played together—its advantage is

that it produces equal beating across all scales. Guitarists can hear beating even after perfectly

matching their string frequencies with those set in the equal temperament scale. This can be very

frustrating to guitarists—especially those who don’t understand the physics that governs sound

and dictates that intonation can never be perfect across all intervals.

In an effort to relieve this frustration with beating on the guitar, much has been written

about tuning guitars. Some methods of tuning involve tweaks to the guitar such as nut, fret, and

saddle adjustment (Locke) to better maintain the frequencies that strings are tuned to. These

types of fixes “are not for the faint-hearted”, Luthier Locke warns, and are not realistic options

for the typical guitarist. Other musicians give direction on the methodology of tuning strings

(Flatley, 2007), some completely imprecise and vague: “If you want to be really accurate, the fifth

should be slightly smoother than the fourth, but there's not a lot in it.”

Some tuning schemes in existence can be beneficial for improvement of consonance in

very specific situations. For example, guitarists may choose to use “open tuning” schemes,

meaning that the six strings’ frequencies comprise a chord without having to be fretted. This

tuning scheme is great for musicians intending to only play straight-barred chords since the

intervals can be tuned by ear to nearly just intervals. This tuning scheme is usually only seen in

slide guitar playing in which chords are played by pressing down on all the strings on the same

fret. If another chord shape were to be used—altering string-interval relationships that were

optimized for consonance—the intervals would likely produce more beating than in equal

temperament tuning since the beating was minimized for a single chord shape. Another similar

example is overtone tuning (Hanson, 1995) in which the open strings are in the same octave and form

just intervals. As in open tuning, any chord shape besides the one optimized will have more beating than

equal temperament tuning would cause.

As we can see from these examples, many tuning options are not calculated based on

physics. Most are the products of individual opinions and experimentation; they are useful only

in very specific situations. To create a more accurate and versatile method of achieving

consonance, we consider what we know about the physical laws governing consonance. From

our discussion of beats, we know that a tuning which invokes a perfect compromise between all

keys is not necessary when only a few chords and keys are being used by a musician.

Furthermore, a small tweak in a frequency to make one interval perfectly in tune can make others

sound worse by the laws of physics. Therefore, any tuning scheme that deviates from equal

temperament without taking into account which chords will be played is inevitably flawed. An

ideal tuning scheme will take into account which chords will be used in a given piece of music.

This project is an endeavor to provide the best intonation for guitarists based on physical

calculations—given the conditions of specific keys and chords that will be played. A custom

tuning that minimizes beating between any given set of chords can be mathematically calculated,

thus perfectly optimizing consonance for a specific situation. The end result of such a tuning

scheme would be more consonant pieces of music—something musicians and scientists have

been searching for throughout history.

1.2.3 Fulfilling Intonation Needs of Guitarists: Currently Available Resources

Other tuning resources that are available include programs, such as MIDI software, that

allow for experimentation and better understanding of intonation. For example, Tonalsoft is “a

music composition application which allows the user to create any imaginable tuning and

compose music using those tunings and a valuable analytical tool which aids in the

understanding of tuning theory and the various qualities of different types of musical tunings”

(Monzo, 2005). Spectratune is a “musical pitch and spectrum analyzer” (Spier, 2013).

Temperament Studio (Durfee D. S., 2013) demonstrates the sound of various historical

intonations in pieces of music. Each tuning scheme demonstrates different beat patterns within

songs and provides insight into the motivation for our modern-day intonation scheme. Most of

these resources are designed around keyboard instruments or instruments where each note’s

frequency can be customized. This is not always useful for guitarists since only the frequencies

of each of the six strings can be readily altered.

1.2.4 This Project as a Resource

In order to provide a straightforward tuning tool for guitarists, this project envisions the

ultimate authority on custom tuning schemes for any combination of chords a guitarist would

like to play. Out of all the methods to improve intonation on a guitar, it is the most in line with

physical laws, using calculations to create a customized tuning scheme based on chord usage—

specifically for guitar. Tunings can be calculated quickly for any song. Furthermore, guitarists

can directly and quickly apply the custom tunings to their own guitars instead of experimenting

with intonation on the internet or with expensive software programs. Musicians won’t have to

rely on time-consuming research and experimentation to find a desirable tuning scheme. Finally,

it will be convenient: guitarists can generate a custom tuning in seconds with a free, simple

Android app.

Chapter 2. Methods

2.1 The Algorithm for Minimization of Beating

2.1.1 An Overview

We now describe in overview the algorithm used to calculate the frequencies for optimized

intonation. As the string frequencies of a guitar are easily altered, the frequencies of the strings

will be considered the variables in our minimization of beating across a custom set of chords. We

will choose one string—f6—to be the constant frequency, giving a reference for the other

frequencies to be calculated upon. Given a set of chords and their voicings, we will look at the

relationships created in each chord between each of the strings. Each of these relationships can

be seen as an equation with the string frequencies as variables. All of the frequency relationships

in the set of chords can be written as a system of equations that can be minimized by using least-

squares matrix manipulation.

Figure 9. Voicing and frequencies of the open E major chord.

As an example of the algorithm, we will walk through the detailed calculation of frequencies

for a single chord’s intonation optimization. In this example, we will use the E major chord. E

major is voiced on the guitar seen in Figure 9: the blue dots represent where the finger is pressed

on a string, giving the location of the fret we will integrate into the calculation. String f6 will be

the constant frequency in our equations, set to the equal-temperament frequency of 82.408 Hz

(E). We first look at the interval relationship between f6 and f5 with the voicing of the chord in

consideration. String f6 is not voiced with a fret. String f5 is voiced with the second fret. We

represent the notes voiced on the guitar in terms of these variables; since no frets are pressed on

f6, we represent the voiced note by f6. Since the second fret is voiced on f5, the frequency of the

voiced note will be the frequency of f5 plus two equal-temperament half steps, or

 𝑣𝑜𝑖𝑐𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑛 𝑓5 = 𝑓5 2
2

12. (2.1)

Now we must express the relationship of these two notes in terms of the strings’ fundamental

frequencies. We know we would like the frequencies sounded from f6 and f5 to form an interval

with the least amount of beating as possible—a just interval. Recall that the original relationship

between f6 and f5 is a fourth, meaning there are five half steps between the frequencies (see

Figure 7). Since there are two extra equal-temperament half-steps created between f6 and f5 by

pressing on the second fret of f5, seven half steps now exist between the voiced notes, creating a

fifth. From Figure 7, a just fifth relates the frequencies by a factor of 3/2. Therefore, we would

like the voiced frequencies of f6 and f5 to be related by the following equation:

 𝑓5 2
2

12 =
3

2
 𝑓6 . (2.2)

But this equation does not directly give any information about our end goal: minimizing the

beating that occurs between all the voiced frequencies. If we only used equation 2.2 to set the

frequency of f5, we would eliminate beating across strings f6 and f5. We know that doing so could

potentially result in worse beating for other intervals involving these strings, so we must choose

f5 in a way that optimizes consonance for all intervals involved in the chord. Thus, we represent

the beat rate between f6 and f5 as an equation so we can manipulate its value later on. As we

recall, this beat rate is calculated by finding the difference in the frequencies:

 𝐵𝑒𝑎𝑡𝑅𝑎𝑡𝑒 = −2 𝑓5 2
2

12 + 3 𝑓6 . (2.3)

It is easier to see here that we have a quantity we would like to be as close to zero as possible:

the beat rate. We will refer to this as a residual in our calculations. If we calculate the beat rate

that occurs between these frequencies using equal-temperament tuning, we find it to be non-zero:

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −2 𝑓5 2
2

12 + 3 𝑓6,

 = −2 (110 𝐻𝑧) 2
2

12 + 3 (82.41 𝐻𝑧), (2.4)

 = 10 𝐻𝑧.

However, if we only set f6 to be constant and are allowed to adjust the frequency of f5, the beat

rate can be set to zero for this interval.

But this is not the only interval in consideration—we will need to compromise the beat rate in

this interval to allow for small beating across other intervals, as well.

Now consider the relationship between f5 and f4:

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −3 𝑓4 2
2

12 + 4 𝑓5 2
2

12 . (2.5)

If we want to minimize the beat rates for both the f4-f5 relation and the f5-f6 relation, we must

solve the system of equations representing their residuals, calling the residuals r1 and r2:

{
𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 = −3 𝑓4 2
2
12 + 4 𝑓5 ∗ 2

2
12 .

(2.6)

Here we can easily set r1 and r2 equal to 0 to completely eliminate beats, implement our known

value of f6, and solve the resulting system of equations:

{
0 = −2 𝑓52

2
12 + 3 (82.41) ,

0 = −3 𝑓4 2
2
12 + 4 𝑓5 2

2
12 .

(2.7)

The first equation immediately gives us

 𝑓5 =
3 (82.41)

2 (2
2
12)

,

= 110.13 𝐻𝑧.

(2.8)

The value for f5 can now be used in the second equation to solve for f4:

 0 = −3 𝑓4 2
2

12 + 4 𝑓5 2
2

12,

𝑓4 =

4 (110.13)2
2
12

3 (2
2
12)

 , (2.9)

 = 146.84 𝐻𝑧 .

These frequencies give us zero beats for r1 and r2, but we cannot assume that all of the

residuals will be able to be zero; there will have to be compromise in order to minimize beating

across all the intervals involved. Furthermore, many residuals still remain to be calculated and

we cannot guess what their residuals might be as we did in this case. Therefore, a more

reasonable method of solving this system of equations can be used that does not require guessing

residual values: a method that uses matrix manipulation known as minimization by least squares.

2.1.2 Using Least Squares Optimization for a Small Matrix

Let us re-solve the system of equations for f4 and f5 using minimization by least squares.

Beginning exactly as before, we want to minimize the beat rates for both the f4-f5 relation and

the f5-f6 relation, so we must solve the system of equations representing both their residuals:

{
𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 = −3 𝑓4 2
2
12 + 4 𝑓5 ∗ 2

2
12 .

(2.10)

To begin, I can write this system of equations using matrices and vectors:

[
−2(2

2

12) 0

4(2
2

12) −3(2
2

12)
] [
𝑓5
𝑓4
]+[
3𝑓6
0
] = [

𝑟1
𝑟2
] .

(2.11)

We can represent this equation as

 𝐴𝑓 + 𝑏 = 𝑟 ,
(2.12)

a common equation seen in dealing with matrices and vectors. With this elegant equation, we can

work through the math without having to know the precise values for A and b. We can also state

our objective simply: we need to minimize the vector of residuals, r. We do this by manipulating

the matrix and minimizing r2, which in terms of vectors is

 𝑟𝑇𝑟.
(2.13)

We know that

 𝑟𝑇 = 𝑓𝑇𝐴𝑇 + 𝑏𝑇
(2.14)

from the properties of transposed matrices, so 𝑟𝑇𝑟 can be written as

 𝑟𝑇𝑟 = (𝑓𝑇𝐴𝑇 + 𝑏𝑇)(𝐴𝑓 + 𝑏),
(2.15)

 = (𝑓𝑇𝐴𝑇𝐴𝑓 + 𝑏𝑇𝐴𝑓 + 𝑓𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏) .

On close observation, one can see that each of these terms is a scalar: 𝑟𝑇𝑟 and 𝑏𝑇𝑏 both consist

of a 1𝑥2 and a 2𝑥1 matrix, which result in a 1𝑥1 matrix (a scalar) when multiplied through. We

can generalize this statement by noting that a matrix’s dimensions are given by its number of

columns, m, and its number of rows, n. Thus we can represent a matrix’s dimensions as 𝑚𝑥𝑛 and

the dimensions of its transpose by 𝑛𝑥𝑚. Analyzing the rest of equation 2.5 in a similar manner as

we did 𝑟𝑇𝑟, we demonstrate that each term is a scalar:

 = (𝑓𝑇𝐴𝑇𝐴𝑓 + 𝑏𝑇𝐴𝑓 + 𝑓𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏),
(2.16)

= (1𝑥𝑚)(𝑚𝑥𝑛) (𝑛𝑥𝑚)(𝑚𝑥1) + (1𝑥𝑛)(𝑛𝑥𝑚)(𝑚𝑥1) + (1𝑥𝑚)(𝑚𝑥𝑛)(𝑛𝑥1) + (1𝑥𝑛)(𝑛𝑥1),

 = ((1𝑥1) + (1𝑥1) + (1𝑥1) + (1𝑥1)) .

Since 𝐴𝑇𝑓𝑇𝑏 is the transpose of 𝑏𝑇𝐴𝑓 and the transpose of a scalar is a scalar, we conclude that

they are equal and can combine the terms:

 𝑟𝑇𝑟 = (𝐴𝑇𝑓𝑇𝐴𝑓 + 2𝑏𝑇𝐴𝑓 + 𝑏𝑇𝑏) .
(2.17)

Now that we have simplified 𝑟𝑇𝑟 and know that it is a scalar, we can take the derivative with

respect to f and set it to zero for minimization:

 0 = 2𝐴𝑇𝐴𝑓 + 2𝐴𝑇𝑏 .
(2.18)

Solving for the vector f—the frequencies which give a minimized beat rate—we get

 𝑓 = −(𝐴𝑇𝐴)−1𝐴𝑇𝑏 .
(2.19)

This is the general solution for any set of chords we wish to optimize for consonance.

Here we return to our specific example and solve equation 2.19 using our values from our

system of equations (Eq. 2.11). The matrices A and b are found in our first representation of our

system using matrices (Eq. 2.11):

𝐴 = [

−2(2
2

12) 0

4(2
2

12) −3(2
2

12)
],

(2.20)

 𝑏 = [
3𝑓6
0
]. (2.21)

The transverse of A is the reflection of A across a diagonal running from its top left to its bottom

right:

𝐴𝑇 = [

−2(2
2

12) 4(2
2

12)

0 −3(2
2

12)
].

(2.22)

Plugging these values into equation 2.19, we have an equation in need of simplification:

𝑓 = −([
−2(2

2

12) 4(2
2

12)

0 −3(2
2

12)
] [
−2(2

2

12) 0

4(2
2

12) −3(2
2

12)
])

−1

[
−2(2

2

12) 4(2
2

12)

0 −3(2
2

12)
] [
3𝑓6
0
].

(2.23)

Simplifying and factoring out the 2
2

12 from each matrix gives

𝑓 = −([

20 −12
−12 9)

] 2
4

12)
−1

[
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
]. (2.24)

We know that the inverse of a 2x2 matrix is given by the shortcut

 (𝐴)−1 =
1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑐
−𝑏 𝑎

], (2.25)

which allows us to further simplify our equation:

𝑓 = −(

1

36(2
8
12)
[
9 12
12 20

] 2
4

12) [
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
],

= −([
1/4 1/3
1/3 5/ 9

] 2
−4

12) [
−2 4
0 −3

] 2
2

12 [
3𝑓6
0
],

= − [
−1/2 0
−2/3 −1/3

] 2
−2

12 [
3𝑓6
0
],

= − [
−1/2 0
−2/3 −1/3

] 2
−2

12 [
3𝑓6
0
].

(2.26)

Plugging in our pre-set value for 𝑓6, we get

𝑓 = [

𝑓5
𝑓4
] = [

110.13
146.84

], (2.27)

the same result as when we simplified our system of equations by setting the residuals to zero

(Eq. 2.8 and 2.9). In this example we were able to force the residuals to be zero, but this won’t

generally be possible when optimizing all strings for multiple chords.

2.1.3 Using Least Squares Optimization for a Large Matrix

We will now walk through the same calculation for an entire chord. We represent the

residuals between every relevant string using a large system of equations. If all six strings of the

guitar are used in a chord, there will be as many as 15 residuals. For many chords, some of the

equations turn out to be linearly dependent on other equations in the system and are therefore

unnecessary for completing the calculation. However, the algorithm works even with the

inclusion of redundant equations, so we will include them all. In the case of the E major chord,

all six strings are used and the 15 residuals are represented as follows:

{

 𝑟1 = −2 𝑓52

2
12 + 3 𝑓6 ,

𝑟2 = 2𝑓6 − 𝑓42
2
12 ,

𝑟3 = 10𝑓6 − 4𝑓32
1
12 ,

𝑟4 = 6𝑓6 − 2𝑓2 ,
𝑟5 = 4𝑓6 − 𝑓1 ,

𝑟6 = 4𝑓52
2
12 − 3𝑓42

2
12 ,

𝑟7 = 5𝑓52
2
12 − 3𝑓32

1
12 ,

𝑟8 = 2𝑓52
2
12 − 𝑓2 ,

𝑟9 = 8𝑓52
2
12 − 3𝑓1 ,

𝑟10 = 5𝑓42
2
12 − 4𝑓32

1
12 ,

𝑟11 = 3𝑓42
2
12 − 2𝑓2 ,

𝑟12 = 2𝑓42
2
12 − 𝑓1 ,

𝑟13 = 6𝑓32
1
12 − 5𝑓2 ,

𝑟14 = 8𝑓32
1
12 − 5𝑓1 ,

𝑟15 = 4𝑓2 − 3𝑓1 .

(2.28)

This large system of equations needs to be minimized in order to minimize the beat rates

occurring between all strings in an E major chord. We can minimize the residuals in this large

system of equations using the same matrix manipulation we used for solving our small system.

To begin, I can write this system of equations using matrices and vectors:

[

0 0 0 0 −2 ∗ 22/12

0 0 0 −22/12 0
0 0 −4 ∗ 22/12 0 0
0 −2 0 0 0
−1 0 0 0 0
0 0 0 −3 ∗ 22/12 4 ∗ 22/12

0 0 −3 ∗ 21/12 0 5 ∗ 22/12

0 −1 0 0 2 ∗ 22/12

−3 0 0 0 8 ∗ 22/12

0 0 −4 ∗ 21/12 5 ∗ 22/12 0
0 −2 0 3 ∗ 22/12 0
−1 0 0 2 ∗ 22/12 0
0 −5 6 ∗ 21/12 0 0
−5 0 8 ∗ 21/12 0 0
−3 4 0 0 0]

[

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5]

+

[

3𝑓6
2𝑓6
10𝑓6
6𝑓6
4𝑓6
0
0
0
0
0
0
0
0
0]

 =

[

𝑟1
𝑟2
𝑟3
𝑟4
𝑟6
𝑟7
𝑟8
𝑟9
𝑟10
𝑟11
𝑟12
𝑟13
𝑟14
𝑟15]

 .

(2.29)

Using the same reasoning as in equations 2.12 through 2.19, we know that the frequencies which

give a minimized beat rate is given by (Eq. 2.19):

 𝑓 = −(𝐴𝑇𝐴)−1𝐴𝑇𝑏 .
(2.30)

Plugging in our values from our equation for E major (Eq. 2.29) and simplifying equation 2.30

will give the solution for vector f. The result is as follows:

𝑓 =

[

𝑓5
𝑓4
𝑓3
𝑓2
𝑓1]

 =

[

110.12
146.83
194.45
247.22
329.63]

.

(2.31)

Each of the frequencies that were solved for are given in Hz and are the frequencies that will

give the best consonance possible in the E major chord on the guitar. Just as in our simpler

example, these frequencies cause the value of all the residuals in the system of equations to be

zero (discussed in Section 3.1.1). This typically won’t be the case when optimizing consonance

for multiple chords. However, the calculation will provide frequencies that minimize beating as

much as physically possible across the involved chords (see Chapter 3 for specific examples).

For some perspective on the magnitude of frequency changes that optimization causes,

see Figure 10 for a comparison of the frequencies of each string before and after optimization.

The frequency adjustment for each of the five adjusted strings, on average, is only .258 Hz.

Tuning Scheme f6 f5 f4 f3 f2 f1

Equal Temperament

Frequency

82.41 110.00 146.83 196.0 246.94 329.63

Optimized

Frequency

82.41 110.12 146.83 194.45 247.22 329.63

Figure 10. String frequencies before and after optimization of the E major chord.

When we calculate an optimized tuning scheme for more than one chord, we consider the

beat rates across all the strings from both chords. Even though the system of equations grows

much larger for each additional chord (at most 15 equations) included in the conditions for

optimization, the most complicated part of the calculation—the inversion of a matrix—will

always involve a 5x5 matrix:

 𝐴𝑇𝐴 = (5𝑥𝑛)(𝑛𝑥5),

= 5𝑥5.

(2.32)

Inverting the matrix can be done (rather tediously) by using the Gauss-Jordan method or the

Adjunct method, but a computer program has no problem solving it in a very short amount of

time.

2.2 The Android App

The app that will be used to create custom guitar tunings provides a straightforward user

interface for a clean user experience. A custom multiple-choice ListView displays each chord

and its voicing. Guitarists can choose specific voicings of chords that they will be playing based

on the diagram next to each chord entry in the list; the inclusion of chord diagrams in the

ListView is the result of the CustomListAdapter.java file. A button at the bottom of the screen is

always visible and can be selected at any time to execute the least squares calculation involving

the selected chords. A popup dialog displays once the calculation is complete, listing the

frequency of each string that will provide the optimal intonation for the chords selected. When

the dialog popup is acknowledged and exited, all chord selections are cleared in preparation to

receive a new selection.

 The entire calculation for optimization of consonance is carried out in a file called

Optimization.java, written to follow the algorithm described in the Chapter 2 of this paper.

Noteworthy specifics of my code in Optimization.java include its features that allow for versatile

inclusion of new chords. New chords of any shape and voicing can easily be added to my code.

The chord must be given a unique name and must be represented as a single array of integers at

the beginning of the class “optimization”. Each integer in the chord array represents the voicing

of strings f6 through f1: the integer indicates the number of the fret that is pressed on each string

to voice the chord. A “0” represents no fret pressed, a positive number represents the pressed

fret’s number, and a “-1” represents an unvoiced string. For example, the open E major chord

(seen in Figure 9) is represented in the code as follows:

private static final Integer[] EmajorFingering1 = new Integer[]{0,2,2,1,0,0}; .

 The new chord must also be added into the variable String[] chords of MainActivity.java

in order to be displayed in the interface’s multiple-choice ListView. A corresponding image of

the chord must be added to the “drawable” folder under the same name as was entered into

chords to allow selection of the correct chord voicing by the user.

The app uses standard Android and Java libraries to provide the more general features of

the app. For the calculation, the Jama Matrix library (MathWorks & NIST, 2012) is used to aid

in several matrix operations found in Optimization.java including transposition, multiplication,

and matrix inversion. The calculation is executed on action of the “Calculate” button on the

Android interface. The optimized frequencies are returned to the Android class, which then

displays them to the user.

 With the simplicity and versatility of the code, any new chord can be easily implemented

into the program. The calculation is designed to dynamically calculate the residuals between any

strings based on the integer array representing a chord, so adding chords does not require any

manual calculations. The user interface is also very simple, ensuring that the general public will

be able to understand and use this tool.

Chapter 3. Results and Discussion
3.1 Quantitative Analysis of Results

In verification of consonance improvement when using these calculations, we performed

both quantitative and qualitative analysis. The result of minimizing the residuals in the E major

chord gave an overall 100% decrease in beating within the chord from equal temperament

tuning. Figure 11 displays a full comparison of beat rates between the strings before and after

optimization.

3.1.1 E Major Optimization

String Pair Equal

Temperament

Beating (Hz)

Minimized

Beating (Hz)

f6, f5 0.2790 0

f6, f4 0.0005 0

f6, f3 6.5501 0

f6, f2 0.5574 0

f6, f1 0.0004 0

f5, f4 0.5567 0

f5, f3 5.6102 0

f5, f2 0.0003 0

f5, f1 1.1174 0

f4, f3 6.5523 0

f4, f2 0.5560 0

f4, f1 0.0013 0

f3, f2 11.2186 0

f3, f1 13.0981 0

f2, f1 1.1160 0

Average Beating

within E Major

3.1475 0

Figure 11. Beat rates before and after optimization.

As more chords are added, the amount of compromise necessary to optimize consonance

approaches the amount of compromise in the equal temperament scale so there is less reduction

of beating. Results for other chords and combinations of chords are outlined in the tables that

follow.

3.1.2 E Major and A Major Optimization

String Pair Equal Temperament

Beating (Hz)

Minimized Beating

(Hz)

E Major

f6, f5 0.2790 0.1334

f6, f4 0.0005 0.0315

f6, f3 6.5501 1.2930

f6, f2 0.5574 3.1254

f6, f1 0.0004 0.3078

f5, f4 0.5567 0.1724

f5, f3 5.6102 0.6363

f5, f2 0.0003 1.6961

f5, f1 1.1174 0.3897

f4, f3 6.5523 1.1357

f4, f2 0.5560 3.2197

f4, f1 0.0013 0.2449

f3, f2 11.2186 9.7530

f3, f1 13.0981 1.0472

f2, f1 1.1160 7.1740

A Major

f6, f5 0.3724 0.9236

f6, f4 0.00045 0.0315

f6, f3 0.7525 3.4248

f6, f2 7.4801 3.1564

f6, f1 0.0004 0.3078

f5, f4 0.3733 0.8607

f5, f3 0.0026 1.7573

f5, f2 8.7321 1.1300

f5, f1 0.7440 1.2316

f4, f3 0.7543 3.5506

f4, f2 7.4823 2.9992

f4, f1 0.0013 0.2449

f3, f2 8.7193 9.9165

f3, f1 0.7517 4.0403

f2, f1 14.9581 4.7740

Average Beating

within Chords

3.2779 2.2739

Figure 12. Beats before and after optimization for the use of E major and A major.

The average beating within the chords E major and A major has been reduced by 36%

through optimization, demonstrated in Figure 12.

3.1.3 E Major, A Major, and G Major Optimization

String Pair Equal Temperament

Beating (Hz)

Minimized Beating

(Hz)

E Major

f6, f5 0.2790 0.1334

f6, f4 0.0005 0.0315

f6, f3 6.5501 1.2930

f6, f2 0.5574 3.1234

f6, f1 0.0004 0.3078

f5, f4 0.5567 0.1724

f5, f3 5.6102 0.6363

f5, f2 0.0003 1.6951

f5, f1 1.1174 0.3897

f4, f3 6.5523 1.1358

f4, f2 0.5560 3.2177

f4, f1 0.0013 0.2449

f3, f2 11.2186 9.7480

f3, f1 13.0981 1.0472

f2, f1 1.1160 7.1740

A Major

f6, f5 0.3724 0.9236

f6, f4 0.00045 0.0315

f6, f3 0.7525 3.4248

f6, f2 7.4801 3.1598

f6, f1 0.0004 0.3078

f5, f4 0.3733 0.8607

f5, f3 0.0026 1.7573

f5, f2 8.7321 1.1345

f5, f1 0.7440 1.2316

f4, f3 0.7543 3.5506

f4, f2 7.4823 3.0025

f4, f1 0.0013 0.2449

f3, f2 8.7193 9.9209

f3, f1 0.7517 4.0403

f2, f1 14.9581 4.7807

G Major

f6, f5 3.8889 4.7138

f6, f4 0.3326 0.2758

f6, f3 0.0023 1.2382

f6, f2 7.7793 2.6474

f6, f1 0.0005 0.3660

f5, f4 6.6650 7.7602

f5, f3 7.7666 15.6189

f5, f2 0.0003 1.6951

f5, f1 15.5534 17.0253

f4, f3 0.6720 3.1632

f4, f2 6.6660 2.6749

f4, f1 1.3319 2.2011

f3, f2 7.7680 8.8386

f3, f1 0.0040 2.8425

f2, f1 15.5562 3.4647

Average Beating

within Chords

3.7998 3.1234

Figure 13. Beats before and after optimization for the use of E major, A major, and G major.

The average beating within the chords E major, A major, and G major has been reduced

by 20% through optimization, demonstrated in Figure 13.

3.2 Qualitative Analysis of Results

 Qualitatively, the improvement was judged both on an actual guitar and on MIDI guitar

software. In my opinion, the actual guitar did perform with improved consonance when tuned to

the optimized frequencies. The MIDI Guitar software, developed by Dr. Dallin Durfee for the

purpose of evaluating tuning schemes on guitar, takes a frequency input for any string and will

then simulate chords played on the guitar. The software did provide a more reliable source for

qualitative judgment than an actual guitar since the frequencies being heard were guaranteed to

be perfectly in tune with the calculations. Overall, the software did demonstrate an improvement

in consonance from equal temperament tuning when implementing the optimized frequencies.

 These results indicate an improvement in intonation on a guitar for any custom set of

chords. The consistent improvement across chord combinations proves that this method of tuning

is versatile and has the potential to be used to improve the consonance of any song. The simple

app and its availability online makes it accessible and usable to musicians—both hobbyists and

professionals.

Chapter 4. Conclusions

4.1 General Conclusions

This project provides the first optimized, custom tuning based off of precise calculations for

guitarists. This innovation is significant not only due to its precise calculations and versatility in

providing custom tuning schemes, but also because of its accessibility and applicability. Anyone

can download the app on their Android phone. A custom tuning can be generated in as little time

as it takes to enter the chords being used. The custom tuning can be implemented in the short

time it takes to tune the strings. In short, this app provides the simplest and most accurate custom

tuning tool for guitarists in existence as of yet and has the potential to be a significant

contribution to the musical experience of the general public.

In summary, this project has resulted in an elegant java program that effectively optimizes

intonation and provides a custom tuning scheme to guitarists. Intonation can be effectively

improved by deviating from equal temperament intonation, as seen by analyzing the beat rates

existent in each tuning scheme. The project is packaged into a simple app. It provides a

convenient and easily-implemented solution for guitarists searching for greater consonance in

their music.

4.2 Suggestions for Future Research

There remain areas of intonation that can be researched to improve the quality of the

calculations. This application gives equal weight to all intervals, so beating is overall minimized.

However, if it is found that particular intervals are more important to the human ear in achieving

consonance, giving greater weight to those intervals during minimization would improve the

results.

This type of information has the greatest potential to be gathered from surveys, as it is the

opinions and perceptions of potential users that will be of greatest importance in this matter.

Various tuning schemes could potentially be generated by using different weights for particular

intervals and played for a subject. Subjects can then vote on the tuning scheme they find most

pleasing. When enough data is collected, the most important intervals for intonation—if any—

can be determined.

Areas for improvement and further research remain concerning the calculations in this project.

Calculating and accounting for dispersion in guitar strings and accounting for error in fret placement

by measuring pitch changes could potentially improve the effectiveness of the algorithm in

optimizing consonance. Further development of the Android app could result in an implemented

tuner that analyzes a guitar string frequency and indicates if it is flat or sharp in comparison with the

optimized frequency, making it a more approachable tool for musicians.

Development of the project to this point has resulted in a working algorithm that has been

written to calculate the frequencies for guitar strings that will optimize consonance. Its effectiveness

has been proven by the results outlined in Chapter 3 of this paper. Finally, the culmination of the

research: the algorithm has been successfully integrated into software that is running reliably in the

form of an Android app. It is anticipated that the Android app will be made available to the general

public and will provide guitarists with greater consonance in their music.

References
Durfee, D. S. (2013). Temperament Studio 1.8.0 - Demonstrating Intonation with MIDI. Department of

Physics and Astronomy: Brigham Young University. Retreived from

http://www.physics.byu.edu/faculty/durfee/TemperamentStudio/.

Durfee, D. S., & Colton, J. S. (2012). The Physics of Musical Scales: Theory and Experiment. Department

of Physics and Astronomy. Brigham Young University. (preprint).

Flatley, C. (2007). Using Musical Intervals to Greatly Improve Tuning and Intonation. Retrieved from

http://www.ultimate-

guitar.com/columns/the_guide_to/using_musical_intervals_to_greatly_improve_tuning_and_in

tonation.html.

Gold, J. (2007). Fender VG Stratocaster. Retrieved from

http://www.guitarplayer.com/miscellaneous/1139/fender-vg-stratocaster/15254.

Hanson, M. (1995). The Complete Guitar Player Series: The Complete Book of Alternate Tunings. Accent

On Music, LLC.

Locke, J. (n.d.). Intonation and Tuning of the Classical Guitar. Guitarra Magazine. Retreived from

http://www.guitarramagazine.com/Intonation.

MathWorks, & NIST. (2012). National Institute of Standards and Technology. JAMA: A Java Matrix

Package. Accessed from http://math.nist.gov/javanumerics/jama/.

McMurtney, R. J., Fleming, D., & Steffensen, S. (2013). Effects of Harmony and Dissonance with Two-

Tone Narrow and Wide Range Frequencies on Auditory Evoked Potentials. Journal of

Undergraduate Research. Department of Psychology and Neuroscience. Brigham Young

University. Retrieved from http://jur.byu.edu/?p=7763.

Monzo, J. (2005). Tonalsoft. Tonalsoft Inc. Retrieved from http://tonalsoft.com/enc/encyclopedia.aspx.

Morin, D. (Drafted 2009). Dispersion, Chapter 6. Cambridge, MA: Harvard University. Retrieved from

http://www.people.fas.harvard.edu/~djmorin/waves/dispersion.pdf. (preprint).

Sethares, B. (2009). Alternate Tunings Guide. University of Wisconsin. Department of Electrical

Engineering. Retrieved from http://sethares.engr.wisc.edu/alternatetunings/alltunings.pdf.

SetitupBetter. (n.d.). Understanding Guitar Setup. Retrieved from http://www.setitupbetter.com/.

Spier, N. (2013). Spectratune. Northampton, MA: Retrieved from

http://www.nastechservices.com/Spectratune.html.

Appendix A: Android App Renderings

Figure 14. Android app home page rendering. The screen is displaying the list of available chords to choose from.

Figure 15. Chord selection within the Android App. "A Major" and "E Major" are selected here in the list.

Figure 16. The calculated frequencies of each string. The "Calculate Custom Tuning" button was selected and the frequencies for
each string that will optimize consonance are displayed as a popup dialog.

Appendix B: Android App Code

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.clee.listviewdemo" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

activity_main.xml
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 android:paddingBottom="@dimen/activity_vertical_margin"

 tools:context=".MainActivity">

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

 <TextView android:text="Select your chords"

 android:layout_width="221dp"

 android:layout_height="40dp"

 android:layout_gravity="center_horizontal"

 android:id="@+id/select_chords"

 android:textSize="24dp"

 android:textStyle="bold" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:onClick="calculateFrequencies"

 android:text="Calculate Custom Tuning" />

 <ListView

 android:id="@+id/android:list"

 android:layout_width="match_parent"

 android:layout_height="397dp"

 android:choiceMode="multipleChoice">

 </ListView>

 </LinearLayout>

</RelativeLayout>

MainActivity.java
package com.example.clee.listviewdemo;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialogInterface;

import android.support.v7.app.ActionBarActivity;

import android.os.Bundle;

import android.util.Log;

import android.util.SparseBooleanArray;

import android.view.Menu;

import android.view.MenuItem;

import android.app.ListActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

import java.text.DecimalFormat;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.Set;

public class MainActivity extends ListActivity {

 private String [] chords = {

 "A Major",

 "B Major",

 "C Major",

 "D Major",

 "E Major",

 "F Major",

 "G Major",

 };

 Integer[] imageId = {

 R.drawable.a_major_1,

 R.drawable.b_major_1,

 R.drawable.c_major_1,

 R.drawable.d_major_1,

 R.drawable.e_major_1,

 R.drawable.f_major_1,

 R.drawable.g_major_1

 };

 //Put items into this array list when selected

 ArrayList selectedItems = new ArrayList();

 Set selectedListItems = new HashSet();

 @Override protected void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 CustomListAdapter customAdapter = new CustomListAdapter(this, chords,

imageId);

 ListView listView = getListView();

 listView.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);

 setListAdapter(customAdapter);

 }

 @Override protected void onListItemClick(ListView l, View v, int position, long

id){

 ListView listView = getListView();

 for(int i = 0; i<listView.getCount(); i++) {

CustomListAdapter.java
package com.example.clee.listviewdemo;

import android.app.Activity;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.ImageView;

import android.widget.TextView;

public class CustomListAdapter extends ArrayAdapter<String> {

 private final Activity context;

 private final String[] itemname;

 private final Integer[] imgid;

 public CustomListAdapter(Activity context, String[] itemname, Integer[] imgid) {

 super(context, R.layout.my_list_images, itemname);

 this.context=context;

 this.itemname=itemname;

 this.imgid=imgid;

 }

 public View getView(int position,View view,ViewGroup parent) {

 LayoutInflater inflater=context.getLayoutInflater();

 View rowView=inflater.inflate(R.layout.my_list_images, null, true);

 TextView txtTitle = (TextView) rowView.findViewById(R.id.item);

 ImageView imageView = (ImageView) rowView.findViewById(R.id.icon);

 txtTitle.setText(itemname[position]);

 imageView.setImageResource(imgid[position]);

 return rowView;

 };

}

my_list_images.xml
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 xmlns:tools="http://schemas.android.com/tools"

 android:orientation="horizontal">

 <ImageView

 android:id="@+id/icon"

 android:layout_width="50dp"

 android:layout_height="50dp"

 android:layout_marginBottom="5dp"

 android:layout_marginLeft="5dp"

 android:layout_marginRight="5dp"

 android:layout_marginTop="5dp" />

 <TextView

 android:id="@+id/item"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textSize="20sp"

 android:background="?android:attr/activatedBackgroundIndicator"

 android:paddingTop="5dp"/>

</LinearLayout>

Optimization.java
package com.example.clee.listviewdemo;

/**

 * Created by cassi lee on 4/17/2015.

 */

import android.util.Log;

import java.util.ArrayList;

import java.util.List;

import Jama.Matrix;

public class Optimization{

 private

 static final double F6 = 82.406899;

 static double f5;

 static double f4;

 static double f3;

 static double f2;

 static double f1;

 static int m;

 static int n;

 static final int[] stringHalfSteps = {0,5,10,15,19,24};//{f6, f5, f4, f3, f2 f1}

where f6 is the lowest string

 static final int[] defaultStringHalfSteps = {0,5,10,15,19,24};

 static final double justIntervalFactors[][] = {{1.0, 1.0},

 {16.0, 15.0},

 {9.0, 8.0},

 {6.0, 5.0},

 {5.0, 4.0},

 {4.0, 3.0},

 {45.0, 32.0},

 {3.0, 2.0},

 {8.0, 5.0},

 {5.0, 3.0},

 {9.0, 5.0},

 {15.0, 8.0},};

 static ArrayList<Double> customChordBList = new ArrayList<Double>();

 static List<double[]> customChordArrayList = new ArrayList<double[]>();

 static double[] residualLine = new double[]{0.0, 0.0, 0.0, 0.0, 0.0};

 static ArrayList<double[]> matrixOfResiduals = new ArrayList<double[]>();

 static double[] frequenciesToDisplay = new double[6];

 static final Integer[] AmajorFingering1 = new Integer[]{-1,0,2,2,2,0};

 static final Integer[] BmajorFingering1 = new Integer[]{-1,2,4,4,4,2};

 static final Integer[] CmajorFingering1 = new Integer[]{-1,3,2,0,1,0};

 static final Integer[] DmajorFingering1 = new Integer[]{-1,-1,0,2,3,2};

 static final Integer[] EmajorFingering1 = new Integer[]{0,2,2,1,0,0};

 static final Integer[] FmajorFingering1 = new Integer[]{1,3,3,2,1,1};

 static final Integer[] GmajorFingering1 = new Integer[]{3,2,0,0,0,3};

public static double[] getCustomFrequencies(ArrayList<String[]> CustomChords) throws

Exception {

 matrixOfResiduals.clear();

 customChordArrayList.clear();

 customChordBList.clear();

 matrixOfResiduals.clear();

 String[] customChordsArray = CustomChords.toArray(new

String[CustomChords.size()]);

 for(int i =0; i < CustomChords.size(); i++) {

 Log.i("customChordsArray["+i+"]: ", customChordsArray[i]);

 System.out.println("customChordsArray[" + i + "]: "+

customChordsArray[i]);

 }

 //calculate the residuals for each relationship between the strings based on

the fingering of the chord. add each residual calculated to the matrix

 for(int i = 0; i < CustomChords.size(); i++){

 if(customChordsArray[i] == "A Major"){

 calculateMatrix(AmajorFingering1);

 }

 else if(customChordsArray[i] == "B Major"){

 calculateMatrix(BmajorFingering1);

 }

 else if(customChordsArray[i] == "C Major"){

 calculateMatrix(CmajorFingering1);

 }

 else if(customChordsArray[i] == "D Major"){

 calculateMatrix(DmajorFingering1);

 }

 else if(customChordsArray[i] == "E Major"){

 calculateMatrix(EmajorFingering1);

 }

 else if(customChordsArray[i] == "F Major"){

 calculateMatrix(FmajorFingering1);

 }

 else if(customChordsArray[i] == "G Major") {

 calculateMatrix(GmajorFingering1);

 }

 }

/****************Create the desired matrix by putting all the chords together chosen

by user in a huge matrix***************/

 double[][] customChordArray = new double[matrixOfResiduals.size()][];

 for(int i = 0; i < matrixOfResiduals.size(); i++) {

 customChordArray[i] = matrixOfResiduals.get(i);

 }

 Double[] customChordB = customChordBList.toArray(new

Double[customChordBList.size()]);

 double[] customChordB2 = new double[customChordB.length];

 for(int i = 0; i < customChordB.length; i++){//change the customChordArray to

match the type "double" that DenseMatrix requires

 customChordB2[i] = customChordB[i];

 }

/**************************Solve using the jama library******************************/

 Matrix A = new Matrix(customChordArray/*numberChordsRows*/);//set matrix a

 Matrix b = new Matrix(customChordB2, customChordB2.length);//set matrix b

 Matrix frequenciesSolution = new Matrix(1, 5);

 frequenciesSolution =

((((A.transpose()).times(A)).inverse()).times((A.transpose()).times(b))).times(-1.0);

 double[][] frequenciesForArray = frequenciesSolution.getArray();

 frequenciesToDisplay[0] = F6;

 for(int i = 0; i < 5; i++){

 frequenciesToDisplay[i+1] = frequenciesForArray[i][0];

 }

 return frequenciesToDisplay;

 }

 private static List<double[]> calculateMatrix(Integer[] fingering){

 int lowNote = 0;

 int lowString = 0;

 int intervalRelation = 0;

 int octaveFactor = 0;//adds factors of 2

 int justIntervalRelation = 0;//how many absolute half steps are between the

notes if they were in the same octave

 //for each fingering, go through and calculate all the relationships between

all of the strings

 for(int i = 0; i < 6; i++){

 if(fingering[i] >= 0){

 lowString = i;

 lowNote = fingering[i];

 break; //ignore the -1's

 }

 }

 for(int h = lowString; h<5; h++){

 if(h == 0){//start on residual 1

 for(int i =1; i < 6; i++){//iterate through the strings to get each

relationship with F6, starting with f5 (i = 1)

 intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[0] + stringHalfSteps[0]);//relationship between strings f5-f1 with

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning

 octaveFactor = (intervalRelation/12)*2;//get the integer rep

first, then multiply by 2 to get number of octaves between notes.

 if(octaveFactor == 0){

 octaveFactor = 1;

 }

 justIntervalRelation =

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just

interval between the two strings

 //calculate what factor needs to be put into the residualLine

 residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0,

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between

strings)*(equal temperament factor from fingering to solve the open string frequency);

 Double f6Residual =

octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*F6*Math.pow(2.0,

fingering[0]/12.0);

 customChordBList.add(f6Residual);

 //add this residualLine[] to the matrix of residual arrays

 matrixOfResiduals.add(residualLine.clone());

 //change residualLine back to all zeros for next time

 for(int j = 0; j<5; j++){

 residualLine[j] = 0.0;

 }

 }

 }

 if(h == 1){

 for(int i =2; i < 6; i++){//iterate through the strings to get each

relationship with f5, starting with f4 (i = 2)

 intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[1] + stringHalfSteps[1]);//relationship between strings f5-f1 with

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning

 octaveFactor = (intervalRelation/12)*2;//get the integer rep

first, then multiply by 2 to get number of octaves between notes.

 if(octaveFactor == 0){

 octaveFactor = 1;

 }

 justIntervalRelation =

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just

interval between the two strings

 residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0,

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between

strings)*(equal temperament factor from fingering to solve the open string frequency);

residualLine[0]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[1]/12.0);//set f5's residual

 matrixOfResiduals.add(residualLine.clone());//add this

residualLine[] to the matrix of residual arrays

 for(int j = 0; j<5; j++){

 residualLine[j] = 0.0;

 }

 }

 double[] f5Residuals = {0.0, 0.0, 0.0, 0.0};

 for(int i = 0; i < f5Residuals.length; i++){

 customChordBList.add(f5Residuals[i]);

 }

 }

 if(h == 2){

 for(int i =3; i < 6; i++){//iterate through the strings to get each

relationship with f4, starting with f3 (i = 3)

 intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[2] + stringHalfSteps[2]);//relationship between strings f5-f1 with

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning

 octaveFactor = (intervalRelation/12)*2;//get the integer rep

first, then multiply by 2 to get number of octaves between notes.

 if(octaveFactor == 0){

 octaveFactor = 1;

 }

 justIntervalRelation =

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just

interval between the two strings

 residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0,

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between

strings)*(equal temperament factor from fingering to solve the open string frequency);

residualLine[1]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[2]/12.0);//set f4's residual

 matrixOfResiduals.add(residualLine.clone());//add this

residualLine[] to the matrix of residual arrays

 for(int j = 0; j<5; j++){

 residualLine[j] = 0.0;

 }

 }

 double[] f4Residuals = {0.0, 0.0, 0.0};

 for(int i = 0; i < f4Residuals.length; i++){

 customChordBList.add(f4Residuals[i]);

 }

 }

 if(h==3){

 for(int i =4; i < 6; i++){//iterate through the strings to get each

relationship with f3, starting with f2 (i = 4)

 intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[3] + stringHalfSteps[3]);//relationship between strings f5-f1 with

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning

 octaveFactor = (intervalRelation/12)*2;//get the integer rep

first, then multiply by 2 to get number of octaves between notes.

 if(octaveFactor == 0){

 octaveFactor = 1;

 }

 justIntervalRelation =

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just

interval between the two strings

 residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0,

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between

strings)*(equal temperament factor from fingering to solve the open string frequency);

residualLine[2]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[3]/12.0);//set f4's residual

 matrixOfResiduals.add(residualLine.clone());//add this

residualLine[] to the matrix of residual arrays

 for(int j = 0; j<5; j++){

 residualLine[j] = 0.0;

 }

 }

 double[] f3Residuals = {0.0, 0.0};

 for(int i = 0; i < f3Residuals.length; i++){

 customChordBList.add(f3Residuals[i]);

 }

 }

 if(h==4){

 for(int i =5; i < 6; i++){//iterate through the strings to get each

relationship with f2, starting with f1 (i = 5)

 intervalRelation = (stringHalfSteps[i]+fingering[i]) -

(fingering[4] + stringHalfSteps[4]);//relationship between strings f5-f1 with

f6(stringHalfSteps[0]) takes into consideration equal-temperament tuning

 octaveFactor = (intervalRelation/12)*2;//get the integer rep

first, then multiply by 2 to get number of octaves between notes.

 if(octaveFactor == 0){

 octaveFactor = 1;

 }

 justIntervalRelation =

intervalRelation%12;//justIntervalFactors[intervalRelation];//defines the just

interval between the two strings

 residualLine[i-1]=-

justIntervalFactors[justIntervalRelation][1]*Math.pow(2.0,

fingering[i]/12.0);//(residual for matrix starts with f5)=(interval between

strings)*(equal temperament factor from fingering to solve the open string frequency);

residualLine[3]=octaveFactor*justIntervalFactors[justIntervalRelation][0]*1.0*Math.pow

(2.0, fingering[4]/12.0);//set f4's residual

 matrixOfResiduals.add(residualLine.clone());//add this

residualLine[] to the matrix of residual arrays

 for(int j = 0; j<5; j++){

 residualLine[j] = 0.0;

 }

 }

 double[] f2Residuals = {0.0};

 for(int i = 0; i < f2Residuals.length; i++){

 customChordBList.add(f2Residuals[i]);

 }

 }

 }

 return matrixOfResiduals;

 }

}

