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Magnetic solutions to 211 gravity

Eric W. Hirschmann* and Dean L. Welch†

Department of Physics, University of California, Santa Barbara, California 93106-9530
~Received 2 November 1995!

We report on a new solution to the Einstein-Maxwell equations in 211 dimensions with a negative cosmo-
logical constant. The solution is static, rotationally symmetric, and has a nonzero magnetic field. The solut
can be interpreted as a monopole with an everywhere finite energy density.

PACS number~s!: 04.40.Nr, 04.20.Jb, 04.60.Kz
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I. INTRODUCTION

Studying physics in spacetimes with dimensions less t
four has often proved useful. While the study of such s
tems is of intrinsic interest, one usually has the hope that
properties of these lower-dimensional systems will mim
the properties of some corresponding four-dimensional s
tem. Witten’s discovery@1# of a black hole solution in two-
dimensional string theory has sparked renewed interes
lower-dimensional gravity. This solution has been used
study problems which have been intractable in four dime
sions such as black hole information loss.

Another lower-dimensional black hole solution that h
generated a great deal of interest is the three-dimensi
black hole discovered by Ban˜ados, Teitelboim, and Zanell
~BTZ! @2,3#. This spacetime is a solution to Einstein gravi
with a negative cosmological constant; it is also known th
this solution can be formulated as a string theory solut
@4#. Like the two-dimensional black hole, this solution h
been studied with the hope of shedding light on problems
four-dimensional gravity. This hope is supported by the f
that there are striking similarities between some of these
cently discovered three-dimensional solutions and their fo
dimensional counterparts. However, despite these simil
ties, one should bear in mind that there are some impor
differences, not the least of which is that the universe we l
in is four dimensional. Nevertheless, in the more simplifi
realm of three dimensions, we might reasonably hope to
tain some insight into the nature of gravity and quantu
gravity in particular@5#.

The discovery of the BTZ black hole has spawned effo
to find other solutions to the three-dimensional Einste
equations as well as solutions to various generalizations
them coupled to a variety of matter fields. One such solut
is the static electrically charged black hole originally di
cussed by BTZ@2#. This solution is specified by three param
eters, a mass parameterM , a chargeQ, and a ‘‘radial pa-
rameter’’r 0 . To see that one needs this radial parameter,
sufficient to observe that while the energy density in t
electromagnetic field approaches zero asymptotically the
at which it does is sufficiently slow so that the total energy
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the electromagnetic field outside of any finite radius d
verges. This is most easily seen by observing the behavior
the quasilocal mass~using the formalism of@6#! as a function
of r , Mql5M1Q2ln(r/r0). The parameterr 0 serves to deter-
mine how much of the energy in the electromagnetic field
included in the mass parameter1M . Depending on the values
of the parameters, the charged BTZ solutions may have tw
one, or no horizons. It is natural to identify a charged sol
tion with a single horizon as an extremal black hole. Th
identification is supported by the observation that such a s
lution has zero Hawking temperature, as does the extrem
charged Reissner-Nordstro¨m black hole.

Although the static, electrically charged solution is simila
in many ways to the Reissner-Nordstro¨m black hole in four
dimensions, there are some important differences. The m
obvious difference is that the three-dimensional black hole
asymptotically anti–de Sitter space, while the Reissne
Nordström solution is asymptotically flat. Another difference
that we have just seen is that the static solution has a quas
cal mass that diverges at infinity, whereas the quasiloc
mass of the four-dimensional charged black hole approac
a constant asymptotically@7#. An additional difference that is
the consideration of this work is that the Reissner-Nordstro¨m
black hole can have electric or magnetic charge, as well
both. Because of the invariance of the Maxwell equatio
under a duality transformation, the form of the metric for
Reissner-Nordstro¨m black hole is the same for an electrically
charged solution and a magnetically charged solution. T
reason is that in four dimensions both the Maxwell tens
and its dual are two-forms. However, no such transformati
exists for the Maxwell equations in three dimensions becau
the Maxwell tensor is a two-form and its dual is a one-form
One is naturally led to ask whether the solutions to th
Einstein-Maxwell equations in three dimensions are differe
if one assumes that they possess a magnetic as oppose
electric charge. We examine this question in this paper a
report that the solutions are quite different. Whereas the el
tric solution may be a black hole provided the charge is n
too large, the magnetic solution that we present is not a bla
hole for any value of the magnetic charge. This magne
solution is both static and rotationally symmetric. In add

1In other words, for a given solution, changes inM can be com-
pensated for by changes inr 0; see@2#.
5579 © 1996 The American Physical Society
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tion, it has finite energy density. We interpret it as a magne
monopole.2

Parenthetically, we remark that there has been some
cent discussion of stationary generalizations of the elec
cally charged solution@8,9#. For a rotating and charged so
lution, one would expect there to be both an electric and
magnetic field. Indeed, these new rotating solutions wou
appear to possess both. However, it was incorrectly repor
in @8# that their extremal solution has a finite angular mo
mentum. Chan@10# showed that the angular momentum o
the solution in@8# actually diverges logarithmically at infin-
ity. Given that the mass of a static electrically charged so
tion also diverges logarithmically at infinity, we believe tha
the divergence in the angular momentum is not physica
unreasonable.

II. EINSTEIN EQUATIONS AND THEIR SOLUTION

We begin with the action for Einstein gravity coupled to
U~1! gauge field with a negative cosmological constant:

S5
1

4E d3xA2g~R22L2F2!, ~2.1!

whereL521/l 2 is the negative cosmological constant,F is
a two-form, and we have set Newton’s constant to b
1/4p. The equations of motion derived from the action a
the Einstein equations

Rab2
1

2
gabR1Lgab52Tab ~2.2!

and the Maxwell equations

¹aF
ab50, ~2.3!

with the stress tensor of the electromagnetic field given b

Tab5FacFbdg
cd2

1

4
gabF

2. ~2.4!

We assume that the spacetime is both static and rotati
ally symmetric, implying the existence of a timelike Killing
vector and a spacelike Killing vector. In the coordinate bas
we use, these vectors will be]/]t and ]/]f, respectively.
These symmetries allow us to write our metric in the for
@8#

ds252N~r !2dt21L~r !22dr21K~r !2df2. ~2.5!

Using this metric and the substitutionsEr5(L/N)Ftr and
B5(L/K)Frf (Er andB are the components of the Maxwel
tensor measured in an orthonormal basis!, the Einstein-
Maxwell equations~2.2!–~2.4! become

2We are using the term monopole a bit loosely here. The soluti
is certainly magnetic and particlelike, but the fact that we are in tw
spatial dimensions suggests that the solution is perhaps a bit m
reminiscent of a Neilson-Oleson vortex solution.
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Rtt5N2L2SN8K8

NK
1
L8K8

LK
1
N9

N D
5N2S 2l 2 12B2D , ~2.6a!

Rff52K2L2SN8K8

NK
1
L8K8

LK
1
K9

K D
5K2S 2

2

l 2
12Er

2D , ~2.6b!

Rtf50

522ErB, ~2.6c!

Grr5
N8K8

NK

5
1

L2 S 1l 2 1B22Er
2D , ~2.6d!

where the prime indicates differentiation with respect tor . In
addition, we can write the Maxwell equation as

]a~A2ggabgcdFbc!50, ~2.7!

which, upon integration, yields

Er5
C1

K
, B5

C2

N
. ~2.8!

We have made no assumptions other than the fact that
spacetime is static and rotationally symmetric. TheRtf equa-
tion implies that one or both of the electric and magnet
fields must be zero.3 The electric case has previously bee
discussed. However, we are interested in magnetica
charged solutions, and so we make the assumption thatC2
Þ0, which immediately implies thatC150.

Using our form forB, we can solve our equations as
follows. We make the substitution

L~r !5KNf~r !, ~2.9!

where f (r ) is a function which can be freely specified. We
can combine~2.6a! and ~2.6d! to get an equation inN and
f :

f

2
~N2!85a0 , ~2.10!

wherea0 is an integration constant. Likewise, Eq.~2.6d! will
now yield

f

2
~K2!85

1

l 2
1
2C2

2

N2 . ~2.11!

For the simple choicef (r )51/r , the metric coefficients be-
comeon
o
ore

3This will no longer be necessarily true for the rotating case.
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N2~r !5a0r
21a1 ,

~2.12!

K2~r !5
1

l 2a0
r 21

C2
2

a0
2 lnua0r 21a1u1a2 .

This solution is asymptotic to anti–de Sitter space with cu
vature21/l 2. The integration constanta2 can be absorbed
into the other integration constants together with a rescal
of r 2, and so we will choose it to be zero. We choose
normalization oft so that asr becomes large,gtt approaches
2r 2/ l 2. This is equivalent to choosinga051/l 2. When the
magnetic field is zero,C250, this solution is a three-
dimensional black hole with mass equal to2a1 . Therefore,
we seta152M . Asymptotically, the Maxwell field looks
like that of a magnetic point charge, and so we s
C25Qm / l

2 (Qm representing the magnetic charge!. The
metric ~2.5! is now in the form

ds252~r 2/ l 22M !dt21r 2~r 2/ l 22M !21

3~r 21Qm
2 lnur 2/ l 22M u!21dr2

1~r 21Qm
2 lnur 2/ l 22M u!df2. ~2.13!

For future convenience, we make the definitionr1
2 5Ml 2.

For Qm50, the metric~2.13! is identical to the nonrotating
BTZ solutions, as we would expect. However, the presen
of a nonzero magnetic charge drastically changes the sp
time.

The nonrotating three-dimensional black hole obtained
setting the magnetic charge to zero has an event horizo
r5r1 . However, there is no event horizon for the case
nonzero magnetic charge. In particular, we do not have
magnetically charged three-dimensional black hole. This c
be seen as follows. Thegff5K2 term becomes zero for
some value ofr which we call r̄ . By definition, r̄ satisfies

r̄ 21Qm
2 lnU r̄ 22r1

2

l 2
U50. ~2.14!

Clearly, r̄ is constrained4 to be betweenr1 andAr1
2 1 l 2.

Not only doesgff change sign asr becomes less thanr̄ ,
but grr changes sign as well. One can see that naively us
these coordinates forr, r̄ leads to an apparent signatur
change. This shows that we must choose a different cont
ation for r< r̄ @11#. We now introduce a new set of coord
nates that will show the spacetime is complete forr> r̄ . A
‘‘good’’ set of coordinates which allows us to cover ou
spacetime is found by letting

x25r 22 r̄ 2.

The metric with this new coordinate then becomes

4There can also be another solution to this equation depending
the relative values ofr1 andl . However, as we will see below, ou
spacetime ends atr̄ , and should the other solution exist, it will be
irrelevant in this spacetime.
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ds252
1

l 2
~x21 r̄ 22r1

2 !dt21Fx21Qm
2 ln S 11

x2

r̄ 22r1
2 D Gdf2

1 l 2x2~x21 r̄ 22r1
2 !21S x2

1Qm
2 lnF11

x2

r̄ 22r1
2 G D 21

dx2, ~2.15!

where our coordinatex ranges between zero and infinity.
This coordinate system now covers the complete spacetim
Timelike geodesics can reach the origin,x50, in a finite
proper time, and null geodesics can reach the origin in
finite affine parameter. The components of the Ricci tens
measured in an orthonormal basis that is parallel propagat
along a timelike geodesic are well behaved everywhere.
three dimensions the curvature is completely determined b
the Ricci tensor, and so the fact that the Ricci tensor is we
behaved shows that this spacetime has no curvature sing
larities. Similarly, the components of the electromagneti
field strength are well behaved in this basis.

However, one can see that atx50 we will have a conical
singularity unless we identify the coordinatef with a certain
period. The period is found to be

Tf52p
eb/2

11Qm
2 eb/ l 2

, ~2.16!

whereb5 r̄ 2/Qm
2 . The strange thing about this period re-

veals itself when we examine its behavior for limiting values
of Qm . AsQm approaches infinity, the period becomes zero
This is what one might expect because this is the limit i
which the magnetic charge is approaching infinity. Howeve
asQm approaches zero, the same thing happens: The per
of the coordinatef approaches zero again. This is very sur
prising since theQm50 solution is a three-dimensional
black hole~with no magnetic charge! and this looks nothing
like theQmÞ0 solution in the limit asQm approaches zero.
While it often occurs that ‘‘the limit of a theory is not the
theory of the limit,’’ in the case considered here the differ
ence is quite striking.

III. SPACETIME FOR NEGATIVE M

In the previous analysis we have been assuming th
M>0. We now briefly consider magnetic solutions with
negativeM . As observed in@2#, the BTZ solution for
21,M,0 reduces to a solution with a naked conical sin
gularity. Such solutions were studied in Refs.@12,13#. For
M in this range the magnetic solution~2.13! with QmÞ0 is
continued in the same way as for the case of non-negati
M . However, now we haver 21 l 2uM u appearing in the loga-
rithm in ~2.13!, and sor̄ is constrained to be between 0 and
lA12uM u.

ForM521 the BTZ solution is anti–de Sitter space. It is
interesting to observe that the magnetic solution wit
M521 is already complete with no apparent signatur
change in the metric. Equivalently, the analysis in the prev
ous section applies, but withr̄ 50. In particular, note that
the period off needed to avoid a conical singularity is

on
r
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Tf~M521!5
2p

11Qm
2 / l 2

~3.1!

for M521. This period still approaches zero asQm ap-
proaches infinity, but asQm approaches zero,~3.1! goes to a
constant. This behavior of the period off is what intuition
tells one it should be~one should bear in mind that the co
ordinatef is not identified for anti–de Sitter space!.

Finally, consider the magnetic solution withM,21. This
space is incomplete if one only considers non-negative v
ues of r 2. To complete this space we must allowr 2 to be-
come negative. This is not as strange a thing to do as it m
seem~in particular, it does not require us to consider com
plex coordinates!. Note thatr in ~2.13! only appears asr 2;
this indicates thatr 2 may be a more natural radial coordina
~see also the transformations in@4#!. The coordinate transfor-
mationr 25x22 l 2uM u leads to the desired result. If we allow
x to range over all non-negative values, the space will
complete. The remainder of the analysis carries through
with theM521 case.

IV. CONCLUSIONS

In this paper we have presented a new solution to
Einstein-Maxwell equations in 211 dimensions in the pres-
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ence of a negative cosmological constant. It is static, rot
tionally symmetric, and magnetically charged. The nature
the spacetime is very different from that for the electricall
charged BTZ solution. In the latter case, for a nonzero regi
of parameter space the solution is a black hole. In contra
the magnetic case has no event horizon and is particlelike

There are several other things one might like to kno
about this solution. One possibility would be to understan
the motion of magnetically charged particles in this spac
time. Another interesting question would be whether this s
lution could be generalized to one that included rotation.

Note added in proof.After this paper was submitted for
publication, it was brought to our attention that this solutio
has appeared in Refs.@14,15#. We thank the authors for in-
forming us of their work.
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