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C omputational Methods for Physics should be seri-
ously considered as a textbook by anyone teaching 
computational physics to upper-division physics 
students. It would be one of my top choices to 

teach an upper-division computational physics class among 
some other books, such as Numerical Method for Physics by 
Alejandro L. Garcia, Computational Physics by  Nicholas 
J. Giordano, and Mathematica for Physics by Robert L. 
 Zimmerman and Fredrick I. Olness. The book includes 
good coverage of the standard techniques usually covered 
in a numerical methods course: ordinary differential equa-
tions, root finding, partial differential equations, integra-
tion, Fourier transforms, linear algebra, and minimization 
with the addition of a few topics of special interest to physi-
cists—chaos, neural networks, and Galerkin methods. 
Almost all of the techniques are couched in the context of 
physics examples from the areas of relativistic and classical 
mechanics, electricity and magnetism, quantum mechanics, 
thermodynamics, and fluid dynamics.

Exercises and Problems
To be useful, any computational physics textbook needs 
good exercises and problems to give students practice ap-
plying the ideas presented in each chapter. Franklin’s book 
doesn’t disappoint in this regard. Each chapter has a rich set 
of two types of exercises: pencil-and-paper problems, to give 
students practice in the ideas behind the techniques; and 
laboratory problems, to give students practice implementing 
the techniques covered in each chapter. The problems are 
nontrivial, at a good level to challenge upper-division phys-
ics students, and tied nicely to the ideas in each chapter.

For example, in the chapter on eigenvalues there are 
pencil and paper problems to do things like proving that 

a real symmetric matrix has real eigenvalues or finding ap-
proximate energies for an infinite square well with a small 
perturbation. The laboratory problems involve things like 
finding least squares fits to noisy data, solving the Schröding-
er equation numerically, or finding the numerical solution to 
the same perturbed infinite square well problem.

Organization and Approach
The book is organized around the techniques themselves rath-
er than around the physical problems. So, for example, the 
chapters have headings like root-finding, integration, Fourier 
transform, and matrix inversion. This is in contrast to a text-
book like Giordano’s “Computational Physics” which is orga-
nized around particular physical problems. In this respect it 
is more like Garcia’s “Numerical Methods for Physics” book.

The author takes a somewhat unique approach in terms 
of showing how to implement each technique. Although he 
chose to use the Mathematica language, he limited himself to 
a small subset of the rich set of tools Mathematica has for solv-
ing these kinds of problems. By limiting himself to this subset 
of procedural statements, he makes it relatively easy to trans-
late the code examples into other languages such as Python, 
C, C++, Java, or Fortran. By avoiding the powerful tools al-
ready in Mathematica for solving these kinds of problems, he 
helps the students better understand the inner workings and 
applicability of each of the methods discussed. The downside 
of such an approach is that the students aren’t exposed to tools 
they might find useful for their own research or how the prob-
lems might be solved more elegantly using a more convention-
al Mathematica style, such as that employed in Zimmerman 
and Olness’s book, Mathematica for Physics.

Overall, Franklin has made the book quite readable; his 
enthusiasm and interest in the subject help the reader un-
derstand why each topic is interesting and important. The 
context of numerous physics examples will help physics stu-
dents understand their importance. Generally, both physics 
and mathematical ideas are presented with enough back-
ground so that an average upper-division student can follow 
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the development even if they haven’t covered that material 
in a course before. I would recommend that the student 
have some programming experience, introductory courses 
in mechanics, thermal physics, and electricity and magne-
tism, as well as modern physics, differential equations, and 
partial differential equations before taking a course using 
this text.

The book has a website with electronic copies of the 
examples in the book and example projects from students. 
This is an important resource for the large fraction of phys-
ics students who learn computational techniques better by 
example than by explanation.

Content
The textbook begins with an introductory chapter contain-
ing an overview of programming. It serves as a good intro-
duction to the subset of Mathematica used in the book and 
introduces the important ideas of scaling units and analyz-
ing computational complexity and efficiency. However, I 
believe a student with no prior programming background 
would struggle a bit if this were his or her first exposure to 
programming. Instead, this chapter probably serves best as 
a review of the ideas that students have already encountered 
in previous programming experiences.

The book contains a solid introduction to numerical 
issues that can plague an uninformed novice to numerical 
methods. The careful reader will understand how to analyze 
the convergence of methods, issues involving algorithm sta-
bility, how to ensure flux conservation, and the importance 
of comparing numerical solutions to canonical problems 
that can be solved analytically.

The book focuses on broad ideas and the most basic 
techniques for each area covered. A student who wanted to 
apply these techniques in a research project would need to 
utilize the suggestions for further reading in each chapter 
or go to the literature to learn about the most efficient or 
 robust algorithms or about critical 
details for particular applications. 
For example, the discussion about 
dealing with finite grids in solving 
the Poisson equation includes little 
detail about how to effectively ad-
dress the issue of boundary condi-
tions at the edge of the grid.

As is inevitable with an introduc-
tory text of this sort, the author had 
to pick and choose which details he 
would include. If I were teaching a 
course from this text, I would want 
to supplement the text with more in-
formation about high-order quadra-
ture techniques, signal processing, 
high-order surface representations, 

statistical error analysis, Monte Carlo simulations, addi-
tional minimization techniques (such as genetic algorithms 
and simulated annealing), and extending Galerkin methods 
to boundary integral equations. However, this isn’t a serious 
weakness. The book provides a solid foundation on which 
these topics (or the  favorite topics of other computational 
physicists) can easily be built.

This would be a good textbook for providing junior- and 
senior-level undergraduate students with a foundational 

background in numerical techniques as applied to physics. 
With its strong set of physical examples and the author’s 
obvious enthusiasm for this subject, I believe it will be an 
engaging textbook for physics students, which will also 
serve as a good review or preview of foundational physics 
topics. Most of the problems introduced by the author are 
intractable analytically, giving the reader good motivation 
for mastering the computational techniques the author pres-
ents to expand their toolkit for solving important physical 
problems. With the author’s approach of using a simple sub-
set of Mathematica to illustrate implementations of basic 
algorithms, students will be able to focus on the essential 
elements associated with each approach, rather than getting 
lost in the minutia of more sophisticated procedures and 
more elegant implementations. 
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