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In a diffuse sound field, prior research has established that a secondary source can theoretically

achieve perfect cancellation at an error microphone in the far field of the secondary source.

However, the sound pressure level is generally only reduced in a small zone around the error sen-

sor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure

level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the

generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a

weighting factor in the formulation of total acoustic energy density. Different values of the weight-

ing factor can be chosen for different applications. When minimizing the GED at the error sensor,

one can adjust the weighting factor to increase the spatial extent of the “quiet zone” and to achieve

a desired balance between the degree of attenuation in the quiet zone and the total energy added

into the sound field. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4892754]

PACS number(s): 43.50.Ki, 43.55.Cs, 43.55.Br [BSC] Pages: 1112–1119

I. INTRODUCTION

Active noise control (ANC) of enclosed sound fields was

first studied systematically by Nelson et al. more than 20 years

ago.1–3 In the low frequency range (below the Schroeder fre-

quency), it has been shown that control of the global potential

energy can be achieved for resonance frequencies of an enclo-

sure by minimizing the squared pressure response at one or

multiple field locations with one or more remotely placed sec-

ondary sources. Because of the relatively large spatial fluctua-

tions in the enclosed squared pressure field, research has been

carried out to determine the optimal locations for the error

sensors as well as the secondary sources.2,4,5

For a diffuse sound field (above the Schroeder frequency),

global control is usually not feasible with remotely placed sec-

ondary sources,1 and only local “quiet zones” can be

achieved.6–8 The average 10 dB zone of quiet, which is defined

to be the region around the error sensor where the attenuation

is at least 10 dB, is reported to be a sphere with a diameter of

about one-tenth of a wavelength for one error sensor and one

remote secondary source ANC system.6 Effort has been carried

out to increase the volume of this 10 dB quiet zone by placing

the error sensor in the near-field of the secondary source.7 In

the same spirit, other control strategies involving multiple con-

trol sources minimizing acoustic pressure response as well as

pressure gradient responses have also been studied.9–11 Another

type of approach to mitigate the small quiet zone issue is to uti-

lize the virtual sensor technology, which projects the quiet zone

to a remote location away from the physical error sensors to

cover the space where a physical sensor cannot be placed.11–14

The use of total acoustic energy density (ED) as the

minimization quantity has been demonstrated to yield

improved performance in low modal density acoustic fields,

often resulting in improved global attenuation due to the fact

that ED is more spatially uniform than squared pressure and

therefore provides more global information.15,16

Recently a new energy density quantity, referred to as

generalized acoustic energy density (GED), has been intro-

duced.17 An additional degree of freedom is incorporated into

the total acoustic energy density, and thus the quantity can be

optimized for different applications. However, the complexity

of measurement and computation is not increased compared

to the total acoustic energy density. It has been shown that

GED based active noise control can further improve the

results of ED based ANC below the Schroeder frequency

because the GED can be spatially more uniform than the ED

for enclosed sound fields.17 In this paper, GED will be opti-

mized to control noise in a diffuse sound field.

This paper is organized as follows. The GED and some

of its general properties will be reviewed in Sec. II. An

expression for the secondary source strength to minimize the

GED response will be derived in Sec. II A. In Sec. III, the

zone of quiet for GED based ANC will be studied analyti-

cally. Then the analytical results will be verified by a numer-

ical simulation in Sec. IV. In Sec. V, a modified filtered-x

LMS algorithm will be introduced for GED based ANC.

Finally, an experimental study will be presented in Sec. VI.

II. GED

The GED is defined as follows:17

EG að Þ ¼
a

2q0c2
p̂p̂� þ 1� a

2
q0v � v̂�; (1)

where �̂ denotes the frequency domain variable, a is an arbi-

trary real number, q0 is the ambient fluid density, c is the

speed of sound, and p̂ and v̂ are the complex sound pressure
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and particle velocity. The acoustic potential energy density

EP and kinetic energy density EK are usually written as

EP ¼
1

2q0c2
p̂p̂�;

EK ¼
1

2
q0v̂ � v̂�

¼ 1

2
q0v̂1v̂

�
1 þ

1

2
q0v̂2v̂

�
2 þ

1

2
q0v̂3v̂

�
3

¼ EK1 þ EK2 þ EK3;

where the subscripts “1,” “2” and “3” represent the three or-

thogonal components of v̂ or EK . Therefore, GED can be

written as EGðaÞ ¼ aEP þ ð1� aÞEK . GED can revert to the

traditional acoustic energy density quantities, as shown in

Table I. With properly selected values of a, GED can be

optimized for different applications.

For diffuse sound fields excited by a single frequency,

EP, EK1, EK2, and EK3 all follow the exponential distribution

with a unitary mean value, if they are normalized by their

spatial mean values.18 The normalized EK and ET (total

energy density) follow the Gammað3; 1=3Þ distribution. The

distribution for GED is more complicated with the probabil-

ity density function given by17

fEG
xð Þ ¼ 27a2 e�3x= 1�að Þ � e�x=að Þ

1� 4að Þ3

þ 27x x 1� 4að Þ � 2a 1� að Þ½ � e�3x= 1�að Þ

2 1� að Þ2 1� 4að Þ2
: (2)

The relative spatial variance for GED is shown to be

�2
G ¼

1

3
4a2 � 2aþ 1ð Þ; (3)

which reaches its minimum value, 1=4, when a ¼ 1=4.

A. GED based ANC

For active noise control inside an enclosure, the usual

approach taken is to minimize the squared pressure response at

an error sensor location by adjusting the complex source strength

(both amplitude and phase) of the secondary source. In this sec-

tion, a mathematical derivation is carried out to find the optimal

complex source strength if the GED response is minimized.

Suppose the noise field in an enclosure is excited by a

single-tone primary noise source. The acoustic pressure and

three particle velocity components at a location r are known

and denoted as p̂pðrÞ, v̂p1ðrÞ, v̂p2ðrÞ, and v̂p3ðrÞ, respectively.

The subscript “p” represents the primary sound field. If a

secondary source is introduced in the enclosure, then the

superposed GED field can be calculated as

EG að Þ rð Þ ¼ a
2q0c2

p̂p rð Þ þ p̂s rð Þ
� �

p̂p rð Þ þ p̂s rð Þ
� ��

þ 1� a
2

q0

X3

l¼1

v̂pl rð Þ þ v̂sl rð Þ
� �

� v̂pl rð Þ þ v̂sl rð Þ
� ��

; (4)

where p̂sðrÞ and v̂slðrÞ represent the pressure and the three

components of the particle velocity fields due to the second-

ary source only. The subscript “s” represents the secondary

sound field.

The secondary acoustic pressure and particle velocity

fields are usually not known before the control system is turned

on. The spatial transfer functions from the secondary source to

any field location can be measured and denoted as Ẑps for pres-

sure and Ẑvsl for particle velocity. Equation (4) then becomes

EGðaÞðrÞ ¼
a

2q0c2
½p̂pðrÞ þ ðQ̂sr þ iQ̂siÞẐpsðrÞ�

� ½p̂pðrÞ þ ðQ̂sr þ iQ̂siÞẐpsðrÞ��

þ 1� a
2

q0

X3

l¼1

½v̂plðrÞ þ ðQ̂sr þ iQ̂siÞẐvslðrÞ�

� ½v̂plðrÞ þ ðQ̂sr þ iQ̂siÞẐvslðrÞ��;

where Q̂sr and Q̂si represent the real and imaginary parts of

the complex secondary source strength, Q̂s.

If one is trying to minimize the GED response at loca-

tion r0, the optimal Q̂s value can be solved for from

@EG að Þ r0ð Þ
@Q̂sr

¼ 0;

@EG að Þ r0ð Þ
@Q̂si

¼ 0;

8>>>><
>>>>:

(5)

and the solution is

Q̂s ¼ Q̂sr þ iQ̂si ¼ �
ap̂p r0ð ÞẐp�s r0ð Þ þ 1� að Þq2

0c2
X3

l¼1

v̂pl r0ð ÞẐv�sl r0ð Þ

" #

aẐps r0ð ÞẐp�s r0ð Þ þ 1� að Þq2
0c2

X3

l¼1

Ẑvsl r0ð ÞẐv�sl r0ð Þ

" # : (6)

If the primary sound field is also expressed in terms of the primary source strength, Q̂p, and the spatial transfer functions,

Ẑpp and Ẑvpl, then Eq. (6) becomes

TABLE I. GED with different a values.

a 0 1/2 1

GED EK 1=2ET
a EP

aET represents the total acoustic energy density.
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Q̂s ¼ �Q̂p

aẐpp r0ð ÞẐp�s r0ð Þ þ 1� að Þq2
0c2

X3

l¼1

Ẑvpl r0ð ÞẐv�sl r0ð Þ

" #

aẐps r0ð ÞẐp�s r0ð Þ þ 1� að Þq2
0c2

X3

l¼1

Ẑvsl r0ð ÞẐv�sl r0ð Þ

" # : (7)

In the low frequency range, the numerical study in Ref.

17 shows that minimizing the EGð1=4Þ response instead of the

total acoustic energy density response may lead to improved

active control of the global sound energy in a lightly damped

enclosure.

III. ZONE OF QUIET IN A DIFFUSE SOUND FIELD

For a diffuse sound field excited by a pure-tone noise

source, global active noise control will generally not be

achieved unless the control source is placed within half a

wavelength from the primary source.1 When the control

source and the primary source are far away from each

other, only local attenuation can be obtained. If the pres-

sure response is minimized at the error sensor location r0,

which is in the far field of both sources, an expression for

the spatially averaged mean squared pressure p at the loca-

tion r0 þ Dr has been derived by Elliot et al.,6 which can

be written as

hp2ðr0 þ DrÞi ¼ ½1� sinc2ðkDrÞ�ðhp2
pi þ hp2

s iÞ; (8)

where h: : : :i denotes the spatial and time average, p2
p and p2

s

represent the squared sound pressure of the primary and the

secondary sound fields, respectively, k is the wavenumber,

and Dr ¼ jDrj. The existence of the sinc function on the

right hand side of Eq. (8) is rooted from the spatial cross-

correlation of two positions distanced by Dr in a diffuse

field.19 Upon arriving at the preceding expression, it was

assumed that the cancellation of the sound pressure response

is perfect at the location r0. If a similar derivation to that in

Ref. 6 is carried out but without forcing the perfect cancella-

tion of the sound pressure response, one can derive the fol-

lowing more general expression,

hp2ðr0 þ DrÞi ¼ sinc2ðkDrÞhp2ðr0Þi
þ ½1� sinc2ðkDrÞ�ðhp2

pi þ hp2
s iÞ:

(9)

Comparing this result to Eq. (8), the term

sinc2ðkDrÞhp2ðr0Þi has been added, which draws the corre-

lation to the squared pressure at the error sensor location.

The second term on the right hand side of Eq. (9) domi-

nates the whole expression in the far field of the error sen-

sor (Dr > k=2) where one has

hp2ðr0 þ DrÞi � hp2
pi þ hp2

s i: (10)

Equation (10) suggests that the far-field sound energy will

always be increased after ANC.

If the spatially averaged mean squared pressure after

ANC is normalized by the same quantity before ANC, Eq.

(9) becomes

hp2 r0 þ Drð Þi
hp2

pi
¼ sinc2 kDrð Þ hp

2 r0ð Þi
hp2

pi

þ 1� sinc2 kDrð Þ
� �

1þ hp
2
s i
hp2

pi

 !
:

(11)

The fraction in the first term of the right-hand side of Eq.

(11) represents the normalized spatially averaged mean

squared pressure at the error sensor location. If the GED

response is minimized, this term can be calculated in the fre-

quency domain as

hp2ðr0Þi
hp2

pi
¼
h½p̂pðr0Þ þ p̂sðr0Þ�½p̂pðr0Þ þ p̂sðr0Þ��i

hp̂pp̂�pi
¼
h½Q̂pẐppðr0Þ þ Q̂sẐpsðr0Þ�½Q̂pẐppðr0Þ þ Q̂sẐpsðr0Þ��i

hQ̂pẐppQ̂
�
pẐp�pi

¼
h½Ẑppðr0Þ þ ðQ̂s=Q̂pÞẐpsðr0Þ�½Ẑppðr0Þ þ ðQ̂s=Q̂pÞẐpsðr0Þ��i

hẐppẐp�pi
; (12)

where Qs can be found in Eq. (7). The substitution of Eq. (7)

into Eq. (12) makes the expression rather complicated.

However, given that Ẑpp, Ẑps, Ẑvpl, and Ẑvsl are all mutually

independent variables with mean values being equal to zero,

and hẐvplẐv�pli=hẐppẐp�pi ¼ 1=3,18 the expression can be

simplified to

hp2 r0ð Þi
hp2

pi
¼ 1� að Þ2

3

EPZsEKZs þ 3E2
KZs

aEPZs þ 1� að ÞEKZs½ �2

* +
; (13)

where EPZs ¼ ẐpsẐp�s and EKZs ¼ q2
0c2
P3

l¼1 ẐvslẐv�sl. EPZs

and EKZs are independent random variables and have the

same mean value, hEPZsi ¼ hEKZsi ¼ lZ. In addition,
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EPZs=lZ is distributed as Gammað1; 1Þ, and EKZs=lZ is dis-

tributed as Gammað3; 1=3Þ. Therefore Eq. (13) can be

expressed as

hp2 r0ð Þi
hp2

pi
¼ 1� að Þ2

3

EPZsEKZs þ 3E2
KZs

aEPZs þ 1� að ÞEKZs½ �2

* +

¼ 1� að Þ2

3

EPZsEKZs=l2
Z þ 3E2

KZs=l
2
Z

aEPZs=lZ þ 1� að ÞEKZs=lZ

� �2
* +

¼ 1� að Þ2

3

ð1
0

ð1
0

xyþ 3y2

axþ 1� að Þy
� �2 � e�x

� 27y2e�3y

2
dxdy: (14)

The integration in Eq. (14) is still involved. However, it is

possible to obtain some important properties of

hp2ðr0Þi=hp2
pi fairly easily. First, hp2ðr0Þi=hp2

pi is monotoni-

cally decreasing for 0 � a � 1, which can be proven by

showing that its derivative with respect to a is always nega-

tive. When a is equal to one, GED reverts to the potential

energy density (or squared pressure). Therefore it is not sur-

prising that the squared pressure at the error sensor location

reaches its minimum value, zero, when squared pressure is

minimized.

When a ¼ 0, which is equivalent to minimizing the

squared particle velocity, Eq. (14) is relatively easier to eval-

uate and becomes

hp2 r0ð Þi
hp2

pi

����
a¼0

¼ 1

3

ð1
0

ð1
0

xþ 3y

y
� e�x � 27y2e�3y

2
dxdy¼ 3

2
;

(15)

which indicates an amplified pressure field at the error sensor

location. Another easily integrated case is when a ¼ 1=4,

resulting in

hp2 r0ð Þi
hp2

pi

����
a¼1=4

¼ 3

ð1
0

ð1
0

y

xþ3y
�e�x �27y2e�3y

2
dxdy¼ 3

4
:

(16)

A numerical evaluation of Eq. (14) for 0 � a � 1 is plotted

in Fig. 1 on a logarithmic scale.

To reduce the squared pressure at the error sensor loca-

tion to at least 10 dB lower than the averaged primary squared

pressure, a needs to be greater than about 0.88. When a is

equal to 0.6, about 5 dB reduction can be achieved.

In a similar manner, the term, hp2
s i, in Eq. (9) and Eq.

(11) can be calculated as follows:

hp2
s i ¼ hQ̂sðr0ÞẐpsðrÞQ̂

�
s ðr0ÞẐp�s ðrÞi

¼ hQ̂sQ̂
�
s ihẐpsẐp�s i: (17)

For the frequency range well above the Schroeder frequency,

hẐpsẐp�s i is equal to hẐppẐp�pi; therefore

hQ̂sQ̂
�
s ihẐpsẐp�s i ¼

hQ̂sQ̂
�
s i

Q̂pQ̂
�
p

� Q̂pQ̂
�
phẐppẐp�pi

¼ Q̂s

Q̂p

Q̂
�
s

Q̂
�
p

* +
hp2

pi: (18)

By substituting Eq. (7) and following the considerations to

derive Eq. (14), the averaged ratio of secondary source

strength to the primary source strength can be calculated as

Q̂s

Q̂p

Q̂
�
s

Q̂
�
p

* +
¼ 3a2EPZsþ 1�að Þ2EKZs

3 aEPZsþ 1�að ÞEKZs½ �2

* +

¼
ð1

0

ð1
0

3a2xþ 1�að Þ2y

3 axþ 1�að Þy
� �2 �e�x �27y2e�3y

2
dxdy:

(19)

FIG. 1. (Color online) Ratio of the spatially averaged mean squared pressure

at the error sensor location when GED is minimized to the averaged mean

square pressure of the entire primary sound field, 10 log10ðhp2ðr0Þi=hp2
p iÞ.

—, Eq. (14); 22, computer simulation based on the example discussed in

Sec. IV; ��� ��, experimental results discussed in Sec. VI.

FIG. 2. (Color online) Ratio of the spatially averaged mean squared pressure

at the remote location when GED is minimized to the averaged mean square

pressure of the entire primary sound field, 10 log10ð1þ hp2
s i=hp2

p iÞ. —, Eq.

(20); 22, computer simulation based on the example discussed in Sec. IV;

��� ��, experimental results discussed in Sec. VI.
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Substituting Eqs. (18) and (19) into Eq. (17) leads to

hp2
s i
hp2

pi
¼ Q̂s

Q̂p

Q̂
�
s

Q̂
�
p

* +

¼
ð1

0

ð1
0

3a2xþ 1� að Þ2y

3 axþ 1� að Þy
� �2 � e�x � 27y2e�3y

2
dxdy:

(20)

It can be shown that the source strength ratio has a minimum

value of 1/3 when a ¼ 1=4. In addition, the ratio approaches

infinity when a ¼ 0, which was originally derived theoreti-

cally in Ref. 6. In that reference, Elliott et al. assigned a

value of 3 for this situation based on a numerical study due

to the consideration that the secondary source power may

not reach infinity in reality. Those authors, however, noticed

the lack of repeatability in the numerical simulation results.

As is found later in this paper, it was found numerically and

experimentally that the averaged sound power ratio can be

very high and cause an increase of more than 12 dB in the

far field of the error sensor when a! 1. Combining Eqs.

(17)–(20), the far field squared pressure value hp2
pi þ hp2

s i
can be evaluated numerically and is plotted in Fig. 2.

The value of a has a different impact on the near field

and the far field regions of the sound pressure after ANC is

implemented. To maximize the noise reduction at the error

sensor location, a needs to be equal to one. On the other hand,

however, the value of a ¼ 1 should be avoided due to the pos-

sible extremely high secondary source strength and significant

amplification introduced in the far field. The averaged sound

pressure level around the error sensor is plotted in Fig. 3 for

values of a being 0:999999, 0.95, 0.85, 0.5, and 0.25. Because

of the divergent nature of minimizing squared pressure, the

value 0.999999 is used instead of one. One can observe from

the plot that the 10 dB “quiet zone” for minimizing pressure is

noticeably smaller than the generally reported volume—a

sphere with diameter being one-tenth of the wavelength. This

size, however, can be reached by setting a ¼ 0:95. If a con-

trolled volume of 5 dB reduction is desired, a value of a in the

range of approximately 0.85 to 0.95 can provide a quiet zone

with the diameter being around one-fifth of the wavelength. If

the general quiet zone, defined as the region where the noise

is reduced, is considered, it has a diameter of around two-

fifths of the wavelength for a < 0:85, which is noticeably

larger than for a � 1. In the far field, greater than about half a

wavelength away from the error sensor, the averaged pressure

field is much lower for a < 0:95 than for a � 1. The theoreti-

cal minimum average far field pressure can be achieved when

a ¼ 0:25. However, for this case the largest noise reduction is

less than 5 dB, as is also the case for a ¼ 0:5.

To shed some physical insights as to why the GED

based approach produces an enlarged quiet zone, Eq. (11)

needs to be re-visited. Figure 4 compares the functions

sinc2ðkDrÞ and 1� sinc2ðkDrÞ that lead the two terms on the

right-hand side of the equation. In the region very close to

the error sensor location (kDr 	 1), ½1� sinc2ðkDrÞ� ! 0;

therefore the first term on the right-hand side of the equation

dominates. However, for the the desired cases where

ðhp2ðr0Þi=hp2
piÞ 	 1, the second term starts to dominate the

response very quickly as Dr increases, and the sound pres-

sure pattern in the near field of the error sensor location is

actually mostly influenced by the shape of the function

½1� sinc2ðkDrÞ�. For the response to rise slowly, the multi-

plier to that function, ð1þ hp2
s i=hp2

piÞ, needs to be small.

However, when the squared pressure is minimized, the mul-

tiplier term is extremely large, which is due to the ill condi-

tion that occurs when the inverse is taken on a random

variable (squared pressure) following the exponential distri-

bution. As a result, hp2
s i=hp2

pi is very large, and the level of

the sound pressure field increases very fast as one moves

away from the error sensor location. Adding the squared par-

ticle velocity, even with a small weighting factor, helps

avoid the ill condition, which results in a much smaller value

of hp2
s i=hp2

pi [see Fig. 2] and thus an enlarged quiet zone.

IV. NUMERICAL SIMULATION

Computer simulations were carried out to verify the theo-

retical derivations in Sec. III. Inside a lightly damped room

FIG. 3. (Color online) Spatially averaged mean square pressure in the near

field of the error sensor when GED is minimized. Equation (11) is evaluated

numerically and 10 log10ðhp2ðr0 þ DrÞi=hp2
p iÞ is plotted. ��� ��, EGð1Þ (EP);

—, EGð0:95Þ; 22, EGð0:85Þ; ��� ��, EGð0:5Þ; 2 :2, EGð0:25Þ.

FIG. 4. (Color online) Plot of the squared sinc function. —, sinc2ðkDrÞ;
22, 1� sinc2ðkDrÞ.
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(dimensions: 2e m� 2p m� 6 m), the GED field of the pri-

mary point source is minimized at an error sensor location by

one remotely placed secondary point source. The room has a

uniform wall impedance, z ¼ ð50þ 100iÞq0c, with the

Schroeder frequency being 310 Hz. The error sensor is placed

at 3/8 of the length along one diagonal line of the room. The

primary and secondary source locations are randomly chosen

within the region that is at least two wavelengths from the error

sensor and the boundaries. Sound fields for a point source at

200 such selected random locations are computed with a hybrid

modal expansion model20 at 800 Hz, which is well above the

Schroeder frequency of the room to meet the diffuse field con-

dition. The hybrid modal expansion model was demonstrated

to be more accurate and converge faster than the classical

modal expansion for both the sound pressure field and the par-

ticle velocity field.20 Based on these 200 source locations, a

search was carried out to look for two sources that were at least

ten wavelengths away from each other. More than 4000 such

pairs were found, and with each pair, one source was randomly

selected to serve as the primary source while the other one was

used as the secondary source. Because the complex source

strengths were set to be unity, the pressure and particle velocity

fields computed correspond to the spatial transfer functions.

The secondary source strength required to minimize the GED

response at the error sensor location can be calculated using

Eq. (7). The controlled sound field is then computed by super-

posing the primary and secondary fields. The averaged squared

pressure (over 4000 trials) at the error sensor location and at a

remote region has been plotted in Figs. 1 and 2 to be compared

with the analytical predictions and the experimental results.

The averaged near field results are plotted in Fig. 5 to compare

with the analytical and the experimental results. All the numer-

ical simulations agree well with theoretical results.

V. A FILTERED-X LMS ALGORITHM FOR GED

The ANC algorithm utilized in this study is based on a

version of the widely used adaptive filtered-x LMS

FIG. 5. (Color online) Averaged mean square pressure in the near field of the error sensor when GED is minimized. Comparisons are made among the theoret-

ical predictions, the numericial simulation results and the experimental results for (a) EP, (b) EGð0:95Þ, (c) EGð0:85Þ, (d) EGð0:5Þ, (e) EGð0:25Þ, and (f) EK . —, Eq.

(14); 22, computer simulation based on the example discussed in Sec. IV; ��� ��, experimental results discussed in Sec. VI.

FIG. 6. (Color online) Block diagram of the energy-based filtered-x LMS

algorithm.
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algorithm, which has been modified for the minimization of

the acoustic energy-based quantities.21 A block diagram rep-

resenting the ANC algorithm is shown in Fig. 6. In this fig-

ure, ppðnÞ, vpðnÞ, psðnÞ, and vsðnÞ represent the pressure and

particle velocity at the error sensor due to the primary and

secondary source, respectively. Here, n denotes a discrete-

time index. Wn in the diagram represents the adaptive active

control filter, while Hvi and Hp denote the transfer functions

representing the secondary path for the particle velocity and

pressure, respectively. The estimated secondary path filters

are denoted as Ĥvi and Ĥp, with the resulting output signal

being rvðnÞ and rpðnÞ, respectively. This block diagram is

essentially identical to the one introduced by Ref. 21. The

only difference is the function Lfp; vg in the diagram is now

representing a procedure of computing the square root of

GED instead of the ED. The control filter update equation

thus includes the variable a and reads

w nþ 1ð Þ ¼ w nð Þ

� lX

a
q0c2

p nð Þrp þ 1� að Þq0

X3

l¼1

vi nð Þrvi

" #
;

(21)

where lX is the convergence parameter. With no surprise,

this expression can revert to the active control filter update

equations for minimizing the squared pressure, squared ve-

locity, or total acoustic energy density by choosing the

appropriate corresponding value for a. Of note is the fact

that an existing ANC system based on minimizing ED can

be very easily modified to minimize EG instead.

VI. EXPERIMENTAL STUDY

An experimental study was carried out in a reverberation

chamber that has dimensions of 4:96 m� 5:89 m� 6:98 m (a

volume of 204 m3) and is incorporated with stationary diffus-

ers. The Schroeder frequency for this chamber is 410 Hz. The

filtered-x LMS algorithm discussed in Sec. V was imple-

mented in a real-time system powered by a TI TMS320C6713

DSP processor.22 The sampling frequency of the system was

set to be 4000 Hz. The adaptive control filter and secondary

path filters are all finite impulse response (FIR) filters with 8

coefficients. The step size, lX was set to be 10�10.

A pressure microphone gradient probe served as the

error sensor, which is shown in Fig. 7(a). The probe consists

of three pairs of phase matched 1/2-inch microphones manu-

factured by G.R.A.S. The microphone pairs are placed per-

pendicular to each other, so three orthogonal particle

velocity components can be estimated based on the pressure

gradient.23,24 The spacing between microphones in each pair

is 5 cm, which allows good accuracy in the frequency range

below 1000 Hz. The acoustic pressure was estimated by

averaging the pressure signals from all six microphones in

the probe. The GED can thus be estimated using Eq. (1).

Because the error of the sound pressure estimation intro-

duced by the averaging of six microphones can greatly affect

the ANC performance when EGð1Þ or squared pressure is

minimized, a G.R.A.S 1/2-inch free-field microphone with a

diffuse cap was used for this case instead of the GED probe.

One loudspeaker driven by a signal generator outputting

a 650 Hz pure-tone signal served as the primary source. The

output of the signal generator was also connected to the

ANC system, serving as the reference signal. Another identi-

cal loudspeaker was used as the secondary source. The sec-

ondary path filters were estimated offline at 650 Hz only

using a multi-channel Wiener filter approach.22

Twenty tests were carried out. The error sensors were

located near the center of the chamber and the location

remained constant. The locations of the two sources were

chosen randomly for each test, but the sources were at least

two wavelengths from the boundaries and the error sensor.

The distance between the two sources was at least 5 wave-

lengths away from each other. The sound pressure fields

both without and with control were sampled at different dis-

tances from the error sensor. The averaged difference

between the sound pressure fields with control on and off are

calculated and compared with the theoretical and simulation

results in Fig. 5 with respect to the distance from the error

sensor for some specific values of a. The far field pressure

field was sampled with six far field microphones. The differ-

ence between the averaged far field squared pressure values

for control on and off are plotted in Fig. 2 as a function of a.

FIG. 7. (Color online) Examples of GED probes. (a) A microphone gradient

GED probe; (b) the Ultimate Sound Probe (USP). A USP probe consists of

three orthogonal particle velocity components (the Micoflown sensors) and

one pressure component (a microphone).
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The experimental results and the theoretical and computer

simulation results are in good agreement.

A. Discussion

The pressure microphone gradient probe used in the ex-

perimental study is comparable in size comparing to the

quiet zone generated for the 650 Hz pure-tone sound.

Although it is appropriate here to serve the purpose of veri-

fying the theoretical results, it may not be desired in practice.

In a real-world ANC application, other GED capable probes

with much smaller physical size could be considered. One

example is the Microflown Ultimate Sound Probe as shown

in Fig. 7(b),25,26 the size of which is similar to the size of a

1/2-inch microphone. To further reduce the effect of the

physical size of the probes, the virtual error sensor technol-

ogy developed for ED based ANC14 can be easily adopted

for GED-based ANC at the cost of additional measurements

of the transfer functions between the physical sensor loca-

tions and the virtual sensor locations.

VII. CONCLUSIONS

GED-based active noise control is studied in this paper

for diffuse sound fields. The averaged zone of quiet in the

near field of the error sensor was derived theoretically and

verified by a numerical simulation. Compared to minimizing

squared pressure response, by varying the value of a of

GED, one can increase the size of the general zone of quiet

by as much as three times. As a trade off, the maximum

attenuation may decrease to around 1.25 dB. By choosing

appropriate values of a, one can maximize the volume of the

quiet zone and at the same time obtain the desired attenua-

tion. For example, if a 10 dB zone of quiet is required, a

value of 0.95 may be assigned to a. When an attenuation of

5 dB is desired, a value of 0.85 should be assigned to a. In

the far field of the error sensor, there is usually an amplifica-

tion of the squared pressure. However, it was shown in this

work that by minimizing the GED response with a < 1, the

amplification in the far field can be dramatically reduced.

The filtered-x LMS algorithm developed for the ED-

based ANC was adapted in this paper for GED-based ANC.

In practice, very minimal effort is needed to modify an exist-

ing ED-based ANC system to a GED-based ANC system.

The experimental study conducted in a reverberation

chamber largely confirmed the theoretical results derived in

the paper.
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