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Acoustic resonators, such as the Helmholtz and quarter-wave resonator, can be used to 

attenuate unwanted noise in a space. Classical formulations can be used to approximate 

resonator performance for a given resonator configuration, but may lack sufficient 

accuracy for some applications.  More detailed expressions exist, but these models may be 

difficult for practical implementation due to their complexity.  This research aims to fully 

characterize the response of resonator arrays in one dimension using impedance 

translation and junction impedances.  Then, the most concise description of the system is 

found by retaining the most important acoustic effects without sacrificing accuracy.  This 

model is then compared to both simple and complex models, as well as measured data from 

physical resonator arrays.  The modeled results for the concise description agree favorably 

with the measured results. 

 

1 INTRODUCTION 

 

 Acoustic resonators are commonly used in noise control engineering where relatively simple, 

robust solutions are desired.  Acoustic resonators typically absorb over a very small bandwidth, 

but are frequently used in applications where noise is constant and tonal. For example, a car 

muffler attenuates noise from the engine and is relatively simple and stable. Bass traps are also 

commonly used in concert halls to absorb certain resonances in the hall.   
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While there are many types of acoustic resonators, the two most common are the Helmholtz 

resonator and the quarter-wave tube.  The Helmholtz resonator consists of a neck backed by a 

larger cavity (see Fig. 1a).  The quarter-wave tube is a simple pipe that is open on one end and 

closed at the other (see Fig. 1b). 

 In modeling acoustic resonators, their response is often predicted by simple, low-frequency 

approximations that can yield significant error1.  Conversely, complicated expressions may add 

accuracy and detail, albeit at the cost of time and resources.  This paper presents various methods 

for determining the response of acoustic resonators and arrays of resonators.  Suggestions are 

given for choosing between methods. 

 

2 THEORY 

 

2.1 IMPEDANCE TRANSLATION METHOD 

 

One of the most detailed methods for determining the response of acoustic resonators 

presented here utilizes impedance translation and waveguide circuits.  The impedance translation 

theorem allows a given impedance to be translated over a distance in order to obtain the 

impedance at another point in space.  The impedance translation theorem is given 

mathematically as follows: 
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where k = ω/c, ρ0 is the density of air, c is sound speed, S is the cross-sectional area of the 

enclosure, L is the length of translation, ZAL is the acoustic impedance before the translation, and 

ZA0 is the input acoustic impedance looking into the system.   

In the case of an acoustic resonator or array of resonators, many successive translations will 

occur over different lengths and cross-sectional areas.  Therefore, it is convenient to use a circuit 

representation of the impedance translation theorem.  Figure 2 shows the T-network (often called 

the waveguide circuit) that accomplishes this.  For acoustic resonators such as the Helmholtz 

resonator, each element can be modeled as a waveguide circuit with the appropriate length and 

cross-sectional area.  After the T-networks and junction impedances have been arranged to 

reflect the nature of the physical system, parameters such as acoustic impedance can be found at 

any point in the circuit.  Since the waveguide circuit is based on the impedance translation 

theorem, all wave effects are preserved throughout the calculations. 

Fig. 1 - A simple representation of a) a Helmholtz 
resonator and b) a quarter-wave tube. 



End corrections are accounted for by adding a corrective element between discontinuities.  

For concentric pipes of circular cross section, Karal2 suggested a junction impedance of the 

following form:  
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In Eqn. (2), 𝑎1 and 𝑎2 are the radii of the adjoining pipes, γm is the mth root of the first order 

Bessel function of the first kind. 

 End corrections for side branches are difficult to determine analytically but have been 

obtained through the boundary element method by Ji3 as follows: 

 𝑙0𝑆𝐵
= 𝑎 {

0.8216 − 0.0644𝜉 − 0.694𝜉2 𝜉 ≤ 0.4
0.9326 − 0.6196𝜉 𝜉 > 0.4

 ,   (3) 

where a is the radius of the neck and ξ is the ratio between the neck diameter and the side branch 

diameter.  This correction can be added to the length over which the impedance is translated. 

 Thermo-viscous losses occur at the boundaries of a duct (αw) and must be accounted for to 

obtain an accurate model.  These losses can be accounted for by defining a complex wave 

number given by Pierce4: 
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where 𝑎 is the radius of the tube, η is the coefficient of shear viscosity of air, γ is the ratio of 

specific heats, and Pr is the Prandtl number.  The complex wave number can then be used instead 

of the traditional k in all the preceding equations to incorporate damping.  

 

2.2 ELEMENT-BY-ELEMENT METHOD 

 

 One simplification that can be made to the previous method is to consider the impedance of 

individual elements in isolation.  Instead of translating the impedance over an entire system, one 

Fig. 2 - T-network representing the impedance translation 
theorem over a distance L with cross-sectional area S. 



component of the resonator can be viewed separately and added in series or parallel with another 

component.   

 For a Helmholtz resonator, a cavity can be considered to have an infinite impedance at one 

end.  Using Eqn. (1) with an infinite termination impedance, the equation collapses to: 

 𝑍𝐴0 = −
𝑗𝜌0𝑐

𝑆
cot(𝑘𝐿). (6) 

If the neck of a resonator is viewed in isolation, the impedance at the termination is zero and 

Eqn. (1) collapses to: 

 𝑍𝐴0 =
𝑗𝜌0𝑐

𝑆
tan(𝑘𝐿). (7) 

 Furthermore, a simpler empirical formula for end corrections at a discontinuity can be used 

to decrease computation time.  Bies and Hansen5 give the following end correction: 

 𝑙0𝐷
= 0.82a(1 − 1.33𝜉), (8) 

where a is the radius of the neck and ξ is the ratio between the diameter of the neck and the 

diameter of the cavity. 

An alternative method for calculating the damping is used that does not rely on complex 

wavenumbers.  According to Morse and Ingard6, the acoustic resistance can be calculated as 

follows: 
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where D is the internal duct cross-sectional perimeter and t is the viscous boundary layer 

thickness given by: 

 𝑡 = √
2𝜇

𝜌𝜔
. (10) 

In the preceding equation, μ is the dynamic viscosity of air. 

 By adding these elements in series and parallel, the wave effects that occur within each 

component will be preserved, but they will not extend throughout the entire model. 

 

2.3 LUMPED ELEMENT METHOD 

 

 The previous method can be simplified even further by assuming that only wavelengths 

much larger than the dimensions of the pipe will propagate in the system (i.e., kL≪1).  With this 

assumption, equations (6) and (7) can be approximated using the first term in their respective 

Taylor series expansions as follows:  
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and 
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 The expressions given in Eqns. (10) and (11) are the classical formulations for an acoustic 

compliance and an acoustic mass.  Using these elements in series and parallel configurations 

with the end corrections and acoustic resistance given in the previous section, one can compute 

the response of an acoustic resonator or array of acoustic resonators. 

 

 

 



3 RESULTS 

 

 In order to validate the three methods, an arbitrary resonator array was designed and 

fabricated.  A schematic with pertinent labels is provided in Fig. 3 and the actual array is shown 

in Fig. 4.   

 

 

 

 

Fig. 3 - Schematic of the resonator array under test. 

Fig. 4 - Setup of the actual resonator array under test. 



Using the impedance translation method, an equivalent circuit was designed for the array of 

resonators.  The resulting equivalent circuit for the configuration is shown in Fig. 5.   

The results were compared with transmission loss data collected using the two microphone 

method7-8.  The results for each of these methods is shown in Fig. 6. 

Fig. 6 - Comparison of transmission loss for measured and modeled data. 

Fig. 5 - Equivalent circuit of the resonator array.  The dots to the right of the circuit represent the branch leading to the second 
resonator.  The branch that is not pictured is a mirror image of the first resonator branch. 



4 DISCUSSION AND CONCLUSIONS 

 

 First, the measured results – taken with 1 Hz resolution – show a primary peak between 67 

and 68 Hz.  Individually, the two parallel resonators have resonances at 140.6 Hz and 125.4 Hz.  

However, the configuration creates a much lower resonance than either of the resonators would 

produce in isolation.  Although this result may be initially unexpected, all three models predict 

this frequency shift, which occurs because the two resonator impedances add in parallel.  The 

equivalent circuit performs the best with a predicted resonance at 69.2 Hz.  The element-by-

element method predicts 71.7 Hz while the lumped element model predicts 72.7 Hz.   

 The small secondary peak at 122 Hz provides insight into how each model responds as 

frequency increases.  The equivalent circuit predicts 122.8 Hz, but the other two models have 

increased error.  The element-by-element method shows a peak at 128.7 Hz and the lumped 

element method predicts 135.4 Hz.  As frequency increases, the approximation of kL≪1 starts to 

break down.  The element-by-element method retains all terms in the trigonometric functions and 

therefore performs better than the lumped element method.  However, since wave effects are not 

preserved between elements, both of these methods lose accuracy. 

 Finally, the large peak at 422.3 Hz is predicted very well by the equivalent circuit.  However, 

the error in the other models has increased dramatically.  The element-by-element method 

predicts a resonance at 442.2 Hz, while the lumped element model predicts a resonance at 568.1 

Hz.  The lack of wave effects and violation of the small kL approximation in these two models 

have led to significant error. 

 The results above show how each of these models may be used.  If an engineering 

application requires only low frequency results, any of the models can provide adequate results.  

For applications where resonances lie within higher frequency bands, the element-by-element 

method may still provide accurate predictions.  If secondary resonances in any frequency band 

are of interest to the engineer, the element-by-element and lumped element methods will fail to 

provide accurate results.  In such cases, the impedance translation method should be applied 

where possible. 
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