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Transport properties of high-energy-density plasmas are influenced by the ion collision rate. Traditionally,
this rate involves the Coulomb logarithm, ln �. Typical values of ln � are ≈10–20 in kinetic theories where
transport properties are dominated by weak-scattering events caused by long-range forces. The validity of these
theories breaks down for strongly coupled plasmas, when ln � is of order one. We present measurements and
simulations of collision data in strongly coupled plasmas when ln � is small. Experiments are carried out in the
first dual-species ultracold neutral plasma (UNP), using Ca+ and Yb+ ions. We find strong collisional coupling
between the different ion species in the bulk of the plasma. We simulate the plasma using a two-species fluid
code that includes Coulomb logarithms derived from either a screened Coulomb potential or a the potential of
mean force. We find generally good agreement between the experimental measurements and the simulations.
With some improvements, the mixed Ca+ and Yb+ dual-species UNP will be a promising platform for testing
theoretical expressions for ln � and collision cross-sections from kinetic theories through measurements of
energy relaxation, stopping power, two-stream instabilities, and the evolution of sculpted distribution functions
in an idealized environment in which the initial temperatures, densities, and charge states are accurately known.
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I. INTRODUCTION

Understanding energy transport and relaxation processes
is an important aspect of optimizing plasma fusion experi-
ments and determining their equations of state [1–3]. In some
systems, the electron and ion temperatures can be different
by an order of magnitude or more [4]. As fusion proceeds,
this energy difference is exacerbated when fusion products
asymmetrically deposit their energy into the electron system
due to the large mass ratio [5]. The resulting two-temperature
problem is a long-standing plasma physics issue in many
systems [6–16].

Kinetic calculations, based on the Boltzmann equation or
one of its simplifications, rely on a statistical assumption
about Coulomb collisions between charged particles. They
are most accurate when the collisions are frequent and weak,
corresponding to large impact parameters and small-angle
scattering. Mathematical expressions for two-body processes
such as the electron-ion collision rate or the ion-ion colli-
sion cross-section are modified by the Coulomb logarithm to
account for the many-body, long-range nature of Coulomb
collisions. In the Landau-Spitzer treatment, the Coulomb
logarithm is conveniently written as ln � = ln(λD/r0), where
the electron Debye length is λD = [ε0kBT/(ne2)]1/2 and the
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classic distance of closest approach is r0 = e2/(4πε0kBT ).
The Coulomb logarithm is a function of density and
temperature and it multiplies every cross-section and collision
rate in kinetic calculations [17]. Its value ranges from 10 to 20
for weakly coupled plasmas, and represents an average over
many long-range binary collisions in the plasma.

Recent theoretical and computational work extend the
Landau-Spitzer treatment described above to higher density
plasmas. These treatments use the screened Coulomb inter-
actions in which the many-body physics lacking in binary
models is accounted for through the choice of an ad-hoc
effective screening length [3,18–20]. Recently, the effective
potential theory which models many-body correlation effects
by treating binary interactions as arising through the potential
of mean force rather than the screened Coulomb potential has
been proposed in Ref. [21]. All these models have been used
to calculate transport properties for plasmas across coupling
regimes [3,22–26]. These are typically compared to results
from molecular dynamics simulations, and, where possible,
experimental data [27–31].

Ultracold neutral plasmas (UNPs) span the phase space
region where the Coulomb logarithm values are small. These
systems have enabled studies of plasma dynamics and evolu-
tion in a highly idealized environment [32,33], serving, in a
way, as high-energy-density plasma simulators [34,35]. They
are generated by resonantly photo-ionizing mK-temperature
atoms [36–40] or molecules [41,42]. The initial plasma den-
sity (107 to 1012 cm−3) and electron temperature (5 to 500 K)
are selected with small uncertainties. Simulations [43,44],
laser spectroscopy [30,45,46], radio-frequency measurements
[47,48], charged particle detection, and imaging [49,50] are
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all used to characterize these systems. They have deep-
ened our understanding of the time-evolving density [51,52],
electron and ion temperatures [48,53–57], collision and re-
combination rates [58,59], expansion, velocity relaxation
[30], localization [60], and self-diffusion [28] in strongly cou-
pled Coulomb systems. The recent realization of laser-cooling
ions in an ultracold neutral plasma open the possibility of
extending all of these studies farther into the strongly coupled
plasma regime [61].

In this article we present the first dual-species UNP, using
Ca+ and Yb+ ions. We report simulations and measurements
of the Ca+ ion velocity distribution in the dual-species UNP.
We also present a two-fluid model with two representations
of the friction force between the ions. Those simulations
reproduce the main features of the measured ion velocity
distribution. This system provides a unique platform for future
studies of collision physics in strongly coupled plasmas. In
this system it should be possible to study idealized versions of
classic plasma problems such as inter-species diffusion [62],
multi-species plasma expansion [63], two-stream instabilities,
the sensitivity of bump-on-tail evolution to electron screening
[64], shock evolution [65,66], and evaluations of the Coulomb
logarithm when the plasma approaches the nonideal state
[3,25].

II. EXPERIMENTAL DESCRIPTION

We simultaneously trap 107 neutral 40Ca and 174Yb atoms
in a magneto-optical trap (MOT) [67] at a temperature of a
few mK [39]. The spatially overlapped MOTs operate on the
strong resonance transitions at 423 and 399 nm for Ca and
Yb, respectively. Unlike dual-species MOTs with alkali atoms
or combinations of alkali and alkaline-earth atoms, the 40Ca
and 174Yb atoms occupy the same physical space in the MOT
without adversely influencing the number of trapped atoms
of either species because there is no ground-state hyperfine
structure [68–71]. The spatial density profile is Gaussian,
n = n0 exp(−r2/2σ 2). To minimize spatial inhomogeneities
in the neutral atom clouds stemming from imperfect laser
beams, the neutral atoms are allowed to expand for 100 μs
before formation of the plasma.

The neutral atoms in the MOT are resonantly ionized using
ns-duration laser pulses in a two-step process. The initial
electron temperature in the plasma is determined by varying
the wavelengths of the 390 nm (Ca) and 395 nm (Yb) laser
pulses. In experiments reported here, the electron temperature
is Te = 96 K. The ion densities are determined by varying
the intensity of these same laser pulses. With our few-mJ
pulses, we can ionize all of the Ca atoms and up to 60% of
the Yb atoms. The peak density of the Ca+ plasma is n0 =
1.8 × 1010 cm3 with an initial root-mean square (rms) size of
σ0 = 0.29 mm. The peak density of the Yb+ plasma in the
experiments reported here varies from n0 = 0.2 × 1010 cm−3

to n0 = 1.8 × 1010 cm−3 with an initial rms size of σ0 =
0.37 mm.

The electron temperature, Te, is determined by the excess
photon energy above the atomic ionization potential. Because
the electron energy drives the plasma expansion rate, we must
characterize Te accurately. A partial energy level diagram for
Ca and Yb is shown in Fig. 1. We adjust the wavelength of the

FIG. 1. Partial energy level diagram for Ca (a) and Yb (b) show-
ing the MOT and ionization laser wavelengths. IP = ionization
potential. Ee = electron energy. A schematic diagram of the experi-
mental timing is also shown (c). The ns-duration laser pulses used to
ionize the Yb atoms arrive �t = 40 ns before the laser pulses used
to ionize the Ca atoms. Energy level information from Ref. [72].

390 nm laser (λ−1 = 23 754 cm−1) so that it ionizes Ca atoms
out of the 4s4p 1P1 level (ECa

4s4p = 23 654 cm−1), imparting
100 cm−1 of kinetic energy to the electrons. However, this
same laser, if it is coincident with the 399 nm Yb excita-
tion laser, would ionize Yb atoms out of the 6s6p 1P1 level
(EYb

6s6p = 25 068 cm−1), imparting 279 cm−1 of kinetic energy
to the electrons. In principle this is not a problem because
the electron energy would be a density-weighted average of
these two values. However, we prefer running the experiment
when the electron temperature is more reliably known, when
both the 390 nm pulsed laser and the 395 pulsed laser each
are tuned to 100 cm−1 above the ionization potentials of Ca
and Yb, respectively [see Figs. 1(a) and 1(b)]. We do this first
using fast optical modulators to turn off all of the MOT laser
beams 100 μs before ionizating the MOT. This ensures that
none of the Ca and Yb atoms are in the 1P1 states when the
ionizing laser pulses arrive at the MOT. Second, we delay
the Ca ionization pulses by 40 ns relative to those for Yb.
Because of the larger Yb mass, this delay is short enough
that the Yb+ plasma does not expand before the dual-species
plasma is formed. We verify that this delay is equal to five
times the measured pulse width of the laser pulses and that
these precautions prevent spurious ionization to a level below
our detection sensitivity.

The time-evolving rms width of the Ca+ ion veloc-
ity distribution is determined using laser-induced fluores-
cence measurements at 397 nm [72]. A linearly polarized
probe laser beam at this wavelength passes through the
plasma and is retroreflected. The single-beam intensity is I =
50 mW/cm2 ≈ Isat. A strong laser beam (I = 2000 mW/cm2)
at 850 nm is used to minimize optical pumping of the Ca+ ions
into dark states. The size of these laser beams is large com-
pared to the size of the plasma. Both laser beams illuminate
the entire plasma for the duration of the experiment.

When the frequency of the probe laser is detuned by a
frequency �ω = 2π × ( f − f0) from the atomic resonance
frequency, f0, the fluorescence signal is proportional to the
number of ions Doppler-shifted into resonance with the laser
beam. By repeating fluorescence measurements for a range of
different probe laser frequencies, we are able to map out the
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vz velocity distribution as a function of time, averaged over
the entire plasma.

III. TWO-FLUID SIMULATION

The dual-species UNP environment is highly collisional.
The Vlasov equation, which has modeled single-species UNP
expansion with high accuracy [73] is not appropriate. When
the low-mass Ca+ ions expand in the presence of the heavier
Yb+ plasma, ion friction transfers momentum from calcium to
ytterbium, dramatically changing the behavior of the plasma.

To interpret the experimental results, we have built a two-
fluid one-dimensional code in spherical coordinates. A kinetic
treatment is almost certainly required, but such a calculation
is difficult and the mean free path in the bulk of the plasma is
small enough that a fluid treatment should give some insight.
The two species are denoted by the subscript s and it is
assumed that the important physical effects are convection,
adiabatic expansion, pressure acceleration, acceleration by an
ambipolar electric field, and interspecies friction, including
Joule heating due to the relative velocity between the two
species. Our plasma is not very strongly coupled, so we
assume that the monatomic ideal gas law is the equation of
state for both species, so that each one has a distribution func-
tion approximated by a drifing Maxwellian and so that each
species has adiabatic exponent γ = 5/3. For our conditions
viscous effects, the thermal force, and ion thermal conduction
are small and are not included in the fluid equations. With
these assumptions the three equations to be solved for each
species are

∂ns

∂t
+ us

∂ns

∂r
= −ns∇ · (usr̂), (1)

∂Ts

∂t
+ us

∂Ts

∂r
= −2

3
Ts∇ · (usr̂) + 2

3nskB
Qss′ , (2)

∂us

∂t
+ us

∂us

∂r
= − kB

nsms

∂nsTs

∂r
− kBTe

nsms

∂ns

∂r
+ Fss′

ms
. (3)

In these equations (ns, Ts, us) are, respectively, the density,
temperature, and radial fluid velocity for species s. The quan-
tity Fss′ is the interspecies friction force and Qss′ is a term
representing frictional heating and temperature equilibration
between the two species.

To compute the interspecies friction force Fss′ and the
heating term Qss′ , we follow the treatment of Baalrud and
Daligault in Ref. [21], including the energy exchange density
in Eqs. (44)–(51) of that reference. Our friction force Fss′ is
given in terms of their fluid friction force density Rss′

by

Fss′ = Rss′

ns
= −16

3

√
πe4ns′

(4πε0)2mss′ v̄3
ss′

�(�V )(us − us′ ), (4)

where mss′ is the reduced mass mss′ = msms′/(ms + ms′ ) and
where v̄ss′ = (2kBTs/ms + 2kBTs′/ms′ )1/2. The quantity �V̄ =
|us − us′ |/v̄ss′ , where us and us′ are the species fluid velocities.
The particle velocities vs and vs′ of the two species are as-
sumed to be distributed according to two Maxwellians flowing
relative to each other with relative velocity �V = us − us′ .

The quantity �(�V ) is a generalized Coulomb logarithm
and is given by

�(�V ) = 3

16

1

�V
3

1

2

∫ ∞

0
dξ ξ 2 σ

(1)
ss′ (ξ )

σ0
X , (5)

where the function X is

X = [(2ξ�V + 1)e−(ξ+�V )2

+ (2ξ�V − 1)e−(ξ−�V )2
, (6)

where σ
(1)
ss′ (ξ ) is the usual first momentum transfer cross-

section [21], ξ is the ratio of the particle velocity vs to the
thermal velocity vT s = √

2kBTs/ms, and where

σ0 = πe4

(4πε0)2m2
ss′ v̄

4
ss′

. (7)

Once this friction force is computed we use it in Eqs. (2) and
(3) of the fluid model.

Baalrud and Daligault compute the energy exchange and
frictional heating term Qss′ similarly. They find

Qss′ = − 16
√

πnsns′e4kB

(4πε0)2m2
s v̄

3
ss′

�̃(�V )(Ts − Ts′ )

− v2
T s

v̄2
ss′

�V · Rss′
, (8)

where

�̃(�V ) = 1

8�V

∫ ∞

0
dξξ 4 σ

(1)
ss′ (ξ )

σ0

[
e−(ξ−�V )2 − e−(ξ+�V )2]

.

(9)

This term may then be used in Eq. (2) of the fluid model.
The code is built on a cell-centered spherical grid with

ri = (i − 1
2 )�r, i = 1, 2, 3, ..., with r the spherical radial

coordinate and with �r the constant grid spacing. We solve
these equations using the method of characteristics.

In what follows i denotes the spatial position on the radial
grid and m indicates time step in equal time increments τ :

nm+1
i = nm(ri − δr)e−∇·(ur̂)τ , (10)

T m+1
i = T m(ri − δr)e−(2/3)∇·(ur̂)τ

+ Q

(2/3)∇ · (usr̂)
(1 − e−(2/3)∇·(usr̂)τ ), (11)

um+1
i = um(ri − δr)

+
[
− kB

nsms

∂nsTs

∂r
− kBTe

nsms

∂ns

∂r
+ Fs,drag

ms

]
τ. (12)

We reach back in time from ri to ri − δr to find the quantity
to be convected forward using the approximate characteristic
equation

ṙ ≈ ui + u′
i(r − ri ), (13)

where ui is the fluid velocity at radial grid point i and where
u′

i is the centered approximation to the radial derivative of the
fluid velocity at grid point i,

u′
i = ui+1 − ui−1

2�r
. (14)
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Solving Eq. (13) to find the radius from which the density is
convected to ri at tm+1 yields for δr in ri − δr

δr = ui

u′
i

(1 − e−u′
iτ ) ≈ uiτ − 1

2
uiu

′
iτ

2. (15)

If G represents any of the quantities (n, T, v) evaluated at the
retarded position ri − δr, then

G(ri − δr) ≈ Gi − δr

2�r
(Gi+1 − Gi−1)

+ δr2

2�r2
(Gi+1 − 2Gi + Gi−1). (16)

To handle the nonconvective parts of the time advance a
simple two step predictor-corrector method is used. In the first
step old values of (ns, Ts, us) are used to advance to time level
m + 1/2. In the second step these intermediate values are used
to advance (ns, Ts, vs) to time level tm+1.

A. The Coulomb logarithm and momentum transfer

We have studied two treatments of momentum transfer.
The first uses the usual Coulomb cross section, modified by
a suitable generalization of ln � [23,25,74]. As shown in
Ref. [21], for this case the friction force generalized Coulomb
logarithm �(�V ) is given by

�(�V ) = 3
√

π

4

ψ (�V
2
)

�V
3 ln �, (17)

where

ψ (x) = erf (
√

x) − 2√
π

√
xe−x. (18)

Similarly, the Baalrud-Daligault effective Coulomb loga-
rithm for energy exchange �̃(�V ) in the case of Coulomb
scattering with a Coulomb logarithm multiplier is given by

�̃(�V ) =
√

π

2�V
erf (�V ) ln �. (19)

For the case of electron-ion temperature relaxation, molec-
ular dynamics simulations [23] indicate that a Coulomb loga-
rithm of the form

ln � = ln (1 + C/g) (20)

is appropriate, where C = 0.7, and where g =
(e2/4πε0)[1/(λDekBTe)] is the so-called plasma parameter.
Effective potential theory calculations suggest that this might
be appropriate for our dual-species plasma as well [75].

Because we are calculating ion-ion momentum transfer,
some caution is in order. In the NRL Plasma Formulary, the
plasma parameter is g = rmin/rmax. For ion-ion collisions in
flowing Maxwellians,

g = e2

4πε0

[
λD

(
1

2
mss′

)(
v̄2

ss′ + 2

3
|us − us′ |2

)]−1

, (21)

where the Debye length λD includes both the ion contribution
and a correction due to ion flow and strong coupling, as given
in Ref. [3],

1

λ2
D

= 1

λ2
e

+
∑

i

1

λ2
i

(
1

1 + (us − us′ )2/v2
th,i + 3�i

)
, (22)

where the summation is over the ion species and where vth,i =
(2kBTi/mi )1/2. Consistent with Ref. [56] and many other UNP

studies, we take the ion strong coupling parameter to be

�i ≡ e2

4πε0aws

1

kBTi
= 2.3, (23)

where aws = [3/(4πn0)]1/3 is the Wigner-Seitz radius. Near
the center of the plasma, where the density is the highest, the
value of the plasma parameter is g = 2.6.

The second form for the momentum transfer cross section
uses the Debye-screened Coulomb potential described by
Stanton and Murillo in Sec. III and Appendix C, Eq. (41), of
Ref. [3]. The collision integrals in this reference are expressed
as convenient functions of the plasma parameter, g, as dis-
cussed above. Using the screened Coulomb cross section cited
above [3], the integral in Eq. (5) was performed numerically
and fit to an analytic form for use in the fluid code. In this
treatment the energy exchange term is density-weighted, as
opposed to velocity-weighted in the Baalrud-Daligault treat-
ment, and the temperature equilibration term was neglected
since its effect turned out to be small when comparing the
simulation to the experiment.

B. The velocity distribution f (vz )

To compare the fluid code directly with the experimental
measurements, we calculate the vz velocity distribution from
the simulation results for u(r), n(r), and vth(r). In doing
so we assume that the particles of each species are drifting
Maxwellians with the parameters given in the previous sen-
tence and we integrate over all three dimensions in space
and over vx and vy in velocity space to obtain the following
distribution in vz:

f (vz ) ∝
∫ ∞

0

n(r)

u(r)

[
erf

(
u(r) − vz

vth

)

+ erf

(
u(r) + vz

vth

)]
r2dr, (24)

where vth = (2kBT/m)1/2. We evaluate this integral numeri-
cally. Note that normalizing constants have been omitted since
the experimental data are not normalized.

IV. COMPARISON OF THE SIMULATION TO THE
LABORATORY DATA

Before comparing the simulation results to the laboratory
measurements we modify the raw data in two ways. First, the
simulated velocity distribution is convolved with a Lorentzian
line shape. The laboratory data infers the velocity distribution
using fluorescence measurements, and those measurements
necessarily include a contribution from the natural line width
of the atomic transition. The second modification corrects the
laboratory measurements for optical pumping. At a given time
t , the data are multiplied by exp(t/τ ), where t is the time for
which the comparison is made and τ is estimated to be 30 μs.

In Figs. 2 and 3 we show the simulated and measured
f (vz ) distributions at 0.2, 0.5, 1, 2, and 3 μs after the plasma
is formed. The laboratory data are shown in black circles
with errorbars indicating the rms noise in the measurements.
The red solid line shows the simulated distribution using the
effective Coulomb logarithm in Eq. (20) with C = 0.7. The
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FIG. 2. A plot of the velocity distribution f (vz ) at different
times. This compares the two-fluid simulations with the experimental
measurements of a dual-species Ca/Yb plasma at 0.2, 0.5, 1, 2, and
3 μs after plasma formation. The Ca and Yb plasmas have the same
initial density of n0 = 1.8 × 1010 cm−3. The solid red line uses the
Coulomb logarithm of Eq. (20) with C = 0.7. The blue dashed line
uses the momentum transfer treatment of Ref. [3].

blue dashed line shows the distribution from the momentum
transfer treatment of Ref. [3]. As can be seen in Fig. 2, these
two treatments are in good agreement with each other. The un-
certainties in the experimental measurements stemming from
optical pumping allow both of these simulated distributions
to be in agreement with the measurements. We have run the
simulation for a range of C values in Eq. (20). As the value
of C increases, the velocity distributions at late times become
narrower and the relative values of f (vz = 0) fall less quickly.
When C = 1.1, the velocity distributions generated using the
two simulations appear to be in perfect agreement.

A comparison of the data on a logarithmic scale, shown in
Fig. 3, gives a better view of the wings of the distributions. At
0.2 μs the simulated and measured distributions agree. After
1.0 μs, the wings of the measured distribution clearly rise
above that of the simulations. At later times, that difference

FIG. 3. The same data as in Fig. 2 plotted on a semi-logarithmic
scale. This representation of the data enables a closer look at the
wings of the velocity distribution. The wings of the experimental data
rises above the simulations at 1 μs before falling again at later times.

FIG. 4. Simulated data showing the radial velocity (a), the ion
temperature (b), and the r-weighted density (c) after 3.1 μs of plasma
expansion using the effective Coulomb logarithm in Eq. (20) with
C = 0.7. The Ca data is plotted as a solid black line. The Yb data is
plotted using a dashed gray line. The vertical dotted line at 0.93 mm
is a guide to the eye. The divergence in the relative velocity, the
increased ion temperature, and the feature in the r-weighted density
distribution appear at approximately the same location in space.

becomes less pronounced for the range of velocities that
can be measured at present. This difference in the wings is
most likely due to kinetic effects not included in the fluid
simulation. This is expected, since the mean free path in the
edge of the plasma is an appreciable fraction (about 1/3)
of the plasma radius. In the wings of the spatial density
distribution, the lighter Ca+ ions would be accelerated quickly
outwards by the persistent density gradient of the heavier Yb+

ions. Because of the lower density, the friction force would be
small. This hypothesis could be tested in the laboratory using
spatial imaging techniques, and that experiment is currently
underway.

From the simulation, we can extract information that is
not experimentally accessible. During the 3 μs expansion, the
central Yb and Ca densities falls from the initial value of 1.8 ×
1010 cm−3 to 0.8 × 1010 cm−3 for Yb and 0.6 × 1010 cm−3 for
Ca. The electron temperature, which is assumed to be spatially
uniform, falls from 96 to 45 K.

The ion radial velocity, density, and temperature depend
on the radial coordinate r. In the simulation, all three of
these parameters develop features near the outside edge of the
density distribution. In Fig. 4(a) we show the (radial) flow
velocity of the Ca+ and Yb+ ions as a function of r after
3.1 μs. Near the center of the plasma, where the densities are
high, the flow velocities match. As the density falls off, the
flow velocities diverge.

At the location of the flow-velocity divergence, we also see
changes in the ion temperature and density. These quantities
are plotted in Figs. 4(b) and 4(c). The limitations in the
simulations suggests these data should not be taken literally.
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However, these data suggest a cold interior surrounded by a
warm shell that is itself surrounded by a cold exterior. We
are in the process of setting up an experiment to measure
this directly. If these predictions are confirmed, then it may
be possible to determine �-dependent transport properties in
this binary plasma mixture.

V. DISCUSSION

We present measurements and simulations of the Ca+ ion
velocity distribution in an dual-species UNP of Ca+ and Yb+

ions. The simulation uses two treatments for momentum trans-
fer. One is based on the effective potential approach using the
potential of mean force. It uses a Coulomb logarithm extracted
from MD simulations. The other uses the momentum transfer
treatment of Ref. [3], based on the interaction of Yukawa-
screened charges. These momentum transfer treatments are
included in the friction force between two flowing Maxwellian
distributions of Ca+ and Yb+ ions at the same temperature.

Each of these treatments result from different assumptions.
The effective potential approach using the potential of mean
force is most appropriate for near-equilibrium processes. It
assumes that the ion pair distribution function can be calcu-
lated using thermodynamic considerations. After the initial
disorder-induced heating process in the UNP, this assump-
tion is almost certainly valid. In the present work, we have
used a Coulomb logarithm derived from MD simulations
based on the effective potential approach. Because that work
studied electron-ion energy relaxation, that Coulomb loga-
rithm should be appropriate for momentum transfer processes.
However, because we are studying momentum transfer be-
tween ions of different mass and not between electrons and
ions, we have modified the parameters used in the Debye
length and in the plasma parameter, as described previously.
Future work should use the full theory to remove the approxi-
mations used in the present study.

The treatment of Ref. [3] assumes that the ion-ion potential
is accurately represented using a Yukawa-screened interac-
tion. For small values of � (or small values of g) when the
plasma is not strongly coupled, this approach works nicely.
As the plasma becomes strongly coupled, the screening length
is modified and Yukawa screening is assumed to be largely
correct.

It might be useful to compare these approaches with labo-
ratory data in which the coupling parameter � is larger, where
the underlying assumptions in the theoretical approaches
could be tested more directly. For example, one can imagine
an experiment in which the Ca plasma is generated and
allowed to expand. As it expands, the ion-ion coupling pa-
rameter increases to values near 5 [56]. The colocated Yb
plasma could then be generated and the interaction between
the cold Ca+ ions and the hot Yb+ ions could be measured.
Alternatively, very recent work demonstrated the successful
laser-cooling of ions in a strontium UNP [61]. That method
could be used to reach � = 11 in one species while observing
collisions and interactions due to the presence of the other,
with the perturbing plasma either at the same or at higher
temperatures.

However, experiments at higher � values might produce
only trivial transport results. Strong coupling should result in

small values of the transport coefficients due to the greater
collisional locking or caging of the plasma ions. Such predic-
tions could be verified in our dual-species ultracold neutral
plasma. Either way, the laser cooling or heating in UNPs
shown in Ref. [61] could provide a convenient way to measure
�-dependent transport in a tightly controlled environment.

The simulations show that the Ca+ flow velocity matches
the Yb+ flow velocity in the center of the plasma. One can
envision an experiment in which that flow could be inter-
rupted, or in which two somewhat spatially offset plasmas
could approach equilibrium, flowing over each other. Perhaps
flow-related instabilities could be observed. The simulations
also show ion heating in regions where the spatial density
gradient increases. Experiments are underway now to study
this effect.

VI. CONCLUSION

In conclusion, we report the first experimental realization
of a two-ion species ultracold neutral plasma, composed of
Yb+ and Ca+ ions and electrons. The mm-sized spherical
plasma is not confined but expands radially under the influ-
ence of the ambipolar field. We measure the spatially averaged
velocity distribution of the Ca+ ions as the plasma expands
and observe that the Yb+ ions significantly slow the rate at
which the distribution broadens. This results from momentum
transfer between the Yb+ and Ca+ ions in the plasma.

We compare these measurements with the output of a
fluid-code simulation. In the simulation we use two different
expressions for the momentum transfer cross section. One
derives from the potential of mean force. The other derives
from a coupling-corrected Yukawa interaction. In the fluid
equations, momentum transfer manifests most strongly as a
friction force between flowing (assumed) Maxwellian dis-
tributions of Ca+ and Yb+ ions at the same temperature.
The momentum transfer cross section traditionally includes
a Coulomb logarithm, that, in our system, has a value less
than 1.

We find that both formulations of the momentum transfer
cross section, when included in our fluid simulation, pro-
duce nearly identical radial velocity distributions. The main
features of the simulated distribution match the measured
velocity distribution well. Some behavior in the wings of the
distribution are noted, perhaps due to kinetic effects outside of
the fluid code assumptions. It is possible that differences be-
tween these two momentum transfer treatments might appear
if spatially resolved measurements could be made in plasmas
of varying levels of strong Coulomb coupling. It is possible
that higher fidelity simulations might also reveal differences.
Experiments and calculations are currently underway to test
these ideas.
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