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Optimal experimental design focuses on selecting experiments that minimize the statistical uncertainty 
in inferred parameter or predictions. In traditional optimizations, the experiment consists of input data, 
model parameters, and cost function. For machine learning and deep learning, the features, labels, and loss 
function define the experiment. One tool for optimal experimental design is the Fisher information, which 
gives an estimate of the relative uncertainty in and correlation among the model parameters based on the 
local curvature of the cost function. Using the Fisher information allows for rapid assessment of many 
different experimental conditions. In machine learning, the Fisher information can provide guidance as to 
which types of input features and labels maximize the gradients in the search space. This approach has been 
applied, for example, to systems biology models of biochemical reaction networks [Transtrum and Qiu, 
BMC Bioinformatics 13(1), 181 (2012)]. Preliminary application of the Fisher information to optimize 
experimental design for source localization in an uncertain ocean environment is a step towards finding an 
efficient machine learning algorithm that produces results with the least uncertainty in the quantities of 
interest.
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1. INTRODUCTION
In ocean acoustics research, common goals are localizing acoustic sources and estimating the ocean

environment, often with optimization techniques. Some of the many challenges of these inverse problems include 
high-dimensional search spaces, nonlinear relationships between the unknowns, and large uncertainty in many 
of the inferred parameters due to ill-conditioning. Particularly in this era of machine learning (ML) and deep 
learning (DL), determining the optimal experiment (combination of input data/features, parameterization/labels, 
and cost/loss function) is of particular importance.  Often many of the possible labels are “sloppy” parameters, 
i.e., do not affect the input data being used. Ideally, time should not be wasted trying to estimate sloppy
parameters.  Instead, an optimal experiment should only use “stiff” parameters as labels—those that are strongly
linked to the features. The stiffness/sloppiness of the parameters for a particular experiment is given by the Fisher
information. In turn, the Fisher information can guide optimal experimental design by revealing which
experiments (features + labels + loss) provide large gradients for ML/DL and, thus, give target estimates with
less uncertainty.

The relative importance of the source and ocean parameters has been addressed previously using ocean 
acoustics optimizations.  One technique is to constrain the bounds on certain parameters while allowing other 
parameters to vary more widely.  Another approach is to use a set of rotated coordinates—eigenvectors of the 
covariance matrix—to more effectively navigate the search space. (Collins and Fishman, 1995; Neilsen, 2003)  
This form of parameter compression was also implemented in iterative schemes in which the stiffer parameters 
are found, then their bounds reduced, and subsequent parameters are found. (Neilsen, 2005)  These approaches, 
however, required sampling over the entire parameter search space to obtain the rotated coordinates and gave a 
global measure of the parameter importance and couplings.  More recently, a trans-dimensional Bayesian 
approach has been implemented in which the number of parameters, specifically the number of sediment layers, 
is determined as part of the optimization and rotated coordinates are used to efficiently conduct Markov Chain 
Monte Carlo sampling. (Dettmer and Dosso, 2012) 

The Fisher information has been used for optimal experimental design in other fields, including in biological 
systems (Transtrum and Qiu, 2012; Machta et al., 2013; Mannakee et al., 2016; White et al., 2016), condensed 
matter physics (Machta et al., 2013), and acoustic array output (Rousseau et al., 2003).  The Fisher information 
is a measure of the information content in data, 𝑦", in the search space near parameters 𝜽$. Because it is a local 
metric, calculation of the Fisher information does not require sampling of a posterior distribution.  The Fisher 
Information works near local or global minimum and can be generalized for the case when the accuracy of 
prediction matters more than estimation of parameters. (Transtrum and Qiu, 2012)  

The goal of this paper is to illustrate with a numerical example how the Fisher information can guide 
experimental design such that parameter uncertainty is reduced for the stiff parameters and no time is wasted 
trying to find sloppy parameters.    Specifically, the Fisher information can guide design of ML/DL experiments 
by informing selection of features, labels, and loss functions. 

2. BACKGROUND
The Fisher information can be used to determine what experiment has the information content necessary to

obtain parameter/label estimates or data predictions with low uncertainty.     A brief explanation of how the
Fisher information is obtained and used is now provided, following the explanation in Transtrum and Qiu (2012).  
The Fisher information is the inverse of the covariance matrix of the 𝑁	parameters, 𝜃(, in a quadratic Taylor 
series expansion of the cost function about 𝜽$ = [𝜃+, 𝜃-, … , 𝜃/]. Thus, minimizing the variance is equivalent to 
maximizing the information. The inverse of the Fisher Information for an unbiased estimator forms a lower 
Cramer-Rao bound. 

The Fisher information, 𝑰, is closely related to the Jacobians of a cost function and is obtained as follows. 
For input data 𝑦"2343 and modeled values 𝑦"56278(𝜽),	a least-squares cost function is defined: 𝐶(𝜽) = ∑ 𝑒"-(𝜽)" , 
where 𝑒"(𝜽) = 𝑦"2343 − 𝑦"56278(𝜽) is the error or residual for the 𝑖4@ data sample. The Fisher information can be 
calculated from analytical functions when available or approximated with simulated data. For numerical 
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simulations, a parameter vector 𝜽$ is selected near a local or global minimum, and the Fisher information is 
calculated using numerical derivatives as  

𝐼(B =C
𝜕𝑒"
𝜕𝜃(

	
	𝜕𝑒"
𝜕𝜃B	

E
𝜽F

.
"

 

The Fisher information is approximately equal to the quadratic term in a Taylor series expansion, i.e., the 
Hessian, of the cost function around 𝜃$. (The Fisher information equals the Hessian only is 𝐶(𝜽$) = 0.) A matrix 
containing the Fisher information for all combinations 𝜇, 𝜈 can be computed as	𝑰 = 𝑱𝑻	𝑱 , where 𝑱 is the 
Jacobian,	with  𝐽"( =

NOP
NQR

.  

When the parameter values in 𝜽 are all positive and vary over several orders of magnitude, the Jacobians, 
and hence Fisher information, may be expressed in terms of the log of the parameters: 𝐽"( =

NOP
N 86SQR

.  Via the 

chain rule this becomes 𝐽"( =
NOP
NQR

NQR
N 86SQR

. When 𝑒"(𝜽) = 𝑦"2343 − 𝑦"56278(𝜽), the partial derivatives of 𝑒" with 

respect to 𝜃( reduce to partial derivatives of the modeled values because the data is independent of 𝜃( :	
NOP
NQR

=
NUP

VWXYZ

NQR
.    Using NQR

N 86SQR
= 	𝜃(, the elements of the Jacobian in terms of log of the parameters are 𝐽"( =

NUP
NQR

𝜃(. 

The Fisher information matrix is the inverse of the covariance matrix of the parameters in 𝜽 in the region of 
the search space near 𝜽$. The diagonal terms, 𝐼((, indicate stiffness/sloppiness of the parameters, the influence 
of 𝜃( on the match expressed in the cost function, and the information content about 𝜃( in the input data and cost 
function.  The off-diagonal terms, 𝐼(B tell the interdependence of 𝜃( and 𝜃B: 𝐼(B= 0 indicates 𝜃( and 𝜃B are 
independent. The relationship between the Fisher information and covariance matrices means that maximum 
information leads to minimum variance, which is why the Fisher information can be used for optimal 
experimental design. 

 The key to understanding the geometry of the search space near 𝜽$ comes from the eigenvectors of the 
Fisher information matrix, which are also the right singular vectors of the Jacobian. Prior work in in ocean 
acoustics has shown that the eigenvectors of the inverse of the covariance matrix integrated over the search space 
constitute a rotated coordinate system that can be used to more efficiently navigate a large search space in 
optimizations (Collins and Fishman, 1995; Neilsen, 2003) and in Markov Chain Monte Carlo sampling (Dettmer 
and Dosso, 2012). Similarly, the eigenvectors, 𝑽, of the Fisher information matrix provide a new basis for more 
efficiently navigating the search space about 𝜽$: EVD(𝑰) = 𝑽𝚺𝑽`. In practice, the singular value decomposition 
of the Jacobian is often used. The eigenvectors 𝑽 are also the right singular vectors from SVD(𝑱) = 𝑼𝑺𝑽`:   

𝑰 = 𝑱d𝑱 = 𝑽𝑺𝑼`𝑼𝑺𝑽` = 𝑽𝚺𝑽`. 

The eigenvectors, 𝑽, show combinations of 𝜃( that make largest change in cost function near 𝜽$. The matrix	𝑺 
contains the singular values 𝑠f along the diagonal, and 𝜮 has diagonal elements 𝑠f-. Large singular values 
correspond to singular vectors 𝒗f aligned with steep slopes in the search space and stiff parameter combinations 
with large information content. Small eigenvalues denote a cost function search space with winding canyons due 
to the sloppy parameters. 

For a given experiment, an estimate of the information content—the inverse of the variance—is given by 
the diagonal of the Fisher information matrix.  When the goal is low variance in parameter estimations, the 
overall performance of the experiment can be predicted by 

𝐷j3k5 ≈
1
𝑁 	tr

(𝑰p+	), 
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where tr indicates the trace.  The diagonal elements, (𝑰p+)(( give the estimated variance for 𝜃(, as shown in 
Fig. 1.  The performance parameter can be rewritten in terms of the singular values of the Jacobian, 𝑠f, as 
 

𝐷j3k5 ≈
1
𝑁C

1
sr-r

. 

 
The individual terms of the summation, 1/𝑠f, indicate the estimated variance in the combination of parameters 
coupled in singular vector 𝒗f. 
 
 

 
Figure 1. Schematic of the interpretation of the diagonal elements of the Fisher information, 𝑰𝝁𝝁	, and 
its inverse, the covariance matrix, (𝑰	p𝟏)𝝁𝝁 , around the point 𝜽𝟎 (blue filled circle).  The blue ellipses 
represent contours in a cost function space.  

  
The Fisher information can guide optimal experimental design for parameter estimation, as described above, and 
for the case where prediction accuracy is more important than parameter estimation.  The uncertainty of a 
prediction experiment is related to both the Fisher Information at input data location/conditions and at the 
𝑀	locations/conditions of the predictions: 
 

𝐷jk72 ≈
1
MC𝐼(B

jk72(𝑰p+)yz
(,B

, 

where 

𝐼(B
jk72 =C

𝜕𝑦{
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is a measure of the information content at the prediction locations or conditions. 
The Fisher information can be used to estimate the uncertainty in an experiment for optimizations and for 

machine and deep learning.  The steps in this process are as follows. 1) Simulate potential experiments: input 
data + model parameters + cost function for optimizations and features + labels + loss for machine/deep learning. 
2) Calculate 𝑰	or	𝑱 near 𝜃$, then estimate 𝐷j3k5 or 𝐷jk72. 3) Add an appropriate type of noise to the simulations 
and repeat. 4) Repeat for different types of input data (features), parameterization (labels), and cost (loss) 
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functions.  The first two steps for parameter estimation are now presented as an example of using Fisher 
information for experimental design. 

3. EXAMPLE
An example is provided to illustrate how the Fisher information yields insights into the uncertainty expected

in an experiment designed for parameter estimations.  This example comes from ocean acoustics.  The input 
data/features are transmission loss (TL) in an ocean waveguide, computed for a range-independent ocean with 
the ORCA normal-mode model. (Westwood et al., 1996) TL is the sound level reduction, in decibels, due to 
propagation and can be considered the transfer function of the ocean waveguide between the source and receiver 
positions. The labels are 13 parameters that describe the water sound speed and depth and properties of the 
sediment layers.  The loss function is a simple difference.  The Jacobians and the Fisher information of the 
simulated TL are calculated to reveal the stiffness/sloppiness of the environmental parameters, identify 
parameter couplings, and estimate the uncertainty in parameter estimations from this experiment. The 
eigenvectors of the Fisher information matrix form a new basis—a set of rotated coordinates that is more aligned 
with the gradients of the search space. 

A. EXPERIMENT
Synthetic data in a basic ocean environment and a least-squares cost function is used to show the 

usefulness of the Fisher Information.  The forward model,  ORCA (Westwood et al., 1996), is a normal mode 
model for range-independent environments at 200 Hz.  The simple ocean waveguide selected is shown in the 
left plot of Figure 2.  The parameter vector is  

𝜽$ = [ℎ�, 𝑐�(0), 𝑐�(ℎ�), ℎ+, 𝑐+46j	 , 𝑐+�64	 , 𝜌+,46j	 , 𝜌+,�64	 , 𝛼+46j	 , 𝛼+�64	 , 𝑐@�j, 𝜌@�j, 𝛼@�j], 

The water column is labeled with the water depth ℎ� and the sound speed 𝑐�(𝑧) at the top and bottom of the 
water column.  The sediment layer is characterized by its thickness ℎ+, the sound speed 𝑐+, density 𝜌, and 
attenuation 𝛼, at the top and bottom of the sediment layer and for the basement half-space (hsp).  The �𝑦"56278� 
are the magnitude of the transmission loss (TL) over the water column (𝑧 = 0 – 99 m) depths and ranges (𝑟 = 0.1 
– 10 km). A least-squares cost function 𝐶(𝜽) = ∑ 𝑒"-(𝜽)"  quantifies the match. The forward model, ORCA, is
used to calculate the Jacobians of the cost function over this large spatial aperture.

A. JACOBIAN
The Jacobians for the example described in Sec. 3.A illustrate the relative stiffness of different parameters.

The elements of the Jacobian are defined as 𝐽"( =
NOP
NQR

. In practice, 𝐽"( is estimated via numerical derivatives 

using a forward model. For residuals 𝑒"(𝜽) = 𝑦"2343 − 𝑦"56278(𝜽), 𝐽"( =
NOP
NQR

=  NUP
VWXYZ

NQR
 as the �y�2343� do not vary 

with 𝜽. For the example described in Sec. 3A, the forward model, ORCA, is used to calculate the TL over the 
same spatial aperture with a change in just one parameter 𝜃(. The difference between the modified TL and the 

original TL is used to obtain a numerical derivative for 𝐽"( =
NUP

VWXYZ

NQR
�
QF

.  Examples of 𝐽"( are shown in Figure 3 

for 𝜃( = ℎ� (upper left), 𝑐�(ℎ�) (upper right), 𝑐+ (lower left), and 𝛼+ (lower right).  The maximum value of 
𝐽"(varies greatly across these four 𝜃(: from 1.5e4 for 𝜃( = ℎ� to 1e2 for 𝜃( = 𝛼+.  The magnitudes of 𝐽"( indicate 
the sensitivity of 𝑦"56278 to 𝜃(. 
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Figure 2. (Left) Schematic of the simulated ocean environment. (Right) Transmission loss at 200 Hz from a source 
at 𝒛𝒔= 6 m. 

B. FISHER INFORMATION MATRIX
The Jacobians of the residuals is used to calculate the Fisher information matrix (FIM), which is computed

from the Jacobians as 𝑰 = 𝑱d	𝑱. For the experiment described in Sec 3.A, the log (base 10) of the absolute value 
of the FIM is shown in the left plot of Figure 4.  The diagonal elements 𝐼yy	indicate the information content in 
the {𝑦"56278} for each 𝜃(.  For this experiment, all the {𝑦"56278}—over the large two-dimensional plane—contain 
significant information about the water depth and sound speed in the water column, no information about the 
thickness of the (deep) sediment layer, varying degrees of information about the other sediment properties, and 
no information about the half-space.  The off-diagonal terms show the coupling between the parameters, 
although a clearer representation of this is shown in the eigenvectors. 

The inverse of the FIM is the covariance matrix. For the example experiment, the covariance matrix on a 
log (base 10) scale is displayed in the right plot of Figure 4.  The diagonal elements of the covariance matrix 
give the expected variance for an optimization/learned estimate of 𝜃(.  Different sets of input data yield different 
variances, which is why the covariance matrix and the FIM are useful in designing an optimal experiment. 

To better appreciate the coupling between the parameters, the eigenvalues and eigenvectors of the FIM are 
calculated.  Because the FIM often has many small eigenvalues, the singular value decomposition of the Jacobian 
matrix is performed instead: SVD(𝑱) = 𝑼𝑺𝑽`.  As described in Sec..2, the right singular vectors in V are the 
eigenvectors of I, and the square of the singular values 𝑠f in S are the eigenvalues of I.  Examples of 𝑠f and 𝑽 
are given in Figure 5, with the rows of the right plot showing 𝒗f, the basis vectors for a coordinate system rotated 
to align with the gradients of the cost/loss function space.  The 𝒗f with the largest singular values show 
combinations of 𝜃( that make largest change in residuals near 𝜃$.  The 𝑠f indicate the stiffness/sloppiness of the 
parameter combination contained in 𝒗f.   

4. CONCLUSION
The Fisher Information can inform optimal experimental design. For optimizations, the experiment consists

of the input data, forward model, parameters, and the cost function.  For machine learning, the experiment is 
defined by the selection of the input features, labels, and loss function. The	Fisher	information guides selection 
experiments using the optimal design parameter 𝐷j3k5. This estimate of the overall uncertainty informs the 
design of experiments that maximally increase the curvature of the search space around a local or global 
minimum.  The use of the Fisher Information in optimal experimental design can increase efficiency and reduce 
uncertainty.	The	design parameter	 𝐷j3k5 is not a rigorous estimate of uncertainty or confidence intervals but is 
sufficient to guide experimental design based on information content. Fisher information can also be used to 
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design experiment to minimize uncertainty in predictions instead of parameter estimations. (Transtrum and Qiu, 
2012).  

For machine learning/deep learning, the Fisher information can inform the selection of features, labels, and 
loss functions. Machine/deep learning algorithms perform best when the search space has large gradients.  The 
Fisher information identifies which parameters correspond to large gradients, and perhaps more importantly 
which parameters have negligible gradients. It is postulated that when an algorithm is trained only on labels with 
large Fisher information, the gradients of the search space about are maximized. Increasing the gradients likely 
reduces the amount of training data needed. Thus, the Fisher information	has potential to inform experimental 
design for machine and deep learning and provide rough estimates of the uncertainty in the learned labels. 

Figure 3. Jacobians (𝝏𝒆𝒊/𝝏𝜽𝝁) for water depth (𝒉𝒘, upper left), sound speed at the bottom of the water (𝒄𝒘(𝒉𝒘), 
upper right), compressional sound speed at the top of the sediment (𝒄𝟏, lower left), and compressional attenuation 
in the sediment (𝜶𝟏, lower right). 
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Figure 4.  (Left) Fisher information matrix and (Right) its inverse, the covariance matrix, on a log scale, for the 
TL in the right plot of Figure 2. 

Figure 5. (Left) Singular values 𝒔𝒋 and (Right) singular vectors 𝒗𝒋 of the Jacobian, from which the Fisher 
information matrix in Figure 4 was calculated. 
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