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Predictive modeling of materials requires accurately parameterized constitutive models.
Parameterizing models that describe dynamic strength and plasticity require experimentally probing
materials in a variety of strain rate regimes. Some experimental protocols (e.g., plate impact) probe
the constitutive response of a material using indirect measures such as free surface velocimetry.
Manual efforts to parameterize constitutive models using indirect experimental measures often lead
to non-unique optimizations without quantification of parameter uncertainty. This study uses a
Bayesian statistical approach to find model parameters and to quantify the uncertainty of the result-
ing parameters. The technique is demonstrated by parameterizing the Johnson-Cook strength model
for aluminum alloy 5083 by coupling hydrocode simulations and velocimetry measurements of a
series of plate impact experiments. Simulation inputs and outputs are used to calibrate an emulator
that mimics the outputs of the computationally intensive simulations. Varying the amount of experi-
mental data available for emulator calibration showed clear differences in the degree of uncertainty
and uniqueness of the resulting optimized Johnson-Cook parameters for Al-5083. The results of the
optimization provided a numerical evaluation of the degree of confidence in model parameters and
model performance. Given an understanding of the physical effects of certain model parameters,
individual parameter uncertainty can be leveraged to quickly identify gaps in the physical domains
covered by completed experiments. Published by AIP Publishing. https://doi.org/10.1063/1.5051442

I. INTRODUCTION

Many industries (e.g., aerospace, automotive, defense)
benefit from the ability to accurately predict the high-rate
loading behavior of materials. Understanding this response
of materials has been the focus of continuous research for
several decades. Physical experimentation with materials
was one of the first forms of exploration of materials’ prop-
erties that continues today and will carry on into the future.
The ability to predict the constitutive response of a material
in a simple experiment, combined with numerical modeling
and simulation, enables estimating the response of more
complex systems in which physical experimentation is
limited or impossible.

Inelastic deformation modes often dominate the devia-
toric response during shock and impact loading of materials.
Strength and plasticity models which are used to represent
much of this behavior commonly employ a numerical approxi-
mation of the flow stress of the material. Many models1–3 for
the flow stress, Yf , used for approximating dynamic plastic
deformation are expressed as a function of the accumulated

effective plastic strain, εp; plastic strain rate, _εp; temperature, T ;
and model specific parameters, P, i.e.,

Yf ¼ Ŷf (εp, _εp, T; P): (1)

When such parameters are not known directly from physical
principles, they may be determined by comparing the predicted
response of the material under controlled experimental condi-
tions to the corresponding measurement from the experiment.
For example, a fit to measured stress versus strain data can be
obtained by comparing predictions of the stress state given a set
of physical conditions, σcalc(εp, _εp, T ; P) to those observed
experimentally, σexp(εp, _εp, T). Convenient error norms
employed in the materials science community include the mean
relative difference, i.e.,4

δ¼ 1
N

XN
i¼1

σcalc εp, _εp, T
� �

i
; P

� �
� σexp εp, _εp, T

� �
i

� ���� ���
σexp εp, _εp, T

� �
i

� � , (2)

or the square root of the sum of square errors, i.e.,5,6

δ ¼
XN
i¼1

σcalc(εi, . . .)� σexp(εi, . . .)
� �2( )1=2

(3)
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such that the optimal parameter set, P�, minimizes the estimated
error norm over the set of experiments, i.e., @δ

@P ¼ 0.
Empirically-derived models such as the Johnson-Cook

model1 or the Zerilli-Armstrong model2 receive widespread
application due to their relatively few parameters and broad
range of applicability. However, these models have diffi-
culty covering a large range of conditions (εp, _εp, T) with a
single set of unique parameters for any given material.4

More sophisticated models with the aim of covering a
larger physical range (e.g., MTS,7–10 BCJ,11–13 PTW,3,14

and others15–17) have the consequence of employing more
parameters than those previously cited. Parameterizing these
more complex models would only become marginally more
difficult if direct comparisons between stress and strain could
be made with a set of experiments.

While the material state variables, stress, strain, and
temperature, as well as strain rate, can be measured and/or
controlled during quasistatic [ _ϵ ¼ O(10�8 � 100)s�1] or
split Hopkinson pressure bar (SHPB) dynamic experiments
[ _ϵ ¼ O(102 � 104)s�1], such measurements cannot be directly
obtained from experiments that characterize higher strain-rate
deformation, such as plate impact experiments [ _ϵO(106)s�1].
Instead, simulations are used to estimate observable quantities
such as free surface velocity measured using VISAR18 or
lattice strain using X-ray diffraction19 to infer the internal
state of a material. The computational cost of running simu-
lations generally increases with the implementation of more
complex material models and with application to more
complex experimental configurations. For example, Winey
and Gupta20,21 used velocimetry measurements to calibrate
models for the anisotropic shock response of single crystal
LiF and PETN, Addessio et al.22 calibrated a model for α to γ
phase transformation in RDX, and Versino and Bronkhorst23

used velocimetry to estimate parameters for a microme-
chanics model of ductile spall in tantalum. Prime et al.24

developed an approach using hydrodynamic calculations of
Richtmyer-Meshkov instability to assess the flow stress at
high strain rates in polycrystalline copper. In these and the
broader literature, very little description is provided on the
process of estimating of parameters. Presumably, the param-
eters are often estimated by manually adjusting them until
they produce an acceptable visual match. Brown and
Hund25 is a notable exception from the statistics literature.
They follow a procedure similar to the one that we use,
although they handle the functional nature of the output in a
different manner. Ali et al.26 also used a more rigorous
approach to estimate the uncertainty in equation of state
parameters by employing iterative forward analysis. They
used both Monte Carlo and perturbation methods to propa-
gate the experimental uncertainties into the equation of state
parameters.26

An increasing number of experiments and/or simulations
are required to explore the full domain of parameters as the
number of model parameters increases. Coupled with increas-
ingly challenging simulations, finding optimized parameters
can be a slow and tedious endeavor. The likelihood of finding
non-unique optimizations also increases when more param-
eters are involved and the experimental data are limited.
Additionally, optimization routines that directly minimize

the error norms highlighted above do not provide a proba-
bility distribution of the parameter space characterizing the
uncertainty of the model inputs or outputs.

Bayesian model calibration27,28 (BMC) provides a solu-
tion. This rigorous statistical approach provides a framework
to compare a computationally intensive physics model with
experimental data in order to estimate the input parameters
that make the model best match the data. In addition to esti-
mates of the best parameters, the procedure also provides
uncertainty about these estimates in terms of a probability
distribution. Further, the procedure can be made to account
for estimates, with uncertainty, of systematic discrepancies
between the computational physics model and experimental
measurement. The approach has been successful in application
areas including cosmology29 and nuclear density functional
theory.30 The key ingredient of this approach is an emulator, a
statistical model that attempts to mimic the computationally
intensive physics model, but much faster. Based on a training
set, the emulator gives predictions, with uncertainty, for the
physics model at new inputs in a fraction of a second, whereas
the physics model may take minutes, hours, or even weeks.
The fast predictor can then be used as part of a Bayesian esti-
mation scheme to give the desired results.

Figure 1 provides a generic illustration of the approach
with a toy example having a single data point and a single
unknown parameter. Experimental data with a value of 0:8 is
observed and shown as a horizontal line with error bars
shown around it in light gray. The data are compared to our
physics model, which is shown as the sigmoid curve to deter-
mine which value of the input θ (x-axis) calibrates the model
to match the data. However, the physics model is computa-
tionally expensive, so it can only be evaluated at four values
of θ. An interpolating regression model is fit through those
points that can be used to predict the physics model at all

FIG. 1. Illustration of model calibration with a toy example. Experimental
data with a value of 0:8 is shown as a horizontal line with error bars displayed
around it in light gray. The physics model shown as the sigmoid curve is used
to determine which value of the input θ (x-axis) calibrates the model to match
the data. The computationally expensive physics model is evaluated at four
values of θ. An interpolating regression model is fit through those points to
predict the physics model at all other values of θ. This regression model,
called an emulator can be evaluated quickly enough to explore the range of
the input. It also returns an estimate of its own uncertainty about the predic-
tions for the physics model, shown by the bulges around the sigmoid
between the physics model evaluations. The emulator compares with the
experimental data to estimate a distribution for θ that produces probabilisti-
cally reasonable matches, shown as the histogram on the x-axis.
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other values of θ. This regression model, which is called an
emulator can be evaluated quickly enough to explore the
range of the input. It also returns estimates of its own uncer-
tainty about the predictions for the physics model. These
are shown by the bubbles that bulge out around the sigmoid
between the physics model evaluations. The emulator can
now be compared with the experimental data to estimate a
distribution for θ that produces probabilistically reasonable
matches. This distribution is shown as the histogram on
the x-axis.

This approach has several advantages over the mostly
hand-tuned velocimetry-matching work cited earlier. First,
the procedure is grounded in statistical principles, so the
resulting uncertainties have meaningful statistical interpreta-
tions. Second, the procedure is fully automated. Third, it is
easy to incorporate multiple observations. Finally, parameter
estimates are given with uncertainty and correlation, rather
than single valued best fits.

In this paper, we demonstrate the utility of Bayesian
model calibration by applying it to a case study using alumi-
num symmetric plate impact data from Boteler and Dandekar31

and the Johnson-Cook plasticity model.1 Each experiment
is simulated many times over a range of Johnson-Cook
model parameters. These simulations are used to train the
emulator, which is compared with data to produce distributions
of plausible parameter values and predictions.

The Johnson-Cook model was selected for this purpose
due to its relative simplicity and wide use in the materials
science community.5,32–35 Other more physically based
models such as PTW3 and those put forth by McDowell15

and Luscher et al.17 would be well suited for this analysis
but are unnecessarily complicated for the demonstration
presented here.

Section II presents the relevant details of the experiments
and the Johnson-Cook calculations. Section III gives an over-
view of our statistical approach (further detail is provided in
Appendixes A and B). The results of this procedure are
shown in Sec. IV. Finally, we conclude with a discussion of
the performance of our approach and its application in other
settings in Sec. V.

II. EXPERIMENT AND SIMULATION DETAILS

A. Boteler and Dandekar experimental data

A series of transmission impact experiments were
conducted by Boteler and Dandekar31 to investigate the
Hugoniot Equation of State (EOS) and the Hugoniot Elastic
Limit (HEL) of Al-5083. Using a 102 mm bore single-stage

light gas-gun, impact pressures between 1.5 and 8.0 GPa
were achieved in symmetric and asymmetric normal impacts
(within 1 mrad of arc).31 Of the eight transmission impact
tests performed by Boteler and Dandekar,31 we selected three
shots to calibrate the Johnson-Cook parameters for Al-5083.
The three shots chosen were all symmetric impact tests; thus
involving only one material for characterization rather than
introducing the uncertainty of a second material.

Shots 0104S, 0105S, and 0106S from Boteler and
Dandekar31 exhibited a range of specimen thicknesses and
impact velocities. All samples were 38 mm in diameter.31

A summary of the shot characteristics of the chosen specimens
are reproduced in Table I to include values such as: flyer and
target thicknesses; flyer velocity at impact (Vimpact); stress,
particle velocity, and density at the HEL (σHEL, ue, and ρe,
respectively); and the shock velocity, stress, particle velocity,
and density at the fully compressed state (Us, σfinal, up, and ρ,
respectively). The velocimetry traces were recorded using
VISAR interferometry18 (with reported 1% precision over
the entire range of compression) and are shown in Fig. 2.
Charged pins were used to obtain Vimpact with an uncertainty
of less than 2%.31 The VISAR traces were recorded with
0:5 ns resolution providing high temporal resolution for the
Johnson-Cook parameter optimization.

B. Hydrocode simulations

Data for training the emulator to compute optimized
parameters and their uncertainty is provided by a series of
hydrocode simulations. The experimental shots taken by
Boteler and Dandekar31 are simulated using a multiphysics
continuum hydrodynamics code, FLAG. FLAG is a research
code developed by Los Alamos National Laboratory to

TABLE I. Impact experiment parameters and results as reported by Boteler and Dandekar.31

Experimental data Elastic compression Final compression

Shot Flyer/target Vimpact σHEL ue ρe Us σfinal up ρ ρ0
ρ

no. (thickness, mm) (km/s) (GPa) (km/s) (g/cm3) (km/s) (GPa) (km/s) (g/cm3)

0104S 3.950/5.965 0.2040 0.6254 0.0360 2.683 5.452 1.584 0.1020 2.7159 0.9823
0105S 3.957/9.940 0.3549 0.5844 0.0337 2.682 5.510 2.697 0.1775 2.7542 0.9687
0106S 3.969/5.961 0.4838 0.6429 0.0370 2.683 5.718 3.766 0.2419 2.7837 0.9584

FIG. 2. Experimental velocimetry profiles of symmetric impact shots 0104S,
0105S, and 0106S from Boteler and Dandekar.31

205105-3 Walters et al. J. Appl. Phys. 124, 205105 (2018)



simulate high strain-rate and large deformation response of
materials and components.36–38 The following will discuss
details regarding material constitutive models, simulation
and solver details, and selection of parameterized variables.

1. Constitutive models

All experiments conducted by Boteler and Dandekar31

that are used here involve aluminum alloy 5083 with strain
hardening treatment designated H131. The volumetric
response of the material in the simulation is provided by a
Mie-Grüneisen equation of state, while the deviatoric response
is modeled by the aforementioned Johnson-Cook strength
model. Each model is described in detail below.

a. Equation of state. The equation of state for compres-
sion is described using a Mie-Grüneisen form in which
the reference cold curve is defined using a cubic function
of compression ratio. This results in a polynomial equa-
tion which describes the pressure, P, in a material as a
function of density, ρ, and specific internal energy, Em,
according to

P ¼ c1μþ c2μ
2 þ c3μ

3 þ γ0 þ γ1μþ γ2μ
2

	 

ρ0Em: (4)

Here, μ ¼ ρ=ρ0 � 1 relates the current density to the reference
density, ρ0, ci are the cold curve pressure coefficients, and
γ i are coefficients defining a quadratic variation of the
Grüneisen parameter with compression; over the range of
pressures expected, these linear and quadratic coefficients
are assumed zero, γ1 ¼ γ2 ¼ 0. The remaining terms are
summarized in Table II.

b. The Johnson-Cook plasticity model. The Johnson-Cook
model for describing dynamic strength and plasticity is attrac-
tive for this demonstration due to the relatively small number
of parameters needed (5) to fit the model. The flow stress is
defined as1

Yf ¼
	
Aþ Bεnp



1þ C ln

_εp
_ε0

� �
1� T�ð Þm½ �: (5)

In this equation, A is the initial yield stress and B and n
control strain hardening effects related to the equivalent plastic
strain, εp. The dependence of flow stress on plastic strain rate,
_εp, is affected by parameter C and related to a nominal strain
rate set here as, _ε0 ¼ 1:0 s�1. Thermal softening behavior is

described in terms of the homologous temperature T� defined
(by Johnson and Cook1) as

T� ¼ T � Tref
Tmelt � Tref

(6)

and the exponent m, where T , Tref , andTmelt are the current,
reference, and melt temperatures of the material.

Parameterizing the Johnson-Cook model can be accom-
plished by tuning the 5 parameters described above to bring
simulation results into agreement with a set of dynamic experi-
ments (e.g., gas-gun impact, Split Hopkinson bar pressure
tests, etc.) conducted on the desired material. Previous parame-
terization efforts of this model on Al-5083 were conducted by
Gray et al.4 for a series of low [ _ϵ ¼ O(10�8 � 100) s�1] and
intermediate [ _ϵ ¼ O(102 � 104) s�1] strain rates. Gray et al.4

published four different sets of optimized parameters as shown
in Table III which resulted from different restrictions on the
experimental data set as indicated in the table. These sets of
parameters were discussed qualitatively, but as with many
parameterizations currently in the literature, numerical esti-
mates of the uncertainty were not provided. The results from
the previous parameterization are compared to the parameters
generated in this work by Bayesian calibration to gas-gun
plate impact experiments at much higher strain rates conducted
by Boteler and Dandekar.31 The identified model parameters
could vary depending on the range of conditions examined as
demonstrated by the variability of model parameters identified
by Gray et al.4 for Al-5083 listed in Table III.

2. Simulation setup

The simulations use a one dimensional Lagrangian mesh
with a contact slideline interface between the aluminum flyer
plate and the aluminum target. Since each experimental shot
has different flyer and target thicknesses (see Table I), a con-
sistent element size of approximately 4 μm per cell is chosen
to achieve a balance between adequate resolution of the shock
wave and computation time. The simulations are run for a total
of 4.0 μs (enough time to reach the saturation velocity) with an
automatic time stepping routine and a specified initial time

TABLE II. Fixed parameters for the equation of state described in Eq. (4).

Parameters Nominal value

c1 (MBar)a 0.7797
c2 (MBar)a 0.2239
c3 (MBar)a 1.668
γ0 (-)

b 2.13
ρ0 (g cm�3) 2.668
Tref (K) 298
cv ( J kg�1 K�1) 900

aReference 39.
bReference 40.

TABLE III. Parameterization of the Johnson-Cook model by Gray et al.4

for Al-5083 subjected to strain rates between 0.001 and 7000 s�1 and
temperatures between 77 and 473 K.

Parameters
All _ε,
all Ta

High _ε,
all Tb

All _ε,
T . RTc

High _ε,
T . RTd

A (MPa) 210 200 270 170
B (MPa) 620 600 470 425
C 0.0125 0.0200 0.0105 0.0335
n 0.375 0.380 0.600 0.420
m 1.525 1.500 1.200 1.225

aFull range of strain rates and temperatures, T� uses Tref ¼ 0K.
bStrain rates .2000 s�1 and the full range of temperatures, T� uses
Tref ¼ 0K.
cFull range of strain rates and temperatures above reference temperature,
T� uses Tref ¼ 298K.
dStrain rates .2000 s�1 and temperatures above reference temperature,
T� uses Tref ¼ 298K.
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step size of Δtinit ¼ 1� 10�7 μs and a maximum step size of
Δtmax ¼ 2� 10�3 μs. The flyer velocity observed in the exper-
imental data is applied as an initial condition to the region
associated with the aluminum flyer and positioned with no
initial gap between the flyer and the target. Due to the +2%
uncertainty reported by Boteler and Dandekar,31 the initial
flyer velocity is included as one of the variable parameters for
Bayesian calibration.

Artificial viscosity is also an important factor enabling
numerical simulation of shocked materials. Artificial viscosity
acts to smear the shock front resulting from an impact
across multiple cells within a model. Without it, only a
single cell at a time would be impacted by the shockwave
inducing a discontinuous change in internal state (e.g., pres-
sure, density, etc.). This often causes an individual cell to
collapse completely in one timestep due to the discontinuous
nature of the change induced to that cell—therefore, causing
the simulation to crash.

To alleviate this problem, the two term Barton artificial
viscosity41 is employed with constant parameters for the
linear term, q1 ¼ 0:10, and the quadratic term, q2 ¼ 1:0.
These parameters were optimized manually to produce the
steepest (most realistic) shockwave profiles in the velocimetry
traces while damping out overshoot and ringing behavior of
the particle velocity at the edge of the plastic plateau (cf.
Fig. 4). These parameters remained fixed for all simulations
conducted in this study.

3. Selection of variables to include in parameterization

Uncertainty permeates several aspects of both the model
and the experimental conditions associated with measurements.
Indeed, there is uncertainty in the appropriate equation of state
and strength model to use, and the corresponding parameters
of each. In order to maintain a simple and narrow focus for
this effort, we do not consider uncertainty (or parameter varia-
tions) in all possible aspects of the model. For example,
although there is (certainly) uncertainty in the parameters for
the equation of state,25 they were held fixed in this work. We
primarily restrict our attention to the variation of model param-
eters for the Johnson-Cook strength model, although there are
a few additionally included variables noted here. The statistical
approach we use (described in Sec. III) requires a simulation
suite spread over plausible ranges of these parameters. Here,
we describe those parameters and their ranges.

The shear modulus, G, provides a coupling between the
volumetric and deviatoric behavior. Since it physically
depends upon the density and temperature of the material,42

the shear modulus increases and decreases with increases in
density and temperature, respectively.

The implementation of the Johnson-Cook model in
FLAG is associated with a fixed, constant shear modulus,
i.e., G ¼ G0 is independent of density and temperature.
Because the velocity of a longitudinal wave, e.g., the elastic
precursor, depends upon the shear modulus, neglecting its
density (and consequently pressure) dependence will result in
incorrect wave arrival times for simulations that span multi-
ple impact velocities since each results in a different com-
pressed density or shock pressure. Therefore, we employ a

constant shear modulus within the simulations of a particular
shot, but allow shots at higher shock pressures to have a
larger constant value as described below.

Additionally, Boteler and Dandekar31 describe a +2%
uncertainty of the flyer velocity at impact. The impact velocity
significantly affects the final velocity of the target free surface.
Therefore, the flyer velocity for each shot was varied around
the corresponding nominal values to include this source of
experimental uncertainty.

Table IV shows the selected ranges of parameters varied
for the Bayesian calibration. Parameters are sampled between
these ranges 1000 times according to a Latin hypercube
design. Each of the three shots (S104S, S105S, and S106S)
utilized this set of 1000 parameter realizations while using the
fixed equation of state and setup parameters described previ-
ously. In Table IV, simulations for shot S104S utilize the vari-
ables A, B, C, n, m, V1, and G1, S105S utilize the variables
A, B, C, n, m, V2, G1, and Δ2, and S106S utilize the variables
A, B, C, n, m, V3, G1, Δ2, and Δ3. In order to keep the basis
between the sets of simulations the same, the average shear
modulus for shot S105S is computed from G2 ¼ G1 þ Δ2 and
for shot S106S G3 ¼ G2 þ Δ3 ¼ G1 þ Δ2 þ Δ3.

The size of the simulation suite, 1000 runs, is chosen
to provide sufficient coverage of the parameter space. This
number greatly exceeds the rule-of-thumb number of ten points
per input dimension.43 This rule-of-thumb makes assumptions
about smoothness and effect sparsity that are difficult to verify,
so we attempted to make a conservative choice by choosing a
much larger number. The cross-validation results shown in
Fig. 6 suggest that our choice was more than sufficient.

Free surface velocity time history results of the 1000
simulations along with the corresponding experiment are
shown in Figs. 11–13 (sims in blue, experiment in red).
The experimental results have each been shifted in time to
approximately line up with the simulations. The shift is
necessary due to unknown timing fidelity provided by the
experimentalists in Boteler and Dandekar.31 The equation
of state may also be a small source of uncertainty. However,
as will be described later, absolute timing accuracy for the
feature finding routines is unnecessary; only relative timing
between features is important.

TABLE IV. Variable parameter ranges utilized for Bayesian calibration. The
first set of variables refer the Johnson-Cook strength model, the middle set
refer to the experimental uncertainty of impact velocity, and the last set refer
to changes in the average shear modulus across each shot.

Parameters Min. value Max. value

A (MBar) 0.0005 0.01
B (MBar) 0.0005 0.01
C (-) 0.0 0.03
n (-) 0 1.5
m (-) 0 3
V1 (cm μs�1) 0.0192 0.0216

V2 (cm μs�1) 0.0334 0.0376
V3 (cm μs�1) 0.0455 0.0513
G1 (MBar) 0.2 0.5
Δ2 (MBar) 0 0.1
Δ3 (MBar) 0 0.2
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III. BAYESIAN MODEL CALIBRATION

A. Bayesian statistics

Bayesian statistics is an approach to statistics in which all
uncertainty is captured with a probability distribution. In
effect, this means that anything with uncertainty is treated as a
random variable whose distribution we attempt to estimate.
Under the Bayesian framework, a statistical model is built
from two components. One component is called the likeli-
hood, denoted f (y j θ) and it describes the distribution of the
data, y, conditional on the parameters, θ. It is important to
note that “data” in this context is an output observable result-
ing from either a measurement (e.g., experimental data) or a
model (e.g., simulation result). The second component, called
the prior distribution, denoted π(θ), describes initial beliefs
about the marginal distribution of the unknown parameter.
Prior distributions can be used to represent information based
on past experiments and scientific intuition, or be relatively
uninformative, containing little more than an acceptable range
of parameters and necessary physical constraints. Following
the rules of probability, the two components are multiplied
together to give a joint distribution for unknowns and observ-
ables, which can then be conditioned on the observations to
give a distribution for the unknowns given data,

p(θ j y)/ f (y j θ)π(θ): (7)

This distribution, called the posterior distribution, can be
sampled using Markov chain Monte Carlo44,45 (MCMC).
MCMC is a procedure that produces a correlated series of
samples from a distribution. It is a powerful technique that can
be used for any distribution, although it may not always be
efficient. It is also inherently serial and may require many
evaluations of the posterior distribution. The resulting sample
can be used to estimate quantities of interest like the expected
value and quantiles.

B. Model calibration

Here, we try to provide an introduction and a high-
level view of the approach. More detail is provided in
Appendixes A and B and a thorough description of the
BMC approach is given by Higdon et al.28

Let M(θ) represent our implementation of the
Johnson-Cook model with input parameters θ ¼ (A, B, C, m,
n, V1, V2, V3, G1, Δ2, Δ3). Let yi, 8 i [ 104, 105, 106f g be
the velocimetry profile, or a vector of extracted features, from
each experiment. We will assume that the experimental data
for each shot follows a multivariate Gaussian distribution
with a mean vector given by the prediction from FLAG at
some best value of θ,

yi � N M(θ�), Σ½ �, (8)

where Σ is a possibly unknown covariance matrix. In our
case, we will assume that Σ is a diagonal matrix where the
standard deviations are fixed at 1% of the observations, a
value based on typical VISAR behavior.18 In principle, prior
distributions could be assigned to the unknown parameters
and the posterior sampled with MCMC evaluating (or calling)
the hydrocode simulations directly. However, at the resolution

used for these simulations, each computation requires on
the order of several minutes, while an acceptable MCMC
sample may require as many as 1� 106 calls to the hydro-
code (standard single site Metropolis updates would require
a call for every parameter in every MCMC iteration, thus
100 000 MCMC samples for a model with 10 parameters
would require 1� 106 hydrocode evaluations). Thus, the
direct evaluation of the hydrocode simulation for each MCMC
sample is computationally intractable.

Instead, we expand the scope of the statistical inference to
include direct FLAG hydrocode simulations. In addition, to
estimating the unknown parameters, we also estimate the
output of FLAG over a large region of its input space. To do
this, we supplement the set of observables with a carefully
selected set of FLAG input-output pairs. Our statistical model
for this part of the inference is based on a Gaussian process46

(GP). A GP can be viewed as a distribution on functions.
When points along a function are observed, we can estimate
the predictive distribution for other points along the function.

Figure 3 illustrates the basic idea of a Gaussian process
and its use in this context. The top panel shows random
draws from a Gaussian process with one input dimension.
The smoothness of these curves is controlled by the statistical
parameters of the distribution. The middle panel shows
three points that we take as observations of the unknown
function represented by the curve. The bottom panel shows
draws of a Gaussian process that are conditioned to pass
through those observations.

Let z be a function of some d-dimensional vector of
inputs x. A Gaussian process says that any collection of ~z
follows a mean-zero multivariate Gaussian distribution with
a highly structured covariance matrix that depends on the
values of x. There are many possible choices, but we use
Σ ¼ σ2R(X;~β), where

Ri,j ¼
Yd
k¼1

ρ
4(θi,k�θ j,k)2

k : (9)

Thus, the correlation between any zi and zj is a function of
the weighted distance between inputs θi and θj. As the

FIG. 3. Top: Unconditional draws from a Gaussian process. Center:
Observed points along a potential function. Bottom: Gaussian process draws
conditioned on the observed points.
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distance goes to zero, the correlation goes to one and zi and
zj become identical. As the distance goes to infinity, zi and
zj become completely uncorrelated.

Of course, the output of a computationally intensive
physics model is often multivariate as it is in our case.
For such cases, we first use the training runs to compute
an orthogonal basis using a singular value decomposition
(the result is basically the same as principal component
directions). The training runs are projected onto this basis
and the weights are modeled as functions of the inputs with
an independent GP model for each set of weights.

This additional layer inference for the emulator is
combined with the model for the data in Eq. (8). MCMC
can then be applied to simultaneously estimate both the
unknown physics parameters and the hyperparameters of
the Gaussian process (sets of σ2 and ρ for various dimen-
sions and basis weights).

C. Feature extraction

The conventional approach to analyzing shock experi-
ments is based on matching features in velocimetry curves.
For these experiments, we focus on four physically meaningful

points along each velocimetry curve, shown in Fig. 4. The
height of the elastic plateau, often called the Hugoniot
elastic limit, marks the onset of plastic flow. The height
of the plastic plateau is related to the final Hugoniot parti-
cle velocity. The approximate slope of the curve between
the end of the elastic plateau and the beginning of the
plastic plateau is related to the strain rate of the material as
it is compressed. Scientists can usually identify these loca-
tions by eye. Here, we present an algorithm to extract them
automatically based on modeling the velocimetry curves as
a linear combination of Gaussian cumulative distribution
functions.

A curve for which we would like to find features is
denoted as y(τ), where τ [ T and τ0 is the infimum of T .
Here, τ denotes time and T is the time interval for which the
simulation/experiment was run. Now, after standardizing y(τ)
to have minimum zero and maximum one, we model y(τ) as
the cumulative density function (CDF) of a mixture of
Gaussian densities. Below, we describe how the features we
are interested in correspond to the tails of certain mixture
components. First, consider the Gaussian mixture CDF,

y(τ) ¼
ðτ
τ0

Xk
i¼1

fiN(x j μi, σ2
i )dx, (10)

where
Pk

i¼1 fi ¼ 1 and N(x j μ, σ2) ¼ (2πσ2)�1=2

exp{� 0:5(x� μ)2=σ2}. Here, the values of {fi, μi, σ
2
i }

k
i¼1

are unknown, but fitted with statistical techniques described
in Appendix B. We group the mixture components into
“early” and “late” components depending on their means. The
jump-off and elastic plateau features are then the 0.01 and
0.99 quantiles of the early components. Similarly, the slope
features are the 0.1 and 0.9 quantiles of the late components.
An example of early and late grouping of components, as well
as the corresponding feature locations, is shown in Fig. 5. The
plastic plateau is the 0.995 percentile of the original CDF y(τ).

IV. RESULTS

A. Emulator performance

As discussed above, part of the calibration process pro-
duces a statistical approximation to FLAG for the experiments
that we simulated. Figure 6 summarizes the results of the
emulation process using cross-validation. Cross-validation

FIG. 4. The four features extracted from each curve for the purposes of anal-
ysis. They are the height of the elastic and plastic plateaus and two points
along the curve between these plateaus that define the slope of this part of
the curve. These are computed from the simulations and experiments for all
three shots.

FIG. 5. Left, description of how the
five component mixture is separated
into two groups—early and late com-
ponents, based on whether the bulk of
each component mass is below a cutoff
c. The tails of the sum of early compo-
nents identify the first two features,
while the sum of the late components
identify the third and fourth features.
Right, identified features on top of the
original data.
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proceeds by rebuilding the emulator with 999 of the simula-
tions and using this emulator to predict the remaining simula-
tion. This process is repeated 1000 times holding out a
different run each time. The predictions for each held out
simulation are in Fig. 6 with the true simulation values on

the x-axis and the prediction on the y-axis. Thus, points that
fall close to the y ¼ x line are predicted well. Each color
shows results for a different feature. Although the emulator
prediction is not perfect, it generally predicts the physics-
based FLAG simulation very well. The root mean squared
error (RMSE) across all of the simulations and features is
5:5 m/s. Individual feature RMSEs vary around the all-feature
average RMSE fairly closely, with the worst feature-level
RMSE being 8:6 m/s.

B. Single shot results

The first three rows of Fig. 7 show the parameter estima-
tion results for the Johnson-Cook parameters based on separate
calibrations to each experimental shot. Recall that the MCMC
procedure produces a sample of points from the posterior
distribution. We use an MCMC sample of size 250 000 for
each single-shot calibration. The distributions in each row
can be interpreted as the distribution of parameters that give
a good match to the experimental data from the corresponding
shot. Note that the full distribution is seven dimensional,
but we are not showing the results for velocity and shear
modulus of each shot. A few insights on the parameterization
are evident from these plots. First, some of these parameters
show considerable uncertainty based only on individual
shots. For example, Shot 104 essentially returns the prior
distribution for B (the posterior spans the entire range with
no strong peaks), which indicates that the experimental data

FIG. 6. Comparison of cross-validation predictions of individual feature
values versus the corresponding feature value from simulation for all 12 fea-
tures (four points along each of the three shot curves) in each simulation.
RMSE for all 12 features over all (1000) simulation cases is 5:5 m/s. The
RMSE computed for individual features over all simulations cases range
from 1:8 m/s to 8:6 m/s.

FIG. 7. Summary of Johnson-Cook
parameter posterior distributions for
calibrations to each of the three shots
individually and to all three shots
simultaneously. Parameters A and B
have units of MBar, all other parame-
ters are unitless. The single-shot cali-
bration results are based on 250 000
MCMC samples and the joint calibra-
tion results are based on 175 000
MCMC samples. The black lines show
the corresponding four optimal param-
eters fit by Gray et al.4 Note that the
highest value of C from Gray is actu-
ally outside the range of our prior
distribution.
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provide almost no constraint on the parameter B. The other
two shots moderately favor higher values of B, but leave
considerable posterior probability over the whole range. An
approach that simply returns the best fitting value would not
reveal that many other values are also plausible. Second,
the experiments appear to provide conflicting information
on the exponential n parameter. It may be expected that in
isolation each shot, individually probing only a narrow
range of state space, provides ambiguous or conflicting
information on the strain hardening and temperature sensi-
tivity terms in the model. One advantage of the Bayesian
approach is the ease with which these experiments can
be combined.

C. Three shot results

The last row of Fig. 7 and all of Fig. 8 summarize the
parameter information based on matching all three experimental
shots simultaneously. These results are based on an MCMC
sample of size 175 000.

The last row of Fig. 7 demonstrates how combining data
from across shots can handle conflicting information and
reduce uncertainty. The exponent parameters n and, to a
lesser extent, m have bimodal marginal distributions.

Figure 8 shows more information on the joint distribu-
tion. Plots along the diagonal of these figures show the
density estimates of the posterior for each parameter indi-
vidually. The off-diagonal plots show contours of the esti-
mates of the marginal bivariate posteriors for each pair of
parameters. Collectively, these give a sense of correlations
and trade-offs between the parameters. For example, G1

demonstrates some correlation with the velocity estimates.
There is some evidence that one of the modes of n is asso-
ciated with a wider range for (i.e., larger uncertainty in) C
than the other mode.

Some of the parameters, for example, Δ3, have posterior dis-
tributions with a mode located close to one of the prior parame-
ter bounds. This can indicate some potential problems that we
discuss later. In this case, this result is not overly concerning
because the calibrated model matches the data reasonably well.

FIG. 8. Summary of 175 000 MCMC samples from the posterior distributions of input parameters following parameter estimation attempting to match all three
experimental shots simultaneously. The range in each parameter corresponds to the parameter input bounds from Table IV. (A full page version of this figure is
provided in the supplementary material.)
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Figure 9 shows several pieces of information in the
feature space of the three shots (four points along each of
the three shot curves). The diagonal shows results for each
feature individually and the off-diagonal plots show the
relationship between pairs of features. The red points indi-
cate experimental results. The blue points show the results
from the 1000 training simulations. The green points show
predictions based on propagating the sample shown in
Fig. 8 through the emulator. These predictions do a good
job of recovering the experiment with adequate uncertainty.
Figure 10 shows the same thing, but using the actual FLAG
calculation. Again, the predictions do a good job of recover-
ing the experimental data, but the uncertainty here is some-
what larger. In part, this reflects the emulator error from
Fig. 6. This error may be larger on average because of the
parameter estimates near the edge where emulator uncer-
tainty can be larger than average. Nevertheless, the

reconstruction is good and represents a rigorous accounting
of all sources of error.

Figures 11–13 compare the velocity time histories for each
of the three shots, respectively. As before, the blue traces corre-
spond to results from the training simulations, the green traces
are from the FLAG simulations using 100 posterior samples of
parameter space from Figure 8, and the red trace represents the
experimental measurement. Note that the experimental time
history (red trace) has been shifted by a constant time because
of a timing offset that we are unable to resolve. Aside from
absolute timing, the posterior traces appear to represent a
reasonable set of predictions, accounting for uncertainty.
The heights of the elastic and plastic plateaus, as well as the
approximate shape of the transitional rise between elastic pre-
cursor and following shock, all seem to be well matched. The
variability (green) includes uncertainty from the measurement
uncertainty, parameter uncertainty, and emulation uncertainty.

FIG. 9. Information in the feature space of the three shots (four points along each of the three shot curves). The diagonal shows results for each feature individ-
ually and the off-diagonal plots show the relationship between pairs of features. The red points and lines indicate experimental results. The blue densities show
the results from the 1000 training simulations. The green densities show predictions based on propagating the sample shown in Fig. 8 through the emulator.
These predictions do a good job of recovering the experiment with adequate uncertainty. All units are in m/s. See Fig. 6 for approximate ranges. (A full page
version of this figure is provided in the supplementary material.)
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V. DISCUSSION

A. Comparison with Gray et al.

Optimizing a model’s parameters accurately has been
done in numerous places for several different materials and
experiments using a variety of techniques. Like these other
methods, the Bayesian emulator can provide accurate parame-
ter predictions. The Bayesian methods presented here also
provide a robust measurement of uncertainty. Its accuracy in
this particular case can be validated with a comparison to the

optimized parameters reported by Gray et al.4 Figure 7
shows that within the numerical uncertainty reported by the
emulator, the optimized Johnson-Cook parameters overlap
with those listed in Table III.4 These results affirm that the
material models used for the simulations to train and calibrate
the emulator appropriately predict the material response given
reasonable parameters. When taken with the RMSE cross vali-
dation in Fig. 6, these results also reflect the accuracy of the
emulator at representing the numerical output of the simula-
tions conducted here.

B. Using uncertainty to guide experiment

The uncertainty associated with the optimized parameters
can be a useful tool for guiding further experimentation or

FIG. 10. Information in the feature space of the three shots (four points along
each of the three shot curves). The diagonal shows results for each feature indi-
vidually and the off-diagonal plots show the relationship between pairs of fea-
tures. The red points and lines indicate experimental results. The blue densities
show the results from the 1000 training simulations. The green densities show
predictions based on propagating the sample shown in Fig. 8 through FLAG.
These predictions show more uncertainty than is shown in Fig. 9 reflecting the
emulator error. All units are in m/s. See Fig. 6 for approximate ranges. (A full
page version of this figure is provided in the supplementary material.)

FIG. 11. Comparison of free surface velocity time histories for Shot 104S.
Training simulations in blue. Experimental data in red. Simulations using
100 posterior samples from Fig. 8 in green. Note that the timing of the exper-
iment has been adjusted by a constant (0:08 μs subtracted from the times) to
align with the simulation results.

FIG. 12. Comparison of free surface velocity time histories for Shot 105S.
Training simulations in blue. Experimental data in red. Simulations using
100 posterior samples from Fig. 8 in green. Note that the timing of the exper-
iment has been adjusted by a constant (0:45 μs subtracted from the times) to
align with the simulations.

FIG. 13. Comparison of free surface velocity time histories for Shot 106S.
Training simulations in blue. Experimental data in red. Simulations using
100 posterior samples from Fig. 8 in green. Note that the timing of the exper-
iment has been adjusted by a constant (2:75 μs subtracted from the times) to
align with the simulations.
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simulation. The Johnson-Cook flow stress model [see Eq. (5)]
empirically associates its parameters with physical aspects of
the material response (described previously in Sec. II B 1 b).
It is apparent from the posterior distributions that the only
parameter well constrained when optimizing to individual
shots was A, the initial yield stress. The remaining Johnson-
Cook parameters contained a wider band of uncertainty—
likely due to probing a limited space of strain, strain rate, and
temperature with just a single shot. Without constraint from
experimental data sufficiently spanning this physical space of
strain, strain rate, and temperature, several equally “good” sets
of parameters can non-uniquely reproduce the experiments;
thus, parameterization to individual shots led to a large degree
of uncertainty in the model parameters. When all three experi-
mental shots were considered, the uncertainty in several param-
eters was reduced by the additional constraint of experimental
data that more broadly spanned the physical space.

Some uncertainty remained after including three experi-
mental shots. For example, focusing on the marginal parameter
distributions in Figs. 7 and 8, both exponential terms n and m
have a bi-modal distribution of calibrated parameters. The
exponent n refers to the characteristic power-law strain hard-
ening behavior and m refers to the power-law temperature
softening of the material. The bi-modal distribution could
suggest similar modeled outcomes resulting from n picked
from the top of its range and m picked from the bottom of its
range or vice versa.

Further examination of the physical data set up to
replicate the three experimental shots showed the ranges of
relevant physical states achieved by the material. For
example, the different impact velocities resulted in simulated
maximum strain rates of approximately 0.7 μs�1, 1.75 μs�1,
and 3.4 μs�1 for shots 0104S, 0105S, and 0106S, respec-
tively—a well explored range of strain rates. A more limited
range of temperatures were probed with all shots experienc-
ing the same initial temperature of 298 K and reaching maxi-
mums of 309 K, 322 K, and 365 K, respectively. The
variability in maximum strain achieved was quite small with
simulated maximums of approximately 0.015, 0.020, and
0.028 for each respective shot. The limited range of physical
states of temperature and strain likely contributed to the
wide uncertainty exhibited by parameters most related to
temperature and strain.

An envisioned application of this framework is to
provide relatively rapid feedback and evolution of an experi-
mental design during an ongoing sequence of experiments,
for example, suggesting in this case that additional shots be
performed at different initial temperatures to probe a wider
temperature space to reduce uncertainty in the distributions
of m. Alternatively, redesigning the specifications of the flyer
and/or target could be implemented to achieve significantly
different ranges of strain.

C. Making sense of the results

Undesirable levels of uncertainty or unexpected opti-
mized parameter distributions could also indicate the need
to adjust aspects of the emulator training data. For certain
optimized patterns, such as when distributions of parameters

favor the boundary of the initial parameter range, one
may need to provide a larger range of possible values. In
addition to providing a robust technique for parameter
optimization, the tabulated uncertainty and prediction of
possible outputs could provide an indication of the validity
of the training data when compared to reality. Perhaps, the
constitutive models used to describe the material behavior
inadequately capture the physics of the problem. In this case,
we can add a discrepancy term to the statistical model as
described in Higdon et al.28 This term can estimate system-
atic biases between the physics model and the experiments.
These biases may reflect this missing physics and correct
for it empirically.

As noted earlier, posterior parameter distributions that are
pushed up against prior boundaries can indicate a problem.
Such occurrences are consistent with several possible explana-
tions. First, it may simply be the case that this is the best distri-
bution to characterize the particular parameter given the
experimental data. More problematically, it may indicate that
our prior bounds were badly chosen, or it may indicate that the
physics model is not capable of predicting all aspects of the
experimental data. In this latter case, the calibration process
may favor parameter values near their bounds where the
Gaussian process emulator has a large uncertainty about
what the physics simulation should be. In other words, there
may be very little uncertainty about the fact that the physics
model does not match the data over parameters safely
within the bounds, therefore, the most plausible region is
that with the most uncertainty about what the physics model
might predict. These two potential problems are related
because our prior bounds may have excluded parts of the
parameter space that would have enabled the model to match
the experimental data. A further test of these conditions is to
verify whether or not the posterior parameter distribution
produces predictions that match the experimental data
reasonably well. Figure 14 demonstrates this by recreating
Fig. 1, but with the model unable to match the data (see
Fig. 1 for an explanation). The resulting posterior for the
parameter is pushed against the boundary to compensate as
much as possible, which is why this behavior can be an
indicator of model inadequacy.

FIG. 14. Illustration of model calibration when the physics model is not
capable of matching the experimental data over the prior ranges. Unlike the
demonstration in Fig. 1, the model is unable to match the experimental data.
See Fig. 1 for an explanation of the details of this figure.
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In our current study, the output predictions of both
the calibrated emulator and simulator match the features of
the experimental velocimetry curves well (Figs. 9 and 10)
indicating a good performance of the underlying constitutive
model. This gives us a strong indication that we are not suf-
fering from the type of model inadequacy just discussed,
despite some of the parameter posterior distributions being
close to the edges of prior boundaries.

Along with the uncertainty of the optimized parame-
ters, Figs. 11–13 show how the uncertainty can propagate
to the predicted output. Another utility of the emulator is
the ability to calibrate across multiple data sets. This was
demonstrated here by optimizing parameters for individual
experimental shots, then combining the data from all three
shots to improve the optimization by narrowing the uncer-
tainty in several parameters. Theoretically, other types of
experiments (such as those conducted by Gray et al.4)
could also be incorporated to augment the set of data avail-
able for training the emulator.

VI. SUMMARY

This effort is particularly directed toward developing
parameter estimation approaches that can be used in the
context of dynamic materials experiments (e.g., gas-gun plate
impact) to rapidly inform experimentalists and modelers on
the implications to model parameters from experimental data
including velocimetry. Consequently, we focused this effort
on Al-5083 because of the availability of relevant velocim-
etry data,31 as well as previous model parameterizations
from dynamic experiments in other strain-rate regimes. The
Johnson-Cook strength model and its associated parameters
for the plastic deformation of Al-5083 were chosen for this
study due its simplicity, the relatively wide use of the
model, and the availability of other parameterizations and
experimental data. The EOS was selected to maintain consis-
tency with the previous work by Boteler and Dandekar.31

The power of Bayesian emulation was demonstrated
here by reasonably optimizing material parameters, pre-
dicting the resulting output related to experiments, and
quantifying the variability of the optimized parameters and
predicted output. This tool can be applied across multiple
data sets (experiments) to quickly evaluate optimal param-
eters and model adequacy and suggest areas of further
exploration through the computation of uncertainty. These
tools might be especially well suited to dynamic compres-
sion sciences at next generation light sources such as X-ray
free electron lasers, where dynamic experiment rates are rapidly
accelerating.47–49

SUPPLEMENTARY MATERIAL

Full page versions of Figs. 8–10 are provided as
supplementary material to better illustrate small details
contained within the plots.
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APPENDIX A: DETAILS OF THE GAUSSIAN PROCESS
CALIBRATION APPROACH FOR MULTIVARIATE
OUTPUT

Let η(t) represent the FLAG output for d-dimensional
input vector t. We will assume that there is some true input
vector θ that predicts our actual experimental value y, within
measurement error ϵ

y ¼ η(θ)þ ϵ, ϵ � N(0, Σy): (A1)

We assume a prior distribution for θ, denoted π(θ) that is
uniform over some hyper-rectangle C based on upper and
lower bounds for each input parameter. This gives a posterior
for the unknown parameters of

p(θ j y)/ L[y j η(θ)]π(θ), (A2)

where

L[y j η(θ)] ¼ exp
1
2
[y� η(θ)]0Σ�1

y [y� η(θ)]

 �
(A3)

is the likelihood and comes the Gaussian model for
the data. Because η(t) is slow and unknown over
most of the input space, we include it in our inference.
Let η� ¼ [η(t1), . . . , η(tm)] be the simulation output from a
collection of inputs t1, . . . , tm. This will add a component to
both the likelihood and the prior

π[θ, η(�) j y, η�]/ L[y j η(θ)] � L[η�
j η(�)] � π[η(�)] � π(θ): (A4)

For convenience, we assume that we are working with
standardized output. In practice, we standardize the training
simulations and the experimental data by the mean vector and
a scaling factor computed from the simulation training set.

Our estimate for η(�) is called an emulator. For simplicity,
scale the inputs such that t [ [0, 1]d. It starts with a basis
decomposition

η(t) ¼
Xq
i¼1

fiwi(t)þ υ, t [ [0, 1]d, (A5)

where {f1, . . . , fq} are orthogonal basis vectors, the wi(t)
are weights depending on the input, and υ is an error term,
assumed to be small, that accounts for deficiencies in the
basis representation. This formulation assumes that the struc-
ture of the simulation output, as represented by the basis set,
is constant over the input and that the weights vary with the
input. In practice, this seems to work well.

Each wi(�) is modeled with a Gaussian process

wi(t) � N 0, λ�1
wi R(t; ρi)

� �
, (A6)

where λwi is the marginal precision (inverse variance) and
R(t; ρi) is a correlation matrix with entries dependent given
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by the correlation function

Corr[wi(t), wi(t
0)] ¼

Yp
k¼1

ρ
4(tk�t0k)

2

ik : (A7)

Let wi ¼ [wi(t1), . . . , wi(tm)]0 for i ¼ 1, . . . , q. Further, let
R(t; ρi) be the m� m correlation matrix resulting from
applying Eq. (A7) to each pair of input settings, where the
p-vector ρi gives the correlation distances for each of the
input dimensions. Then, we can write

w1

..

.

wq

0
B@

1
CA � N

0
..
.

0

0
@

1
A,

λ�1
w1R(t; ρ1) 0 0

0 . .
.

0
0 0 λ�1

wqR(t; ρq)

0
B@

1
CA

2
64

3
75:

(A8)

More succinctly, we can write w � N(0, Σw).
The unknown GP parameters are given gamma priors

for the precisions and beta priors for the correlations

π(λwi)/ λaw�1
wi e�bwλwi , i ¼ 1, . . . , q,

π(ρik)/ ρ
aρ�1
ik (1� ρik)

bρ�1, i ¼ 1, . . . , q, k ¼ 1, . . . , p:

(A9)

The basis decomposition should result in the variance of
the wi(t) being near one. Thus, we choose aw ¼ bw ¼ 5.
Additionally, we typically expect that only a subset of the
inputs will have a large effect on the output. This implies ρik
is often near one. For this reason, we choose aρ ¼ 1 and
bρ ¼ 0:1, which gives Pr(ρik , 0:98) � 1

3 a priori.
Returning to the error term υ in the basis decomposition,

we will treat this as independent Gaussian. Let η be the
vector obtained by stacking all of the n(ti) and let
Φ ¼ [Im � f1; � � � ; Im � fq]. Now, we can write

η j w, λη � N Φw,
1
λη

I

� �
: (A10)

we give λη a Gamma prior with parameters (aη, bη).
The experimental data are now modeled using the basis

representation as well

y ¼ Φyw(θ)þ ϵ, (A11)

where w(θ) is the q-vector [w1(θ), . . . , wq(θ)]0, the basis
weights evaluated at the unknown best input, and Φy are the
basis vectors interpolated onto the index for the physical
data, if different than the simulations. We reparameterize
the variance of the data in terms of a precision, Σ�1

y as
λyWy, where λy can be estimated as scaling parameter.
This gives

y j w(θ), λy � N[Φyw(θ), (λyWy)
�1], (A12)

λy � Ga(ay, by): (A13)

We constrain the scaling parameter near one by setting
ay ¼ by ¼ 5.

We can now write the entire posterior distribution. First,
define

a�η ¼ aη þ m(nη � q)
2

,

b�η ¼ bη þ 1
2
η0[I � Φ(Φ0Φ)�1Φ0]η,

ŵ ¼ (Φ0Φ)�1Φ0η,

ŵy ¼ (Φ0
yWyΦy)

�1Φ0
yWyy,

a�y ¼ ay þ 1
2
(n� q),

b�y ¼ by þ 1
2
(y� Φyŵy)

0Wy(y� Φyŵy),

Λy ¼ λyΦ
0
yWyΦy,

Λη ¼ ληΦ
0Φ,

Iq ¼ q� q identity matrix,

Σwyw ¼
λ�1
w1R(θ, θ

�; ρ1) 0 0

0 . .
.

0

0 0 λ�1
wqR(θ, θ

�; ρq)

0
BBB@

1
CCCA,

ẑ ¼ ŵy

ŵ

� �
,

Σẑ ¼
Λ�1
y 0

0 Λ�1
η

0
@

1
Aþ

Iq Σwyw

Σ0
wyw

Σw

 !
:

The posterior can now be written as

π(λη, λw, ρ, λy, θĵz)

/ jΣẑj�
1
2exp � 1

2
ẑ0Σ�1

ẑ ẑ

 �
� λ

a�η�1
η e�b�ηλη

�
Yq
i¼1

λaw�1
wi e�bwλwi �

Yq
i¼1

Yp
k¼1

ρ
aρ�1
ik (1� ρik)

bρ�1

� λ
a�y�1
y e�b�yλy � I[θ [ C], (A14)

where C denotes the p-dimensional rectangle defined by the
prior parameter ranges.

The best fit inputs and all of the statistical parameters
can be sampled using Markov chain Monte Carlo.

APPENDIX B: DETAILS OF THE VELOCIMETRY
FEATURE EXTRACTION

Typical methods for finding {fi, μi, σ
2
i }

k
i¼1 assume that

we have independent and identically distributed samples from
g(x), say x1, . . . , xn � g, where g(x) ¼Pk

i¼1 fiN(x j μi, σ2
i ).

While we do not have samples, we can easily generate them
using the probability integral transform. To demonstrate this,
consider the random variable x � g. Then, a new random vari-
able z ¼ y(x) has Uniform(0,1) distribution, since y is the
CDF of x. We can generate a sample x1, . . . , xn � g by first
generating z1, . . . , zn and using the inverse transformation to
get xi ¼ y�1(zi) for i ¼ 1, . . . , n. While we do not have an
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analytical version of y(τ) to invert, our observed y(τ) is on a
dense enough grid of t values that we can get a good approxi-
mation of the inverse function y�1 by linearly interpolating the
[y(τ), τ] pairs.

We use a sample of 10 000 values from g(x) to find
{fi, μi, σ

2
i }

k
i¼1 using an expectation maximization algorithm.

Where it may seem like two mixture components (k ¼ 2)
would be sufficient for our feature finding purposes, we find
that using more components allows us to (1) capture tail
behavior that is heavier than Gaussian and (2) accurately
model the CDF when there are clearly more than two jumps in
y(τ). Specifically, we use five mixture components (k ¼ 5).
The mixture components for one curve are shown in Fig. 15.

Upon obtaining our five components defined by
{fi, μi, σ

2
i }

5
i¼1, we split them into two groups, which we call

the early and late groups. If μi þ 2σ i , c, component i is
assigned to the early group, indicating that most of the mass
of the component occurs before c. The cutoff c is visually
identifiable when all the data are plotted together (a time
point between the elastic plateau feature and the first
elastic-plastic slope feature).

Inherent in the algorithm is the assumption of monoto-
nicity. While not physically justified in this case, this is a
practical assumption given the shapes of the velocity curves
that we observe. The curves have some high frequency signal
that can have negative slope. However, that signal is very
small relative to the low frequency signal and can be ignored
for our purposes. This can present problems when we build
the inverse CDF function y�1, because the inverse is not
well-defined. The resulting linear interpolation is slightly
unstable, but that instability is small in comparison to the
general shape of the function. To use this approach for non-
monotonic curves, we could allow for negative weights,
essentially treating the Gaussian densities as basis functions.
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