
PHYSICAL REVIEW B 96, 054104 (2017)

Near-field limitations of Fresnel-regime coherent diffraction imaging
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Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of
wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern
is measured directly by the detector, and various iterative phase retrieval algorithms are used to “invert” the
diffraction pattern and reconstruct a high-resolution image of the sample. However, there are certain requirements
in CDI that must be met to reconstruct the object. Although most experiments are conducted in the “far-field”—or
Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the
“near field” where Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction,
successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less
than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel
well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations,
indicated by large An, the error between kernels should be negligible due to stationary-phase arguments. We
experimentally verify this conclusion with a helium neon laser setup and show that it should hold at x-ray
wavelengths as well.
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I. INTRODUCTION

For many scientific fields, the “ideal” microscope should
be capable of producing high-resolution images of nanoscale
samples with femtosecond time resolution. Pulsed x-ray
sources in particular present a promising method for high-
speed high-resolution imaging. Direct imaging techniques
require a lens to form the sample image on the detector, but
x-ray lenses are often chromatic, inefficient, and difficult to
manufacture. Coherent diffraction imaging (CDI) does not use
an image-forming optic, thus avoiding the drawbacks of x-ray
lenses. The sample is illuminated with coherent light, and the
diffraction pattern is measured by a large-area pixelated detec-
tor. Since the detector can only measure the amplitude of the
diffraction pattern, iterative phase retrieval (IPR) algorithms
are used to reconstruct the sample amplitude and phase.

The standard CDI experiment is conducted in the so-called
“far-field” (Fraunhofer) regime where the distance between
the sample and the detector is much greater than the sample
size. However, there are some circumstances in which far-field
techniques cannot be used, such as at very high photon energies
or with larger objects because the detector stand-off distance
would be impracticably long. As novel and planned light
sources, such as diffraction limited storage rings [1] and
x-ray free-electron lasers [2] (FELs) dramatically increase
the available coherent hard x-ray photon flux, including the
proposed Matter and Radiation in Extremes Facility at Los
Alamos National Laboratory that will possess a very hard x-
ray(∼50-keV) FEL [3], these issues will need to increasingly
be taken into consideration.

The distinguishing feature of near-field CDI is the signifi-
cant phase curvature of the diffraction pattern when recorded
by the detector. If the sample is illuminated by a plane wave (as
was performed for our experimental work), the placement of
the detector is key; the closer the detector is to the sample, the
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more phase curvature the diffraction pattern will possess. An-
other method for inducing such curvature is to focus the beam
on the sample, creating phase curvature in the incident beam
itself [4–6]. Studies using such a structured illumination have
shown that the reconstructions are more robust to spatial inco-
herence in the beam [7,8], can allow imaging of extended ob-
jects [9,10], and reduce how exactly the support must be known
[11]. These factors contribute to faster more reliable con-
vergence of the reconstruction algorithm [12]. Most of these
studies have used highly focused beams with spherical wave
fronts, but it has been shown that astigmatic beams could allow
for even better reconstructions [13]. The biggest downsides to
focused-beam Fresnel imaging is that the beam must be char-
acterized and positional errors can play a large role [14], which
are not concerns for plane-wave CDI in the Fresnel regime.

There has been some effort to evaluate the validity of the
Fresnel approximation itself. Many analyses mention a value
Barber called the “small-angle number” An, that arises in the
derivation of Fresnel diffraction in the case of plane-wave
(not focused) wave fronts [3]. This value, derived in detail in
Sec. I A, is the result of limiting the contributions of high-order
terms in the Fresnel approximation; the “required” condition is
that An � 1. This condition can be difficult to satisfy in prac-
tice, especially at low photon energies, but several authors have
suggested that fulfilling the small-angle condition may not be
necessary. Goodman stated that when An > 1 the diffraction
integral could be understood via stationary-phase arguments,
meaning that any errors incurred by violating the condition are
averaged out by rapid oscillations in the kernel [15]. Veerman
et al. agreed with Goodman’s assessment and proposed that
the small-angle condition could be relaxed somewhat in the
particular case of paraxial beams [16]. Southwell provided the
justification for needing paraxial beams by showing that it was
required by the stationary-phase treatment [17]. Finally, Forbes
examined the error of the Fresnel approximation by observing
the effect of including or discarding higher-order terms in
various approximations [18]. However, Forbes restricted his
analysis to two different forms of the Fresnel approximation
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FIG. 1. Basic CDI setup; a coherent light source illuminates the
sample of diameter a, and the resulting diffraction pattern is measured
at a detector located a distance z from the sample.

and did not consider the error as compared to the exact
solution. Here we show theoretically that the small-angle
condition may not be the limiting factor in near-field CDI
experiments and verify this conclusion experimentally by
successfully reconstructing near-field CDI data with high An

obtained with a visible light experimental setup. We predict
that the small-angle number condition can be violated to yield
high-resolution reconstructions at x-ray wavelengths as well.

A. Theoretical background

In this section, we will analyze the pertinent scattering
theory of near-field CDI and the sensitivity to the large-angle
number An. We begin by considering a sample exit wave prop-
agating in the z direction through free space to a detector some
distance z away as in Fig. 1. As can be derived directly from
Maxwell’s equations, the electric-field �E(x,y,z,t) in a wave
front traveling in a vacuum obeys the vector wave equation,

∂2

∂t2
�E = c2∇2 �E. (1)

We make two simplifications: (1) We make the approximation
that the polarization ε̂ of the electric field is constant over
the space of propagation so that �E(x,y,z,t) = ε̂E(x,y,z,t).
(2) We assume that the wave has a “carrier frequency” ω so
that its time dependence can be represented as E(x,y,z,t) =
E(x,y,z)e±iωt . Then the spatial variation of the electric-field
magnitude E(x,y,z) obeys the Helmholtz equation,

∂2

∂z2
E = −k2E − ∇2

⊥E, (2)

where k = ω/c = 2π/λ is the vacuum wave number of
the source and ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 is the part of the Laplacian
transverse to the direction of the propagation. It is not an
exaggeration to say that the Helmholtz equation defines
diffraction for a propagating wave front.

For a complex wave front starting at z = 0, called the
“object plane” for CDI and propagating a distance z to the

“detector plane,” the relevant solution to Eq. (2) is given by

E(�r,z) =
∫

d�r ′ E(�r ′,0)H (�r − �r ′,z), (3)

where the kernel H is

H (�r,z) = z

2π (|�r |2 + z2)

⎛
⎝ 1√

|�r |2 + z2
− ik

⎞
⎠

× exp
(
ik

√
|�r |2 + z2

)
. (4)

Here �r = (x,y), �r ′ = (x ′,y ′), and z is the distance between
the sample and the detector. The two-dimensional vectors �r ′
and �r span planes perpendicular to the propagation direction at
longitudinal positions 0 and z, respectively. Together Eqs. (3)
and (4) constitute the Rayleigh-Sommerfeld solution to the
Helmholtz equation [15].

We now outline several approximations which are often
applied to the Rayleigh-Sommerfeld kernel. The magnitude
of the quantity �r − �r ′ in Eq. (3) is the transverse distance
between a point on the sample and a point on the detector. This
is typically much smaller than the sample-to-detector distance
z, and so in Eq. (4) we ignore any terms of magnitude r = |�r |
compared to z (outside the exponent). Furthermore, any term
of order k = 2π/λ dwarfs terms of order 1/z as long as z � λ.
Under these approximations, the kernel becomes

H (�r,z) ≈ − ik

2πz
exp

(
ik

√
|�r |2 + z2

)
. (5)

The term in the exponents of (4) and (5) requires greater
care. Expanding the exponential term differently leads to
the far-field and the near-field approximations. The far-field
approximation starts with the kernel H as in Eq. (3) with first
argument �r − �r ′,

H (�r − �r ′,z) ≈ − ik

2πz
exp

(
ik

√
|�r − �r ′|2 + z2

)
. (6)

Define �R = �r + zêz, R = | �R|, R̂ = �R/R, r̂ ′ = �r ′/|�r ′|, and
ε = |�r ′|/R. �R is the three-dimensional vector from the origin
(usually taken at the center of the exit wave) to a point on
the detector. The quantity ε has a magnitude roughly equal
to the scale length of the exit wave or sample, divided by
the characteristic sizes of the detector and sample-to-detector
distance z. We assume that this is a small quantity and
manipulate the square root in the exponent above as follows:

√
|�r − �r ′|2 + z2

=
√

|�r + zêz − �r ′|2, (7a)

=
√

| �R − �r ′|2

= R

√
|R̂ − εr̂ ′|2

= R
√

1 − 2εR̂ · r̂ ′ + ε2

= R
{
1 − εR̂ · r̂ ′ + 1

2ε2[1 − (R̂ · r̂ ′)
2
] + O(ε3)

}
, (7b)

= R − R̂ · �r ′ + 1

2

|�r ′|2
R

[1 − (R̂ · r̂ ′)
2
] + O(ε3), (7c)
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where the substitution in Eq. (7a) is possible because �r and
�r ′ are both ⊥ to êz, Eq. (7b) follows from Taylor expanding
the preceding line in ε, resulting in Eq. (7c) after substituting
ε = |�r ′|/R. The third term in Eq. (7c) (and all higher terms)
can be ignored if it contributes a phase much smaller than 2π

to the exponent, a condition which is obtained if

1

2
k
|�r ′|2
R

[1 − (R̂ · r̂ ′)
2
] � 1

2

2π

λ

|�r ′|2
|�r ′ + zêz|

� 1

2

2π

λ

|�r ′|2
z

� 2π.

Since several approximations were performed above and
because the maximum value of |�r ′| in reality depends upon the
shape of the sample, numerical factors of order unity usually
are omitted, and the above condition is written simply as

Fr = |�r ′|2max

λz
� 1, (8)

where Fr is the Fresnel number.
With these approximations, Eq. (3) becomes

E(�r,z) = − ik

2πz
exp

(
ik

√
|�r |2 + z2

) ∫
d�r ′E(�r ′,0)e−ikR̂·�r ′

.

(9)

This has the form of a Fourier transform with spatial frequency
kR̂, a fact which can be leveraged to achieve efficient numerical
evaluation of the propagated wave front. Note that the steps
leading to Eq. (9) are somewhat distinct from those used in
Ref. [3] to approximate the kernel for scattered light, although
they arrive at a mathematically similar result.

The Fresnel approximation—which is the focus of this
paper—proceeds along a different tack. Taking the first
argument of the kernel to be �r as in Eqs. (4) and (6), we
Taylor expand the exponential term for small |�r |/z as follows:

k

√
|�r |2 + z2 = kz

(
1 + |�r |2

z2

)1/2

≈ kz

(
1 + 1

2

|�r |2
z2

− 1

8

|�r |4
z4

+ · · ·
)

. (10)

The last term (and all subsequent terms) above can be
ignored if it contributes a phase much smaller than 2π , a
condition which implies that

An ≡ r4
max

8λz3
� 1, (11)

where rmax = max |�r − �r ′| is the maximum transverse distance
between points on the sample and points on the detector in
Eq. (3). The small-angle number An is a dimensionless number
which determines when the Fresnel approximation is valid
[3]. If An > 1, the error incurred by discarding the higher-
order terms could be substantial and indicates that the Fresnel
approximation may not be valid. Under these approximations,
the Rayleigh-Sommerfeld kernel becomes the Fresnel kernel,

HFr (r,z) = − ik

2πz
exp

(
ikz + i

kr2

2z

)
, (12)

which can also be derived as the kernel for the paraxial
approximation to the Helmholtz equation [15].

A significant property shared by both the Rayleigh-
Sommerfeld and the Fresnel kernels follows from Parseval’s
theorem, which, if we take f̂ (�q) ≡ ∫

d�r f (�r)e−i �q·�r as our
convention for the Fourier transform of the exit wave, states
that ∫

d�r|f (�r)|2 = 1

(2π )2

∫
d �q|f̂ (�q)|2

for functions in two dimensions. The Fourier transforms with
respect to �r of these two kernels are

Ĥ (�q,z) = exp
(
iz

√
k2 − |�q |2), (13)

and

ĤFr (�q,z) = exp

(
ikz − i

z

2k
|�q |2

)
, (14)

where Eq. (14) can be derived either directly from Eq. (12)
or by performing a Taylor expansion in �q of the exponent in
Eq. (13). Note that |ĤFr (�q,z)| = 1 always and |Ĥ (�q,z)| =
1 when |�q| � k. Since |�q| � k for the parameters of any
reasonable experiment that we envision, it is essentially always
the case that |Ĥ (�q,z)| = 1 as well.

The intensity at a given propagation distance z and
lateral position �r is given (to within irrelevant multiplicative
constants) by I (�r,z) = |E(�r,z)|2. The following derivation
then holds for either kernel:

P (z) =
∫

d�r I (�r,z)

=
∫

d�r|E(�r,z)|2

= 1

(2π )2

∫
d �q|Ê(�q,z)|2

= 1

(2π )2

∫
d �q|Ê(�q,0)Ĥ (�q,z)|2

= 1

(2π )2

∫
d �q|Ê(�q,0)|2

=
∫

d�r|E(�r,0)|2

= P (0). (15)

Here the integrated intensity P (z) (which has units of power)
is the total amount of energy passing through a plane at z. This
result shows that for either kernel P (z) = P (0), i.e., that both
kernels exactly preserve the total propagated intensity. Only
the distribution of intensity changes. Although this is to be
expected for the exact kernel, it is of note that the approximate
Fresnel kernel achieves this as well.

B. Theoretical findings

We wish to quantify the error in the kernel incurred by
approximating Eq. (4) as Eq. (12). In order to accomplish
this in a scale-invariant sense, it is convenient to define
dimensionless variables and dimensionless, scaled versions of
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FIG. 2. The fractional error ||hFr | − |h||/|h| in the magnitude
of the kernel incurred by making the Fresnel approximation. This
curve is calculated using α = 109, although it would look essentially
unchanged for any value of α greater than approximately 104.

these kernels. We define h(u,α) ≡ z2H (zu,α
k

) and hFr (u,α) ≡
z2HFr (zu,α

k
) so that

h(u,α) = 1

2π (u2 + 1)

(
1√

u2 + 1
− iα

)
exp

(
iα

√
u2 + 1

)
,

(16)

hFr (u,α) = − iα

2π
exp

(
iα + i

αu2

2

)
. (17)

Here u ≡ r/z (“dimensionless transverse detector size”) com-
pares the size of the detector and sample to that of the
sample-to-detector distance and is typically a fairly small
number, whereas α ≡ kz (“dimensionless detector distance”)
is roughly the number of wavelengths that fit into a distance
z and is therefore typically a very large number. An can be
represented approximately in terms of u and α as

An ≈ αu4

16π
. (18)

Here we consider the two different regimes of visible
and x-ray wavelengths; the experiment for this paper was
conducted using visible light, but the overall results will most
likely be useful for hard x-ray experiments. Whereas the
dependence on r makes u somewhat sample dependent, we
give here some typical values of α and u to give a sense of
scale. The data presented in the next section suggest that for
632.8-nm wavelength photons (1.96 eV), α ∼ 8.8 × 104 and
u ∼ 0.83 when z = 0.89 cm and the half-width of the pattern
on the detector is r ∼ 7400 μm [Fig. 6(b)], and α ∼ 4.3 × 104

and u ∼ 0.87 when z = 0.43 cm and r ∼ 3700 μm [Fig. 6(c)].
When considering 10-keV photons, α ∼ 5 × 1010 when z =
1 m and α ∼ 5 × 108 when z = 1 cm. Values around u = 0.1
would be considered fairly large for x-ray experiments at this
energy range.

The fractional error in the magnitude displayed by the
Fresnel kernel (compared to the exact kernel) is shown in
Fig. 2 as a function of u for visible light and 10-keV photons.
The difference in phase (i.e., complex argument) between h

and hFr is shown in Fig. 3 for various values of α and u. It is

FIG. 3. The difference in the phase (i.e., the complex argument)
between hFr (u,α) and h(u,α) for various values of α. Note that—in
order to not clutter the image—the curves for α = 1010 and α = 108

stop at u = 0.012 and 0.04, respectively.

immediately obvious that the greater the value of α, the lower
the value of u when the phase error begins oscillating quickly.

We see that for our visible light experiment the amplitude
error can be very large, ranging from 10% to 200%, and the
phase error oscillates quickly at high u (a better sense of this
can be gleaned from the larger range plotted in Fig. 4). The
same analysis at x-ray wavelengths reveals slightly different
behavior: While the phases of the two kernels decorrelate at
small u from very rapid oscillations, the magnitude error will
typically be less than about 1%.

Although the phase and amplitude errors of the Fresnel
kernel can be quite large, the oscillatory properties of both
kernels themselves should be examined. The phase difference
of the kernels for α = 4.27 × 104 and α = 109 are plotted
in Fig. 4 along with the phase of the exact kernel. Although
the scales of the two regimes are quite different, the behavior
is the same—the frequency of the exact kernel’s oscillation
increases much more rapidly than the frequency of the phase
error. This is not the default behavior; when α is less than about
50 (not shown) we observe the opposite behavior. This means,
however, from the definition of u that the distance between
sample and detector is comparable to the sample size [19];
this situation will rarely, if ever, occur.

We see in Fig. 4 that the phase error changes slowly when u

is small (where the scale of small u is set by α), signifying that
the Fresnel kernel approximates the Rayleigh-Sommerfield
kernel well in that region. To further our analysis, we seek
to know the effect of An on the kernel phase and phase
error. We know that when An = 1 the phase difference should
already be observable, and using Eq. (11) we find that for
α = 4.27 × 104, u ≈ 0.185, and for α = 109, u ≈ 0.015; a
significant phase difference is observed at those u values
as expected. We also see that the kernels themselves have
oscillated many times before reaching these u values. In
this region we can qualitatively apply the stationary phase
argument already alluded to in Refs. [15–17], which suggests
that the rapid oscillations of the kernel average the phase error
to zero. Since the phase is multiplied by the amplitude in the
integral, the amplitude error also is averaged out to zero. This
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(a)

(b)

FIG. 4. The difference in the phase (i.e., the complex argument)
between hFr (u,α) and h(u,α) plotted with the exact kernel h(u,α)
at (a) α = 4.27 × 104 and (b) α = 109 as a function of u and An

as calculated by Eq. (18). The curves for arg(h) were stopped at
u = 0.04 and u = 0.0005, respectively. There are approximately 20
cycles of arg(h) plotted in (b).

result implies that the diffraction patterns given by the Fresnel
approximation and Rayleigh-Sommerfield exact solution are
nearly identical in all situations that could be envisioned in
an actual experiment, and so an IPR that uses the Fresnel
approximation should be able to handle any appropriately
oversampled diffraction dataset.

After the point where An � 1, the situation becomes
murkier. It seems reasonable, after examination of Fig. 4, that
the stationary phase argument would hold for somewhat larger
u. It is not clear, however, at what point the stationary phase
argument ceases to hold, or alternatively, if the kernels oscillate
quickly enough so that the stationary phase argument always
holds. We do not present any theoretical findings to answer
these questions; in the next section, however, we present data
with visible wavelengths (corresponding to α = 4.27 × 104)
that suggest that even at low-α values and high-An values the
stationary phase argument still holds. We can then make the
conjecture that if the stationary phase argument always holds
in the visible light regime, then the plots in Fig. 4 suggest that
it should also always hold in x-ray experiments as well.

FIG. 5. Diagram of the experimental setup used to provide a
coherent beam and record the diffraction pattern from the sample.
An optical microscope image of the sample is shown in the inset
where the red scale bar is 25-μm wide.

II. EXPERIMENTAL METHODS

In this section, we present the results from a simple near-
field CDI experiment performed on a tabletop helium neon-
based CDI system.

A. Data acquisition

As shown in Fig. 5, a 5-mW helium neon laser was used
to produce a monochromatic 632-nm beam. Two adjustable
attenuators reduce the beam intensity, permitting longer
exposure times and reducing the risk of saturation or damage
to the detector. The attenuated light then passes through a
beam-defining pinhole about 150 μm in diameter. Next, the
beam is collimated by a lens and redirected toward the sample
by a mirror. An iris, tuned to be slightly larger than the central
Airy disk, blocks any fringes created by diffraction from the
pinhole. A CCD camera (ThorLabs 4070M) then records the
diffraction pattern. The distance from the sample to detector
z was varied to measure diffraction patterns at different Fr’s
and An’s but was chosen to ensure that the oversampling ratio
Os = zλ/PN was greater than two. P and N are the detector
pixel size and the number of collinear detector pixels with good
signal to noise, respectively. The reconstruction of the sample
was conducted as discussed in subsequent sections. The total
width of the group of geometric apertures is 150 μm.

B. Data processing

In order to maximize the amount of light diffracted to high
angles (i.e., near the edge of the detector) while avoiding
saturation issues caused by the low dynamic range of our
CCD camera, we measured 500 images at three exposure
times, ensuring that the lowest-exposure data set did not
include oversaturated pixels. The 500 images were summed
and background subtracted, then the datasets from the three
exposure times were stitched together so that the low-exposure
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image provided detailed information of the low-angle scatter,
whereas the high-exposure image provided improved signal to
noise at higher scattering angles; the process used was similar
to that described in Ref. [20]. The stitched image was then
centered and thresholded to filter residual noise.

C. Phase retrieval

There are several phase retrieval algorithms that could be
applied to reconstruct the images (see Ref. [21] for a good
overview of the main variations). They all use constraints in
Fourier and object spaces, but they differ in how they use those
constraints. We used the hybrid input-output (HIO) and error
reduction (ER) algorithms for the results in this paper as this
combination has been shown to be one of the best in terms
of stability and precision [22]. We define f (�r) as the actual
image, gk(�r) as an estimate of the actual image, and φk as an
estimate of the real phase ψ. F (�u) and Gk(�u) are the Fourier
transforms of f (�r) and gk(�r), respectively, which means that
|F (�u)| is the square root of the measured diffraction pattern.
The basic steps of such a phase retrieval algorithm are shown
below.

(1) The algorithm starts with a seed image gk(�r), usually
assigned random amplitudes and phases.

(2) The Fourier transform of the object gk(�r) gives Gk(�u),
which is an estimate of the measured diffraction pattern F (�u).

(3) The Fourier constraint is applied; the amplitude of
Gk(�u) is replaced by the measured diffraction pattern am-
plitude |F (�u)|, but the phase φk is left unchanged. The result
is G′

k(�u).
(4) Inverse Fourier transforming G′

k(�u) gives an improved
estimate of the image, called g′

k(�r).
(5) Applying the support constraint results in gk+1(�r).

Defining S as the known support of the sample, we see that for
ER this constraint takes the form

gk+1(�r) =
{
g′(�r), �r ∈ S,

0, �r ∈ S,

and for HIO,

gk+1(�r) =
{
g′(�r), �r ∈ S,

gk(�r) − βg′(�r), �r ∈ S,

where β is a constant, normally chosen between 0.5 and 1. We
used β = 0.7 for our results.

(6) Compute the error (this can be performed in Fourier or
object space). If the error is below a certain threshold, quit. If
not, go back to step 2.

As originally formulated, the HIO and ER algorithms only
work in the far field, but they can be modified to work in the
Fresnel regime by employing the “distorted object” approach
[23], which modification we employed in our reconstruction
algorithm. We used the shrink-wrap algorithm to dynamically
generate the support region. We did not enforce any other
constraints. Each reconstruction was allowed to run for 125
iterations where one iteration consisted of 10 iterations of
ER, 20 iterations of HIO, and one application of shrink wrap.
Other optimizations used in our phase retrieval code that aid
convergence are found in Refs. [24,25].

III. RESULTS AND DISCUSSION

We took data at three sample-to-detector distances (z =
30, 8.9, and 4.3 mm) that correspond to three different values
of An (An = 175,11 400,41 600). We hypothesize that if there
are significant errors in the Fresnel kernel because of large An

that we will be unable to reconstruct the object in a satisfactory
manner. For our data we also calculated the respective values
of Fr (Fr = 0.3,1.0,2.1) where higher values of Fr denote
that the data were taken in a nearer field than for lower values of
Fr . The dataset with the lowest Fr could be considered to be
in the Fraunhofer regime; reconstructions attempted with and
without the distorted phase were equally successful with Fr =
0.3 data. The data taken at Fr = 2.1 have an oversampling of
about 2.5, so it was not possible to explore appreciably higher
Fr’s and An’s, but despite this limitation the values of An span
three orders of magnitude. The logarithmic-scale diffraction
patterns and their reconstructions are found in Fig. 6, and a
summary table listing various important values is found in
Table I.

The first observation is that good quality reconstructions
(reconstructing even many of the defects and dust particles
consistently) are attainable at large An; indeed, An � 1 for
all attempted reconstructions. We see in Fig. 7 that the 10%–
90% rule gives a resolution between 2.7 and 2.9 μm for the
Fr = 0.3 and Fr = 2.1 reconstructions, respectively, which
is somewhat larger than the smallest sample features (which
have dimensions around 2 μm). This explains why the smallest
features, i.e., the smallest chevrons, triangles, or circles, are not
cleanly resolved in any of the reconstructions, although this can
also be attributed in part to dust obscuring some of the features
in the test pattern. The pixel sizes in the datasets are 1.29, 0.37,
and 0.18 μm for Fr = 0.3, 1.0, and 2.1, respectively, so we
see that the good signal out to the edge of the detector in the
Fr = 0.3 data resulted in near diffraction-limited full-pitch
resolution, whereas the poorer signal-to-noise ratio in the other
two datasets resulted in relatively poorer achieved resolution.
A detector with greater sensitivity and lower noise would allow
reconstructions at higher Fr to have resolutions closer to the
laser wavelength.

We conducted a numerical study of the differences between
diffraction patterns propagated via both kernels with x rays
with a resolution of twice the wavelength to see if the
difference between kernels is significant in high-resolution
x-ray experiments. We used a 300-nm diameter object, 1-nm
light, and 2-nm object pixel size and computed the diffraction
patterns via convolution [26]. Depending on the desired
experimental parameters the convolution method can require
significant resources—we used a 96-core computing node with
about 1.5 Tbytes of RAM for our simulations, operating on
120 000 × 120 000 element arrays. Such large arrays were
required to reduce diffraction “leaking” around the edges of the
computational array, although it is difficult to eliminate leaking
completely. We simulated the diffraction of both kernels at
two propagation distances of 1 μm and 0.2 mm. Memory
and computing constraints dictated the longer distance. The
propagation of 0.2 mm and 1 μm resulted in Fr’s of 0.11,
22.5 and An’s of 140 000,40 300, respectively.

The validity of the Fresnel kernel depends only on An, not
Fr , and since An � 1 we might expect to see a difference
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FIG. 6. Experimentally obtained diffraction patterns and reconstructions at different An’s. (a)–(c) are uncropped logarithmic-scale
diffraction patterns for Fresnel numbers of Fr = 0.3, 1.0, and 2.1, and (d)–(f) are the corresponding reconstructions. The data from Fr = 0.3
were binned by a factor of 4 to speed up the reconstruction algorithm; the other datasets were reconstructed without binning. The red dashes
in (d) and (f) indicate the contours of the line-outs used in Fig. 7.

using the Fresnel and exact kernels. The 0.2-mm propagation
yields an error of about 5% between kernels, computed by
summing the absolute values of the diffraction pattern inten-
sities and dividing by the sum of the Rayleigh-Sommerfield
propagated diffraction pattern intensity. Some of this error can
be attributed to diffraction leaking around the detector edges.
The greater part of the error is simply due to differences
between the Rayleigh-Sommerfield and the Fresnel kernels.
When considering all sources for error in an actual x-ray
experiment, however, such as detector imperfections, the use
of beam stops and Poisson noise, 5% error seems tolerable.
We note that at a propagation distance of 1 μm the kernel
error is only slightly higher at 8%. These results support
the conclusion that the value of An is not important when
the Fresnel kernel is used without regard to photon energy
or resolution. Situations involving larger samples and higher
energies are certainly useful to consider, but those simulations
are even more computationally expensive than the results we
have presented here; additionally, there is no reason to believe
that the results would be different.

TABLE I. Important values in the experiment at each Fr .

z (mm) Os Fr An u α

30 17.1 0.3 175 0.25 2.98 × 105

8.9 5.1 1 11400 0.83 8.84 × 104

4.3 2.5 2.1 41600 0.87 4.27 × 104

It was mentioned in a previous section that it is difficult
to determine at what point the kernel’s oscillations overcome
the error between the Fresnel and the Rayleigh-Sommerfield
kernels. Although we do not present a good method for
determining that bound here, we can say something about
it empirically from these results. In Fig. 2 we see that the
magnitude error for this setup should be very large (around
100%) for the Fr = 2.1 data. One would expect that a
reconstruction of that data using the Fresnel kernel in the
distorted object approach would not be possible, but we have
demonstrated otherwise. Thus it is reasonable to assume that
the error in the Fresnel kernel is not as great as Fig. 2 would

(a) (b)

FIG. 7. Line-outs indicated in Fig. 6 for the Fr = 0.3,2.1 data.
The dashed lines represent the values at 10% and 90% of the
maximum value, resulting in a resolution of approximately 2.9 μm
when Fr = 0.3 and 2.7 μm when Fr = 2.1.
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suggest, and thus it seems that the kernel oscillations start early
and fast enough to effectively minimize error accumulation.
Encouragingly, we see in Fig. 4 that the kernel difference
manifests much earlier and more rapidly in comparison to
the exact kernel oscillations at x-ray wavelengths than for the
helium neon setup. Therefore, since acceptable reconstructions
were obtained for visible wavelengths, we would expect the
phase error to play even less of a role for x-ray experiments.

We have shown theoretically that the condition An � 1,
once thought to be a limiting factor in near-field recon-
structions, actually only describes one small effect of an
approximation step of the diffraction integral that usually
is overshadowed by the rapid oscillations in the diffraction
integral that average out to zero. As An becomes large the
difference between the Fresnel and the Rayleigh-Sommerfield

kernels becomes negligible compared to the oscillations of
either kernel, and both the amplitude and the phase error
get averaged to zero while evaluating the integral. We
have demonstrated experimentally that there seems to be no
appreciable restriction due to An at visible wavelengths and
have argued based on our results that the restrictions would be
even less of a concern at x-ray wavelengths; this conclusion,
however, still needs to be verified by experiment.
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