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The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In

the present work we study the effect of both central mass reduction (due to the energy loss through

gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational

radiation). For the mass reduction case and recoil directed along the disk’s angular momentum,

oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung

luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk’s

angular momentum, the disk’s dynamics are strongly impacted, giving rise to relativistic shocks. The

shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung

luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk

(a likely scenario in real active galactic nuclei), we observe a common, characteristic pattern in the

internal energy of the disk. Variations in kick velocity simply provide a phase offset in the characteristic

pattern implying that observations of such a signature could yield a measure of the kick velocity through

electromagnetic signals alone.

DOI: 10.1103/PhysRevD.80.024012 PACS numbers: 04.25.D�, 04.25.dk, 04.30.Db, 95.85.Sz

I. INTRODUCTION

The study of a number of astrophysical systems will
soon add gravitational wave astronomy as a new tool to
complement observations in the electromagnetic band.
Since most systems capable of producing detectable gravi-
tational waves will also radiate strongly in the electromag-
netic band (see, e.g., [1,2]), combining information from
both spectra will allow for a richer description of these
systems. Furthermore, the complementary nature of obser-
vation in both bands will help the detection enterprise as a
signal in one band will help follow up studies in the other
(see, for instance, [3,4].)

Among interesting possible sources of strong signals in
both spectra, the collision of a binary black hole system
within a circumbinary disk presents the possibility of a
detection of gravitational waves (as the black holes merge),
which will be followed by electromagnetic signals emitted
by the disk as its dynamics are affected in the process [5].
This scenario is common in nature, since massive black
holes exist in the core of most galaxies and galaxies
undergo mergers throughout their evolutionary path. As
galaxies merge, they produce a binary black hole in the
newly formed galaxy which eventually collide as their
orbit shrinks through several mechanisms. As discussed
in [5], a circumbinary disk is formed as the binary hollows
out the surrounding gas, and the disk becomes mostly
disconnected from the binary’s dynamics [6,7].
Afterwards, while the disk remains essentially frozen, the
black holes’ orbits continue to shrink until they merge.

The merger process gives rise, in particular, to two
relevant effects that will perturb the disk (see, e.g., [5,8]).
One is related to the final mass of the black hole, which is
less than the initial total mass as the system radiates energy
via gravitational waves.1 The other one is a consequence of
the radiation of linear momentum, which if asymmetric (as
in the case of an unequal mass binary, or asymmetric
individual angular momenta of the black holes), induces
a nontrivial recoil on the nascent black hole. This recoil
effect has been predicted before through perturbative
analysis of Einstein equations [10,11], and recent numeri-
cal simulations implementing the equations in full show
even higher recoil velocities are possible [12–21]. The
largest recoil velocities found correspond to mass ratios
close to 1 and spins lying anti-aligned on the orbital plane.
In the case of quasicircular orbits, recoil velocities up to
about 4000 km=s have been calculated [14]. However,
most of the black hole collisions occurring in nature are
expected to produce kicks of about 500 km=s or less, since
larger kicks would occur only in the case of nearly equal
masses [22].
As a result of both effects mentioned above, the fluid

dynamics in the disk is modified and shocks may be
induced. The shocks’ energy can then heat the gas, which
can produce electromagnetic flares. These flares are ex-
pected to occur later (a few months to years), and to last

1Possible observable consequences of this effect were first
discussed in [9].
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considerably longer (thousands to hundreds of thousands
of years)[23–25], suggesting tantalizing prospects for
LISA observations aiding and complementing the electro-
magnetic observational prospects of these systems. For the
recoiling black hole case, prior studies, which employ
simulations of collisionless particles in Keplerian orbits
forming a flat (zero height) disk, predict emissions ranging
from UV to x-rays [23,24] or in the infrared [25] if this
radiation is assumed to be absorbed before leaving the disk
and re-emitted. Since these studies employ a particle de-
scription of the fluid, they can not fully capture the devel-
opment (and hence influence) of shocks, which must be
estimated by detecting collisions between particles. A
recent work [26] adopted a field description for the fluid
and studied the impact of a mass reduction in a pseudo-
Newtonian potential to account for an innermost stable
circular orbit (ISCO) at r ¼ 6M (which corresponds to
the ISCO of a nonspinning black hole, while this is a rather
uncommon output [27–30] in the merger of two black
holes, the spin value will play a relevant role mainly if
accretion develops). Based on computations of bremsstrah-
lung luminosity, that work predicts a decrease in luminos-
ity as the fluid orbits adjust to the reduced gravitational
potential.

In this work we study the effects on the disk by also
considering a perfect fluid but in our case we do so employ-
ing the fully relativistic hydrodynamic equations in a back-
ground space-time. Thus, we are able to examine effects of
spin, mass reduction and accretion, and comment on the
relevance of different processes. In particular, our studies
indicate that a significant distortion of the disk develops as
time progresses when the kick has a component perpen-
dicular to the disk’s axis and that qualitatively similar
features are present in all these cases.

In Sec. II, we briefly review our formulation of the
problem and numerical approach. Section III describes
our initial configuration. We discuss the observed dynam-
ics in the disk after the merger has taken place in Sec. IV,
taking into consideration the effect of mass reduction and
different recoil velocities. Section V concludes and offers
some further considerations.

Unless otherwise specified, we use geometrized units,
where G ¼ c ¼ 1, and sum over repeated indexes. Greek-
letter indices range from 0 to 3.

II. OVERVIEW OF THE NUMERICAL APPROACH

We implement the general relativistic MHD equations
using a high resolution shock capturing module described
in [31,32]. We introduce however a slight modification of
the hydrodynamic equations inside the horizon to improve
the fluid’s behavior close to the excision region. Given an
equation of the form2

_Uþ FðUÞ0 ¼ S; (1)

we modify it in order to include a damping term

_Uþ FðUÞ0 ¼ S� fðrÞð�xÞpðU�U0Þ; (2)

where the function fðrÞ decreases smoothly with r, from
100 at the excision region to zero at the event horizon (EH),
and is zero for r � rEH, so that the exterior of the black
hole (BH) is causally disconnected from the effect of this
extra term. U0 is set to zero or to the value of the atmo-
sphere if the corresponding field has one. The coefficient
ð�xÞp ensures that the damping term converges to zero and
will not modify the convergence rate as long as one choo-
ses p to be greater than or equal to the order of convergence
of the code. In this work we adopt p ¼ 4.
These equations are implemented within the HAD com-

putational infrastructure, which provides distributed
Berger-Oliger style adaptive mesh refinement [33,34]
with full subcycling in time, together with a novel treat-
ment of artificial boundaries [35]. Because of the dynamics
involved in this work, it is only necessary to use a fixed
refinement hierarchy, covering with finer grids the (central)
region containing the disk and black hole, and increasingly
coarser grids in the outer regions in order to locate the
boundaries far away at a low computational cost.

III. OVERVIEW OF THE PHYSICAL SETUP

To explore the effects of the black hole merger in the
dynamics of the accretion disk, we concentrate, in particu-
lar, in the post-merger stage—when the main burst of
gravitational radiation has passed through the disk and
this has settled down to a quasistationary state.3 To simu-
late a BH formed through the merger process and account
for the main effects of mass loss or recoil, we either
consider a reduction in the mass of the black hole by 5%
or apply a boost to the BH in a given direction. In the latter
case, it is easier to adopt the BH’s rest frame and apply the
boost to the fluid variables (in the opposite direction)
describing the disk, which is represented by a stationary
toroidal solution of the fluid equations in a Kerr back-
ground. Thus, starting with a stationary torus on a Kerr
background, we perform a Lorentz boost with velocity
� ~vkick on the disk. We employ this boost to transform
the fluid’s 4-velocity u� and magnetic field 4-vector b�

when considering the recoil case.
The toroidal solutions are constructed following an ap-

proach similar to that in [38], adapted to the ingoing Kerr-
Schild coordinates adopted in our studies, and with a
different choice of specific angular momentum for the fluid
for easier comparison with previous work in the absence of
magnetic fields. While in the current work we do not
simulate scenarios that include a magnetic field, we discuss

2For clarity we use here a simple expression to represent the
fluid equations. See [31,32] for the full equations.

3Studies of possible premerger effects are presented in, e.g.,
[36,37].
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the construction of initial data that allows for doing so for
future reference. In our case, we adopt the more standard
l � �u�ðutÞ�1 ¼ const (see below) to allow for an easier

comparison with previous work in the absence of magnetic
fields. In particular, we verify that identical solutions to
those of [39] are obtained if the magnetic field is set to
zero. In what follows we review the main steps in this
construction.

The stress-energy tensor for ideal MHD can be written
as

T�� ¼ ð�hþ b2Þu�u� þ ðPþ b2=2Þg�� � b�b�; (3)

where �, P, and u� are the fluid’s density, pressure and 4-
velocity, respectively, b� is the magnetic field 4-vector,
and h is the specific enthalpy, defined as

�h ¼ �ð1þ �Þ þ P; (4)

where � is the specific internal energy density.
For the construction of initial data, we work with cylin-

drical coordinates ðt; r; �; zÞ and make the assumption that
the space-time is stationary and axially symmetric. We
adopt coordinates adapted to these symmetries, so that
only the t and � components of u� and b� are nonzero.

The fluid equations are obtained from

r�T
�
� ¼ 0; (5)

together with the continuity equationr�ð�u�Þ ¼ 0 (which

is trivially satisfied under our assumptions). After some
manipulation, Eq. (5) can be reduced to the integral equa-
tion

Z
utu�d

�
u�

ut

�
� lnut þ

Z 1

h�
dPþ

Z 1

2�hD
dðb2DÞ

¼ const; (6)

where D ¼ jgttg�� � g2t�j. This equation can be inte-

grated after imposing further conditions that fix relation-
ships between the fluid variables as discussed below.

First, we fix a relationship between the velocity compo-
nents. This can be accomplished by requiring that the
specific angular momentum l satisfies

l � �u�
ut

¼ const: (7)

Second, we assume an isentropic fluid, imposing dh ¼
��1dP, which allows us to integrate one of the terms out.
An equation of state that satisfies this condition is that of a
polytrope

P ¼ ���: (8)

In this case, the specific internal energy density can be
calculated as

� ¼ �

�� 1
���1: (9)

We adopt this condition only to obtain the stationary
solutions for initial data. The fluid’s entropy will change
after the kick and so we adopt, during the evolution, a
�-law equation of state

P ¼ ð�� 1Þ��; (10)

with � ¼ 5=3 considering the gas as being monoatomic.
Finally, we impose a convenient expression for b2 in

terms of other variables to integrate the last term

b2D ¼ Cð�hDÞq; (11)

where C and q > 1 are arbitrary constants.
After integrating Eq. (6), we use (8) and (9) to eliminate

� and � and obtain an algebraic equation for P, of the form

FðP; g��; l; C; qÞ ¼ F0; (12)

where F0 is a constant of integration. This equation can be
solved analytically in the absence of magnetic field (b2 ¼
0), otherwise a straightforward numerical integration can
be set up to obtain the solution. The boundary of the torus
is determined by setting P ¼ 0, obtaining an expression of
the form

fðg��; lÞ ¼ F0; (13)

which, through the dependence of g�� on the coordinates,

is an implicit surface equation. Notice that it is independent
of both C and q so that the location of the disk’s boundary
is independent of the magnetic field. The solutions ob-
tained may be toroidal as well as spheroidal, depending
on the values of l and F0.
Once P is known, one can use once again Eqs. (8) and

(9) to recover � and �. The velocity u� is obtained from
Eq. (7) together with the normalization condition u�u� ¼
�1. Finally, the magnetic field b� is determined by
Eq. (11) together with the relation b�u� ¼ 0 (see [31]).

The magnetic filed is always zero at the surface of the disk
(from Eq. (11)), and one can control how rapidly it decays
to zero with the parameter q, and its maximum magnitude
with C.
As mentioned, when considering the recoiling case, the

initial data for a disk is given a Lorentz boost with respect
to the stationary system of the background black hole. A
representative example of the toroidal configurations is
shown in Fig. 1. Such configurations are then evolved on
a computational domain given by ½�150M; 150M� in the x
and y direction, and ½�100M; 100M� in the z direction
(since the disk lies on the x� y plane), with a fixed mesh
refinement configuration having 3 levels of refinement.
The code used in our studies has been previously tested
and employed in a variety of stringent scenarios, e.g.,
[32,40,41]. For our specific application we have verified
that in the absence of a kick or mass reduction the disk
remains stationary during the evolution as expected.
Additionally, we have verified convergence by comparing
results obtained with three different resolutions in the case
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of a kick velocity of 3000 km=s perpendicular to the axis
of rotation. The convergence rate measured at different
locations varies between first and third order depending
on the presence of shocks.

Certainly the parameter space is too vast to allow an
exhaustive computational study. Therefore, we mainly
concentrate here on varying the most relevant parameters,
i.e., the kick magnitude and direction and study a few other
cases varying the spin parameter to verify our results are
qualitatively the same. Notice that variations with respect
to the spin parameter a should not lead to significant
qualitative differences unless accretion develops, as the
disk’s inner edge is located sufficiently far away for its
influence to be of higher order. This intuitive observation is
confirmed by our simulations.

The toroidal solutions employed in this work correspond
to specific angular momentum l=M ¼ 6, spin parameter
a=M ¼ 0:5 (except when analyzing the solution’s depen-
dence on the spin where we also consider a=M ¼ 0:9).
Also, we fix the magnetic field parameter C ¼ 0 (so that
b ¼ 0), and choose F0 so that the inner edge of the disk is
located at rin ¼ 20M. With this choice of parameters, the
outer edge is located at rout ¼ 60M and the maximum
pressure in the disk lies at rm ¼ 33M. The orbital velocity
of the fluid is then 0.28, 0.17 and 0:10c at rin, rm, and rout,
respectively. Thus, the orbital period at rm is Pm ¼
1220M. The sound speed has a maximum value & 0:05c
close to rm, and drops abruptly to zero at the boundary of
the torus. All fluid elements in the torus have an orbital
speed much greater than the highest kick velocity adopted
in this work, i.e., 0:01c ¼ 3000 km=s and so will remain
bound to the black hole in all cases considered.4 In fact, the
binding energy per unit mass at the surface of the torus is
0:0121c2, which implies an escape velocity of 0:155c.
Notice that the location of the disk’s inner radius can

vary significantly depending on diverse physical parame-
ters (e.g., kinematic viscosity of the gas, accretion rate,
binary mass ratio, etc.) [5]. We adopt a small value but
within the allowed ones to reduce the computational cost of
the long simulations required and concentrate on extracting
physically robust conclusions, which can be intuitively
extended to general cases.
Throughout the rest of this paper, unless otherwise

specified, all kick orientations mentioned refer to the
kick (or Lorentz boost) applied to the disk, which would
correspond to the black hole being kicked in the opposite
direction.

IV. RESULTS

A. Diagnostic quantities

We monitor the fluid’s behavior by examining the de-
pendence of the primitive values as different physical
parameters are varied. Ultimately, our goal is to understand
possible electromagnetic signals emitted by the system as
the disk’s dynamics is affected. At present, our simulations
do not incorporate radiation transport; thus, a direct com-
putation of these signals is not possible. Therefore, we
concentrate on related quantities, which when combined
with a suitable model, can be tied to possible emissions. In
particular, we compute (an approximation to the) tempera-
ture (T), the total internal energy (U) and bremsstrahlung
luminosity (LB) as

T / P=�; (14)

U /
Z

��dV; (15)

LB /
Z

�2T1=2dV: (16)

Notice that unless the disk is optically thin, the bremsstrah-
lung luminosity need not capture the luminosity resulting

FIG. 1. Representative example of the toroidal initial configurations, showing the density at the equatorial plane (left panel), and at a
meridional plane (right panel). The dashed line indicates the location of the event horizon.

4For comparison purposes we have also employed the unreal-
istic value of 9000 km=s
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from shocks and shock heating. While the bremsstrahlung
luminosity is a good measure of the energy exchanged
between atoms and the radiation field, it does not take
into account how this energy can be radiated out of the
disk. In the absence of a more refined model, the qualitative
features of the true radiative behavior can be estimated
simply by a black body assumption. We thus monitor the
internal energy for this purpose and also the bremsstrah-
lung luminosity to obtain a measure of the mentioned
energy exchange (as well as to make contact with results
presented in [26]).

B. Axisymmetric cases: Black hole mass loss and kick
along disk’s angular momentum

As a first step we consider the effect of BHmass loss and
that of a kick along the disk’s orbital angular momentum.
The former entails solely decreasing the mass of the black
hole, while for the latter the mass is unchanged but a kick is
introduced along the z axis. In both cases, the underlying
axisymmetry of the problem is not broken, which as we
shall see later, is a key issue.

For the mass loss case, we employ a toroidal solution
corresponding to a black hole of mass M0 for the initial
data, and set M ¼ 0:95M0. The dynamics of the disk with

either a reduced mass or a kick along the z axis behave in a
rather smooth manner. For the mass reduced case, radial
oscillations are induced as the different fluid elements
follow their corresponding epicycles. For the case with a
recoil velocity, further oscillations are generated by in-
duced motions in the z axis as illustrated in Fig. 2.
Indeed, the recoil motion of the black hole introduces a
time-dependent vertical component of the black hole’s
gravitational pull on the disk. Using Newtonian mechanics
for simplicity and ignoring pressure forces, one can show
that a particle on a circular orbit with velocity vorb, after a

vertical kick of magnitude vkick only reaches a height z ¼ffiffiffi
2

p
Rðvkick=vorbÞ above the original plane before turning

around. Since vkick is the same for all disk radii, the vertical
displacement is minimal at rin and maximal at rout. This
results in a flexing axisymmetric mode, with the outer edge
flopping about the most. This is supported by Fig. 2 if one
defines the ‘‘midplane’’ of the disk by joining points at
which the contours are vertical. This argument ignores
pressure, but pressure gradients are unlikely to be very
important away from shocks, and the behavior is qualita-
tively the same. Because all particles on a given radial
annulus are kicked simultaneously, they remain in phase
with each other and the flexing mode is naturally excited.

FIG. 2. Density at plane y ¼ 0 in the case of a disk kicked with a velocity 3000 km=s in the positive z direction. The panels show
snaps from t=M ¼ 500 (top left) to 2000 (bottom right) at �t=M ¼ 500 intervals.
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Note that maximum compression occurs twice per orbital
period so this flexing mode is visible in both internal
energy and bremsstrahlung at a frequency of about twice
the orbital (See Figs. 3 and 4).

Most importantly, in either case no significant shocks are
developed during the time of these simulations ( ’ 6Pm).
The observed smooth behavior translates into a rather
monotonic behavior in our diagnostic variables. Figures 3
and 4 illustrate the internal energy and bremsstrahlung
luminosity, respectively. The behavior observed in the
latter case is qualitatively similar to results shown in
[26], i.e., an initial drop followed by a recovery in lumi-
nosity. Our simulations, which extend farther, indicate that
this behavior continues quasiperiodically. Notice however
that the disk geometry considered in [26] is different from
ours and the bremsstrahlung computed includes the inner
portion of the disk while we do so for the complete disk.
Last, the small drift observed in Fig. 3 is consistent with a
linear accumulation of numerical error. A similar linear
drift is observed in simulations of an unperturbed disk.
This growth however is small—within 5%—over the
length of the simulations considered ( ’ 6Pm) and signifi-
cantly smaller than the effects induced by the perturbations
due to the recoiling black hole.

C. Asymmetric cases: kick with component orthogonal
to disk’s angular momentum

Next we concentrate on the oblique recoil case. For
concreteness we adopt recoil velocity values vkick ¼ 300,
1000 and 3000 km=s (we also consider 9000 km=s to
verify the appearance of the main feature and check the
empirical law presented below). We begin by examining
the case where the kick direction is on the orbital plane
(i.e., orthogonal to the angular momentum of the disk). The

simulations for the different cases proceed along qualita-
tively similar phases, which are illustrated for the case of
vkick ¼ 3000 km=s in Fig. 5 for � at z ¼ 0, and in Fig. 6
for jrPj at z ¼ 0. The asymmetry introduced by the kick’s
direction induces an accumulation of gas at one side of the
disk, while causing a significant decrease on the opposite
side. As time progresses, shocks develop and a complex
dynamic arises, at late times ’ 6000M, an accretion phase
is clearly noticeable for vkick > 1000 km=s (see Fig. 7).
To analyze the impact of the disk dynamics and possible

observable features, we compute the internal energy
(Fig. 9) and bremsstrahlung luminosity (Fig. 10) for
vkick ¼ 300, 1000, and 3000 km=s. An initial relatively
small bump is observed, which takes place at a time given
by half the orbital period of the maximum density region,
which is consistent with the epicyclic picture. From there
on, a complex behavior is observed, though notably, irre-
spective of the magnitude of the kick, the same qualitative
features are observed—especially in Fig. 9. Generally, we
see that both the internal energy and the bremsstrahlung
luminosity dip and rebound but the internal energy ends up
higher, while the bremsstrahlung luminosity finishes lower.
This can be understood as follows: the kick energy is
dissipated in shocks, increasing the temperature and the
pressure but the subsequent expansion reduces the density
below the initial values. Because the bremsstrahlung emis-

sivity is / �2T1=2, the net effect is a reduction in emissivity
despite the increase in pressure. The relative changes in
both internal energy and bremsstrahlung luminosity are
relatively modest, at a level of �20–40% and occur on
characteristic timescales on the order of 1000M ¼
5000M6 s, where M6 is the mass of the black hole in
106M�.
Second, we examine the dependence on kicks at differ-

ent angles. Since the main qualitative features of all kick
cases considered are similar, we concentrate in the case

0 2000 4000 6000

t / M

0.8

0.9

1

1.1
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1.3

1.4

U
 / 

U
0

∆M = -5%
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o

FIG. 3. Total internal (normalized) energy of the disk. The
continuous line corresponds to a BH mass loss of 5% and no
kick, while the dashed line corresponds to a kick with velocity
vk ¼ 3000 km=s along the axis of rotation (and no BH mass
loss). The vertical scale and range was chosen to coincide with
those in the other energy plots in this work for easy comparison.
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FIG. 4. Bremsstrahlung luminosity (normalized) of the disk.
The continuous line corresponds to a BH mass loss of 5% and no
kick, while the dashed line corresponds to a kick with velocity
vk ¼ 3000 km=s along the axis of rotation (and no BH mass
loss).
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FIG. 5. Density � at plane z ¼ 0 in the case of a disk kicked with a velocity 3000 km=s in the positive x direction, i.e., to the right of
this page (which corresponds to the black hole being kicked to the left). The panels show snaps from t=M ¼ 500 (top left) to 4000
(bottom right) at �t=M ¼ 500 intervals.
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vkick ¼ 3000 km=s as this is the one that displays the
overall behavior within the shortest computational time.
We compute the internal energy and bremsstrahlung lumi-
nosity for kicks at � ¼ 0, 30, 60, and 90�, where the angle
� is measured with respect to the axis of rotation. Figure 11
shows the density at plane z ¼ 0 in the case of a kick at
30�. Figures 8 and 12 illustrate the (normalized) internal
energy and bremsstrahlung luminosity vs time for the
different angles considered. Recall that no significant

shocks form when the kick is along the axis of the disk.
When the kick has a component along the disk’s plane
however, the qualitative features observed in the internal
energy are similar for all cases. We note that the evolution
we observe for a given v? ¼ ð3000 km=sÞ sin� is nicely
bracketed by evolutions with pure orbital plane kicks
above and below v?. Thus, v? is the most important
parameter determining the behavior of the kicked disk,
apart from the small oscillations also present when the

FIG. 6 (color online). To illustrate the formation of shocks we show here j ~rPj at z ¼ 0. Kick velocity of 3000 km=s in the positive x
direction.
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kick is parallel to the axis of rotation, and the likely small
differences in the shape of the initial shock.

Another feature common to all the internal energy (or
pressure) results (See Figs. 9 and 11) is a rapid swing from
a dip to a bump, followed by an oscillating growth at a
moderate pace. While the magnitude of the upward swing
of the internal energy does not depend strongly on v?, the
time at which it occurs does. The delay we observe de-
creases as v? is increased. If this delay were due to the
time taken by a perturbation traveling at v? to cross some
fixed distance, one would expect a dependence / v�1

? .

Instead, we observe a logarithmic decrease. Defining the
delay as the time after the initial kick at which the internal
energy swings upward through the initial value, we find the
following empirical dependence:

tswing

M
¼ 5200� 912 ln

�
v?

300 km=s

�
: (17)

Note that this formula applied naı̈vely ‘‘predicts’’ an infi-
nite delay for a kick along the axis of rotation.

As is well known, constant specific angular momentum
tori are prone to a nonaxisymmetric corotation instability
[42,43] whose nonlinear development has been explored

numerically in the pseudo-Newtonian approximation [44]
and in general relativistic magnetohydrodynamics [45].
The final outcome depends on the aspect ratio of the torus,
the nature and strength of any large-scale magnetic fields
present, the presence of accretion [46], and this remains to
be fully investigated in the general relativistic magnetohy-
drodynamics context. Therefore, any substantial perpen-
dicular component of the kick is likely to excite at some
level them ¼ 1 nonaxisymmetric mode, which is expected
to grow at a rate ! � 0:2�m, where �m ¼ 2�=Pm is the
Keplerian angular frequency at the pressure maximum. For
the parameters of the torus of our simulations Pm ¼
1220M, and�m ¼ 0:00515. The behavior described above
is suggestive: if one assumes that the initial pressure per-
turbation is 	P0 / v2

?, which is reasonable for shocks and

on dimensional grounds, and one sets 	P ¼ 	P0 exp!t,
then the time required for the perturbation to attain a given
fiducial level would follow an equation of the form (17),
with t ¼ tref � ð2=!Þ lnðv?=vrefÞ, where tref and vref are
some arbitrary reference values. Analyzing the results we
obtained indicates that! ¼ 0:43�m, which is on the order
of the expected frequency but significantly higher. Thus,
we suggest tentatively that the swing we see in both the

FIG. 7. Later stages of the simulation shown in Fig. 5, in which the gas begins to accrete into the black hole. The panels show snaps
from t=M ¼ 6000 (top left) to 7500 (bottom right) at �t=M ¼ 500 intervals. Notice that at t=M ¼ 7000 the ISCO is clearly
noticeable.
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internal energy and bremsstrahlung plots in all cases where
there is a nonzero v? is a common transient response to the
kick that may be observable in principle, and that the
subsequent growth may be due to the growth of the insta-
bility and/or the rise to the expected level of dissipation of
the input kinetic energy. At late times for the higher kicks

our simulations display an accretion phase and so this
possible saturation can not be explored, though a sugges-
tive behavior consistent with this saturation is displayed by
the largest kick considered.
We note that a similar swing in the bremsstrahlung

luminosity was observed in the (axisymmetry preserving)

FIG. 8. Density � at plane z ¼ 0 in the case of a disk kicked with a velocity 3000 km=s at � ¼ 30�. The panels show snaps from
t=M ¼ 2500 (top left) to 4000 (bottom right) at �t=M ¼ 500 intervals.

2000 4000 6000
t / M

0.6

0.7

0.8

0.9

1

1.1

1.2

L
B
 / 

L
B

0

vk = 300Km/s
vk = 1000Km/s
vk = 3000Km/s

FIG. 10 (color online). Normalized bremsstrahlung luminos-
ity. Kicks perpendicular to axis of rotation (� ¼ 90�).

0 2000 4000 6000
t / M

0.8

0.9

1

1.1

1.2

1.3

1.4

U
 / 

U
0

v
k
 =  300 km/s

v
k
 = 1000 km/s

v
k
 = 3000 km/s

FIG. 9 (color online). Normalized internal energy. Kicks per-
pendicular to axis of rotation (� ¼ 90�).

MIGUEL MEGEVAND et al. PHYSICAL REVIEW D 80, 024012 (2009)

024012-10



simulations by O’Neill et al. [26] using thin disks, which
are not prone to the Papaloizou and Pringle instability. In
the near future, to further elucidate the relative importance
of the transient response and the instability, we are plan-
ning an investigation of the effects of kicks in tori with
flatter rotation laws � / r�q since the aforementioned

instability does not occur if q <
ffiffiffi
3

p
as well as examining

magnetized tori.

D. Dependence on black hole spin

Finally, we investigate possible differences between
cases with different black hole spins by performing a
simulation with spin a=M ¼ 0:9 in addition to the value
a=M ¼ 0:5 used in the rest of the simulations. For this test
we chose the setting with kick velocity of 3000 km=s
perpendicular to the disk’s axis. Notice that although all
other parameters coincide in these simulations, the sta-
tionary disk solutions used to construct the initial data

are slightly different since they depend on a. Still, we see
no significant differences, as is illustrated in Fig. 13, where
we show a comparison between the maxima of density,
normalized by dividing by its value at t ¼ 0, which is
slightly different in each case.

V. CONCLUSION

In the current work we have studied the possibility that
binary black hole mergers, within a circumbinary disk,
give rise to scenarios likely to emit electromagnetic radia-
tion. We have studied both the impact of mass loss in the
system and recoil velocities. While both induce deforma-
tions of the disk, it is the case of a recoiling black hole,
when the recoil’s direction has a component along the disk
plane, that appears as the most promising option to gen-
erate an observable, electromagnetic, signature. This is so
not just because the effect is larger, but also the variability
induced is significantly more pronounced than that ob-
served in the case of mass loss or kick along the disk’s
angular momentum. Furthermore, we find that the magni-
tude of the kick is not very important as long as it is less
than the smallest orbital speed of the fluid. While the kick
magnitude impacts the time at which the strongest varia-
tion in internal energy or bremsstrahlung appears, the
intensity and time scale of the variation and behavior after-
wards is not. Since supermassive binary black hole mergers
will generically give rise to recoils (simply by having a
mass ratio different from unity), which in turn ensures a
kick component orthogonal to the final black hole spin,
effects like those observed here indicate a possible a com-
mon behavior for the majority of scenarios.
Our studies also indicate that the final black hole spin

has no strong effect on the main features of the solution.
However, if an accretion phase takes place, the location of
the innermost stable circular orbit will naturally play a key
role.
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FIG. 12 (color online). Bremsstrahlung luminosity for kicks at
varying inclinations � with respect to the axis of rotation. All
cases with vkick ¼ 3000 km=s.
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