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We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a
differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to
a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital
eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which
compare very well to results from perturbation theory. The Einstein equations are solved in a first-order
reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified
convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without
symmetry assumptions. We use the HAD computational infrastructure for distributed adaptive mesh
refinement.
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I. INTRODUCTION

It is widely expected that gravitational waves of suffi-
ciently strong amplitude will be detected by a new genera-
tion of gravitational wave interferometers. Binary systems
composed of compact objects, such as black holes and/or
neutron stars, are among the strongest expected sources of
these waves. Advanced gravitational wave detectors should
be sensitive enough to detect the merging phase of such
binaries. A detailed analysis of the expected waveforms
from these events will provide valuable information not
only in the analysis of the received signals, but also in the
design and tuning of future advanced gravitational wave
detectors [1,2].

In relation to these efforts, and beyond the intrinsic
importance of the two-body problem in general relativity
(GR), it is significant that recent studies of the binary black
hole problem have made substantial progress in providing
waveforms for these mergers (see for instance [3–8]).
Furthermore, these numerical results for vacuum space-
times show a remarkable agreement with those obtained
with approximation techniques [9,10]. This provides con-
siderable support for the use of waveforms obtained via
approximation techniques, suitably enhanced by further
information from numerical simulations, since these can
be more easily encoded in a template bank [11]. This
requires knowing the waveforms during the premerger,
merger, and postmerger stages and matching them appro-
priately to obtain the continuous wave train through the
most violent and strongly radiative stage of the dynamics.

For nonvacuum spacetimes, differences in the wave-
forms may arise from the state of matter describing the
compact stars, the influence of magnetic fields, and related
phenomena. To fully understand these systems and their
waveforms, detailed simulations will be required to map
out the possible phenomenology.

For the particular case of binary neutron stars in full GR,
several efforts studying the system in three dimensional
settings have been presented in recent years [12–18].
However, the complexity and computational cost of these
simulations has permitted investigators to consider only a
portion of the interesting parameter space, and several of
them have been restricted by symmetry considerations.
Nevertheless, a number of interesting problems are begin-
ning to be addressed, including the influence of stiff versus
soft equations of state [18], a possible way to determine the
innermost stable circular orbit [16], the dynamics of
unequal-mass binaries [18], and even the possible exis-
tence of critical phenomena in the merging system [17].

Further exploration of these systems will require relax-
ing symmetry considerations, such as axisymmetry or
equatorial symmetry, and expanding the space of initial
configurations that can be successfully evolved. Moreover,
the inclusion of additional physics such as magnetic fields
will be important as these effects may play a major role in
the resulting dynamics. For instance, the magnetorota-
tional instability, which redistributes angular momentum
in the system, can have a strong influence on the multipole
structure of the central source and hence on the gravita-
tional wave output of the system.

To date, work on black hole–neutron star binaries has
been limited to a few cases [19–21]. As a result, our
understanding of this type of system is still in its infancy.
Needless to say, we have even more to understand about
both types of compact binaries when their environments,
which may include magnetic fields and radiation transport,
are included. Indeed, both magnetic fields and radiation
transport are expected to be key ingredients in modeling
short, hard gamma-ray burst phenomena with compact
binaries. Understanding such spectacular events requires
the addition of these ingredients to the computational
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infrastructure. The resulting numerical simulations should
allow for new astrophysical insights.

The present work is intended as the first in a series of
studies that examine the evolution of compact binary sys-
tems in full three dimensional general relativity. To this
end, we have developed a general computational infra-
structure, with solvers for the Einstein and relativistic
magnetohydrodynamics (MHD) equations, that incorpo-
rates several novel features, which we discuss in the fol-
lowing sections. In Sec. II we describe our formulation of
the equations for these systems. This includes expressing
the Einstein equations in terms of a desirable symmetric
hyperbolic property [22,23] and coupling them with the
equations of relativistic MHD [24,25]. Section III presents
our numerical implementation, such as integration tech-
niques, distributed adaptive mesh refinement (AMR), and a
tapered-grid algorithm that ensures stability and consider-
ably reduces spurious reflections off artificial internal
boundaries [26]. These ingredients let us simulate binary
evolutions in which the stars begin with wider separations
than has been done in earlier studies. We can extract
gravitational radiation in the wave zone and place outer
boundaries an order of magnitude beyond what has been
done previously. As a result, contamination by boundary
effects is negligible. Section IV presents a fairly stringent
code test by considering the dynamics of a single Tolman-
Oppenheimer-Volkoff (TOV) solution and extracting the
radial oscillation modes of the star. Section V describes our
main application, namely, a study of a binary neutron star
system without any assumed symmetries. We follow the
dynamics of the system from an early non-quasicircular
stage to the merger and subsequent formation of a neutron
star or a black hole. We present gravitational wave signals
as measured by observers placed in the wave zone and
calculated via Weyl scalars. Section VI concludes and
offers some considerations for future work.

II. FORMULATION AND EQUATIONS OF MOTION

The binary neutron star systems considered here are
governed by both the Einstein equations for the geometry
and the relativistic fluid equations for the matter. We write
both systems as first-order hyperbolic equations.

In this section we present a brief summary of our for-
mulation and equations for both the geometry and the fluid.
More details on our approach to the Einstein equations [22]
and the relativistic fluid equations [24,25] can be found
elsewhere. By way of notation, we use letters from the
beginning of the alphabet (a, b, c) for spacetime indices,
while letters from the middle of the alphabet (i, j, k) range
over spatial components. We adopt geometric units where
c � G � 1.

A. Einstein equations

We write the Einstein equations in a first-order reduction
of the generalized harmonic (GH) formalism. Our ap-

proach is closely related to the one in [27], and it was
used previously in binary boson star evolutions [22], where
additional information can be found.

We define spacelike hypersurfaces at x0 � t � const,
and define the 3-metric hij on the hypersurfaces. A vector
normal to the hypersurfaces is given by na �
�rat=jjratjj, and coordinates defined on neighboring
hypersurfaces can be related through the lapse, �, and
shift, �i. With these definitions, the spacetime metric gab
can then be written as

 d s2 � gabdxadxb (1)

 � ��2dt2 � hij�dx
i � �idt��dxj � �jdt�: (2)

Indices on spacetime quantities are raised and lowered with
the 4-metric gab and its inverse, while the 3-metric hij and
its inverse are used to raise and lower indices on spatial
quantities.

In the generalized harmonic formulation, the evolved
variables are

 gab; Qab � �nc@cgab; Diab � @igab; (3)

namely, the spacetime metric and its temporal and spatial
derivatives, respectively. Coordinates are specified via the
generalized harmonic condition

 �xa � Ha�t; xi�; (4)

where the arbitrary source functions Ha�t; xi� determine
the coordinate freedom. Although our code allows for a
general coordinate choice, we choose harmonic coordi-
nates for the work presented here and set Ha�t; xi� � 0.

The evolution equations in our GH formalism are

 @tgab � �kDkab � �Qab; (5)

 

@tQab � �k@kQab � �hij@iDjab � �@aHb � �@bHa

� 2��cabHc � 2�gcd�hijDicaDjdb �QcaQdb

� gef�ace�bdf� �
�
2
ncndQcdQab

� �hijDiabQjcn
c � 8���2Tab � gabT�

� 2�0��naZb � nbZa � gabn
cZc�

� �1�i�Diab � @igab�; (6)

 @tDiab � �k@kDiab � �@iQab �
�
2
ncndDicdQab

� �hjkncDijcDkab � �1��Diab � @igab�: (7)

Here Tab is the stress-energy tensor and T is its trace, T �
Taa. Za is a vector related to the constraints defined below
in Eq. (11). These variables are not evolved; rather, they
measure the constraint violation and are included in the
evolution equations for constraint damping purposes [28].
We also define �abc � gad�dbc, where �abc are the
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Christoffel symbols obtained from gab, given by

 �abc �
1
2g
ad�Dbdc �Dcdb �Ddbc�: (8)

Note that Diab are evolved variables in our system, and the
quantities D0ab are computed from Qab and Diab via

 D0ab � ��Qab � �
kDkab: (9)

While the Arnowitt-Deser-Misner (ADM) extrinsic curva-
ture is not part of the GH system, the fluid equations below
are written in terms of Kij, which can be calculated as

 Kij �
1

2
Qij �

1

�
�D�ij�0 � �kD�ij�k�: (10)

This GH formulation includes a number of constraints
that must be satisfied for consistency, including the
Hamiltonian and momentum constraints as well as addi-
tional constraints that arise in the first-order reduction. In
particular, if we define the four-vector

 2Za � ��abcg
bc �Ha�t; xi�; (11)

it can be shown that the energy and momentum constraints
are satisfied if Za � 0 � @tZa. The free parameters �0 and
�1 are chosen to control the damping of the four-vector Za
(the energy and momentum constraints) and the first-order
constraints, respectively [22,27]. We monitor the Za during
the evolution as an indication of the magnitude of the
numerical error in the solution.

B. Perfect fluid equations

We now briefly introduce the perfect fluid equations.
Additional information can be found in our previous work
[24,25] as well as in general review articles [29,30].

The stress-energy tensor for the perfect fluid is

 Tab � heuaub � Pgab; (12)

where ua is the four-velocity of the fluid, he is the enthalpy,
and P is the isotropic pressure. The enthalpy can be written

 he � �o � �o�� P; (13)

where �o is the rest energy density and � is the specific
internal energy density. We introduce the quantities

 W � �naua; vi �
1

W
hiju

j; (14)

where W is the Lorentz factor between the fluid frame and
the fiducial ADM observers and vi is the spatial coordinate
velocity of the fluid. The set of fluid variables introduced
here are known as the primitive variables, w � ��o; vi; P�T.

High resolution shock capturing schemes (HRSC) are
robust numerical methods for compressible fluid dynam-
ics. These methods, based on Godunov’s seminal work
[31], are fundamentally based on writing the fluid equa-
tions as integral conservation laws. To this end, we intro-
duce conservative variables q � �D; Si; ��T, where

 D � W�o; (15)

 Si � heW
2vi; (16)

 � � heW
2 � P�D: (17)

In an asymptotically flat spacetime these quantities are
conserved, and are related to the baryon number, momen-
tum, and, in the nonrelativistic limit, the kinetic energy,
respectively. Anticipating the form of the evolution equa-
tions, we also introduce the densitized conserved variables

 

~D �
���
h
p
D; ~Si �

���
h
p
Si; ~� �

���
h
p
�; (18)

where h � det�hij�. The fluid equations can now be written
in balance law form,

 @t~q� @kfk�~q� � s�~q�; (19)

where fk are flux functions and s are source terms. The
fluid equations in this form are specifically

 @t ~D� @i

�
� ~D

�
vi �

�i

�

��
� 0; (20)

 @t ~Sj � @i

�
�
�

~Sj

�
vi �

�i

�

�
�

���
h
p
Phij

��

� �3�ijk�
~Sivk �

���
h
p
Phi

k� � ~Sa@j�a � @j��~�� ~D�;

(21)

 @t~�� @i

�
�
�

~Si �
�i

�
~�� vi ~D

��

� �
�
Kij ~Sivj �

���
h
p
KP�

1

�
~Sa@a�

�
: (22)

Here 3�ijk is the Christoffel symbol associated with the 3-
metric hij, and K is the trace of the extrinsic curvature,
K � Ki

i.
Finally, we close the system of fluid equations with an

equation of state (EOS). We choose the ideal gas EOS

 P � ��� 1��o�; (23)

where � is the constant adiabatic exponent. Nuclear matter
in neutron stars is relatively stiff, and we set � � 2 in this
work. When the fluid flow is adiabatic, this EOS reduces to
the well-known polytropic EOS

 P � ��o
�; (24)

where � is a dimensional constant. We use the polytropic
EOS only for setting initial data.

III. NUMERICAL APPROACH

Our numerical approach to solving the combined equa-
tions of general relativistic hydrodynamics (GRHD) is
built upon two extensively tested codes: These were writ-
ten to solve (1) the Einstein equations [22,23] and (2) the
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relativistic MHD equations [24,25]. It should be mentioned
that, while we do solve the full GRMHD equations, in our
current work the magnetic field is set to zero. Results with
nontrivial magnetic fields will be presented elsewhere [32].

While both sets of evolution equations are hyperbolic,
the solutions from each set of equations are quite different.
The Einstein equations are linearly degenerate, and there-
fore we expect smooth solutions to evolve from smooth
initial data. The fluid equations, on the other hand, are
genuinely nonlinear, and discontinuous weak solutions
(shocks) generically evolve from smooth initial data [33].
We choose numerical methods adapted to the features of
each set of equations. The fluid equations are evolved with
a modified convex essentially non-oscillatory (CENO)
method, while the Einstein equations are evolved using
fourth-order accurate difference operators that satisfy sum-
mation by parts (SBP). These very different methods are
easily combined by discretizing the equations in time using
the method of lines.

We base our code on the HAD computational infrastruc-
ture for distributed AMR. The Einstein and fluid solvers
are written in separate modules, which can be used indi-
vidually or combined. The following sections review our
methods.

A. Adaptive mesh refinement using HAD

The neutron star problem has several important physical
scales, and each must be adequately resolved to capture the
relevant dynamics. These scales include (1) the individual
stars, preferably incorporating some of their internal dy-
namics, (2) the orbital length scale, (3) the gravitational
wave zone, and (4) the location of outer boundaries. In this
work, the initial orbital scale is on the order of several
stellar radii, the gravitational waves are extracted at 30, 40,
and 50 stellar radii, and the outer boundaries of the com-
putational domain are placed about 100 stellar radii from
the orbital pair to reduce boundary contamination of the
orbital dynamics and gravitational wave signals. The com-
putational demands required to resolve these different
physical scales are best met using adaptive mesh
refinement.

We use the publicly available computational infrastruc-
ture HAD to provide parallel distributed AMR for our codes
[34,35]. HAD can solve both hyperbolic and elliptic equa-

tions, and, unlike several other publicly available AMR
toolkits [36–40], it accommodates both vertex and cell
centered algorithms. HAD has a modular design, allowing
one to solve different sets of equations with the same
computational infrastructure. Furthermore, solvers for dif-
ferent equations can be coupled together, as we have done
here with separate solvers for the GR and MHD equations.
HAD provides Berger-Oliger [41] style AMR with subcy-
cling in both space and time. The HAD clustering algorithm
is Berger-Rigoutsos [42], and the load balancing algorithm
is the least loaded scheme [43]. Refinement in HAD can be
triggered by user-specified criteria, e.g., refining on solu-
tion features such as gradients or extrema, or refining on
truncation error estimation using a shadow hierarchy. The
runs presented here use the shadow hierarchy for refine-
ment, and all dynamic fields are used to estimate the
truncation error. Some additional fixed refinement regions
are used for gravitational wave extraction in the wave zone.
As an example, Fig. 1 illustrates the resulting mesh struc-
ture at a premerge stage in our simulations.

HAD supports arbitrary orders of accuracy [26], and the
overall accuracy for the implementation employed here is
third order for smooth solutions. HAD implements the
tapered-grid boundary method for internal boundaries
[26]. This method is advantageous for two reasons. It
guarantees stability of the AMR algorithm if the unigrid
counterpart is stable and also significantly reduces spurious
reflections at interface boundaries.

Finally, when a fine grid is created during an evolution,
the geometric variables are interpolated onto the fine grid
using Lagrangian interpolation. The fluid variables are
interpolated using weighted essentially non-oscillatory
(WENO) interpolation [44]. This interpolation scheme is
designed for discontinuous functions and reduces to
Lagrangian interpolation for smooth functions.

B. Method of lines

The numerical methods for the Einstein equations (SBP)
and the fluid equations (CENO) both specify the discreti-
zation of the spatial difference operators, giving the semi-
discrete equations

 

du
dt
� L�u�: (25)

FIG. 1 (color online). The AMR mesh structure at times 0, 84, and 500 for the premerge stage of the simulation with resolution of 32
points across each star. The simulation had seven levels of refinement, five of which are visible here. Simulations were performed on
128 processors.
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Here u represents the set of all variables evolved in both the
Einstein and fluid equations, and L represents a discrete
spatial difference operator. These ordinary differential
equations are now discretized in time using the method
of lines. We choose a third-order Runge-Kutta scheme that
preserves the TVD (total variation diminishing) condition
[45] to integrate the semidiscrete equations

 u �1� � un �4tL�u n�;

u �2� � 3
4u

n � 1
4u
�1� � 1

44 tL�u
�1��;

u�n�1� � 1
3u

n � 2
3u
�2� � 2

34 tL�u
�2��:

(26)

Using the method of lines for the temporal discretization
gives us considerable freedom in choosing numerical
methods for the spatial derivatives, as well as the ability
to choose methods of arbitrary orders of accuracy. This
freedom allows us to naturally and consistently combine
both the CENO and SBP methods in the GRHD code.

C. Einstein equations

As described in [22] our implementation of the Einstein
equations takes advantage of several techniques tailored to
the symmetric hyperbolic properties of the generalized
harmonic formulation we use. At the linear level, these
techniques guarantee that the full AMR implementation is
stable. We use second and fourth-order spatial derivative
operators which satisfy summation by parts. These opera-
tors allow one to obtain a semidiscrete energy estimate
which, together with suitable boundary conditions and
time integration, ensures the stability of the implementa-
tion of linear systems (see [46], and also [47] and refer-
ences cited therein). Relatedly, we employ a Kreiss-Oliger
dissipation operator which is consistent with the summa-
tion by parts property.

For the outer boundaries, we implement Sommerfeld
boundary conditions and follow the prescription given in
[48]. We have also used maximally dissipative boundary
conditions, but found that they led to larger reflections at
the boundaries which, in turn, corrupt the waveform ex-
traction at late times.

We set the constraint damping parameters to�0 � �1 �
1. These values were previously used in both binary black
hole and boson star evolutions, and work similarly in the
binary neutron star evolutions presented here. For the cases
discussed here, constraint violations remain under control
during the evolutions.

Finally, while our GH formalism allows for general
coordinate choices through the source functions Ha�t; xi�,
we adopt Ha�t; xi� � 0 in all the simulations described
here. Thus, the coordinates adopted are strict harmonic
coordinates.

D. Perfect fluid equations

The perfect fluid equations are integrated using a HRSC
solver based on the CENO method [49], incorporating
some modifications by Del Zanna and Bucciantini [50].
Detailed discussions of our method have been presented
previously [24,25].

We choose the CENO method to solve the fluid equa-
tions primarily for two reasons. This means that the dis-
crete fluid solution corresponds to point values of the
solution and not cell averages. First, it is a finite difference
or vertex centered scheme. As the Einstein equations are
discretized with finite differences, coupling these equa-
tions to the fluid equations with AMR is simplified if
both sets of variables are defined at the same grid locations.
Second, CENO uses a componentwise decomposition
(central schemes) of the equations rather than a spectral
decomposition (upwind schemes). Central schemes are
more efficient than spectral decomposition schemes.
Although they are more diffusive at discontinuities, their
solutions often differ only slightly from those obtained
using upwind methods. With AMR we can sharply resolve
all interesting features of the solution. Outflow boundary
conditions are applied at the physical outer boundary.

The HLLE flux is used for the numerical flux [51]. This
is a central-upwind method that uses the largest eigenval-
ues of the Jacobian matrix in each direction. To calculate
the numerical fluxes, we choose to use piecewise parabolic
method (PPM) reconstruction for the fluid variables [52],
and reconstruct the primitive variables. No dissipation or
discontinuity detection is used in the reconstruction. This is
a bit of a departure from the CENO scheme. In general,
ENO methods use a hierarchical reconstruction, where, for
example, a second-order reconstruction depends on an
underlying first-order reconstruction. We have found, at
least for the resolutions considered here, that CENO often
favors a first-order reconstruction at the center of stars,
because of the manner in which candidate second-order
stencils are compared for their similarity to the first-order
reconstruction. This loss of accuracy at the center of the
star damps the physical quasinormal oscillations of the
star, and can lead to a long-term growth of the central
density. PPM gives a superior reconstruction for stellar
interiors, and therefore we adopt this reconstruction here.
When the fluid flow is highly relativistic, the reconstruction
procedure can produce unphysical states. When this oc-
curs, we attempt reconstruction using a lower order. For
example, if PPM fails, then a linear minmod reconstruction
is attempted, and if this fails, then no reconstruction is
used.

A consequence of using HRSC methods is the need to go
back and forth between primitive, w, and conservative, q,
variables. While the relation of the conservative variables
in terms of the primitive variables is algebraic, the trans-
formation that gives the primitive variables in terms of the
conservative variables is transcendental. We use a Newton-
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Raphson solver designed for the MHD equations to find the
primitive variables [24]. At grid points where this solver
may fail, the primitive variables are obtained from neigh-
boring points by linear interpolation. The conservative
variables are then recalculated at these points from the
interpolated primitive variables.

Unphysical states can arise during the evolution of the
fluid equations. This often occurs in evacuated regions of
the grid, where truncation errors or effects from finite
precision arithmetic are significant compared to the fluid
densities. To compensate for some of these errors, a floor is
applied to the energy variables ~D and ~� as

 

~D max� ~D; floor�; (27)

 ~� max�~�; floor�: (28)

The floor in these runs is set between 1	 10�8 and 5	
10�9, which is 7 orders of magnitude smaller than the
central rest mass densities (�c) of the individual stars.
The floor value must be small compared to the densities
in the problem so that the floor does not significantly affect
the dynamics of interest. Often the effect of the floor can
only be ascertained by varying it in a series of runs. For
example, we found that floor values of 10�7 are too large,
producing a noticeable increase in �c during the evolu-
tions, and changes in the stellar trajectories and the emitted
waveforms. These errors essentially disappear when the
floor is 10�8, and reducing it further to 5	 10�9 does not
change the solutions. Thus, we adopt here a floor of 1	
10�8.

IV. OSCILLATING MODES OF SINGLE TOV STARS

As a first test of our combined GRHD code we consider
a single TOV star. Our goal is not only to represent the
analytic TOV solution, but to accurately reproduce the
known radial oscillation modes of the star. While the
TOV solution is spherically symmetric and static, discre-
tization effects act as small perturbations that excite the
normal modes of the star.

The initial data for this test consist of a � � 2 polytrope
with � � 1. (The solution is calculated using a modified
version of the RNS code of Stergioulas [53].) The star, in
the geometrized units with � � 1, has a mass ofM � 0:14,
a circumferential radius R � 0:958, and central rest mass
density �c � 1:28	 10�1. We evolve the data in a dy-
namic spacetime at different resolutions and using differ-
ent reconstruction methods for the fluid variables. Figure 2
shows �c plotted as a function of time for three resolutions
of 32, 64, 128 points across the star. As expected, the
oscillations and overall drift in �c converge with resolu-
tion. This is important both as a code test and an indication
of the resolution necessary to capture some dynamics of
stellar interiors. The data in Fig. 2 were generated using
PPM reconstruction. We found that first- and second-order
CENO reconstructions were more diffusive, resulting in

larger drifts in �c. Consequently, we had difficulty in
reproducing the radial pulsation modes of the star using
these reconstructions.

To confirm that the code reproduces the expected physi-
cal behavior, we examine the radial pulsations of the star.
The modes are calculated from the oscillations in �c, and
the extracted frequencies are shown in Table I. (Though we
present data for the central density only here, we have
verified that these are global modes by examining the
time variation of density and velocity in the star.) These
oscillation modes can be compared to the known radial
perturbation modes [54], and these frequencies are in ex-
cellent agreement. Note that to make these comparisons we

20 40 60 80 100 120 140
Time

0.126

0.128

0.13

0.132

0.134

0.136

0.138

0.14

ρ c

128 pts/star
64 pts/star
32 pts/star

FIG. 2 (color online). This figure shows oscillations in the
central rest energy density, �c, for a dynamic spacetime evolu-
tion of a single TOV star at three different resolutions: 32, 64,
and 128 points across the star. The initial data are for a star of
mass M � 0:14, circumferential radius 0.958, central rest mass
density �c � 1:28	 10�1, � � 2, and � � 1. The outer bound-
ary of the simulations is 12 stellar radii away from the center of
the star, and PPM is used to reconstruct the fluid variables. While
�c increases noticeably for the coarsest resolution run, it even-
tually stabilizes at a higher value, giving a stable configuration.
Results from the Fourier transform of this data are given in
Table I. Owing to the computational costs of these simulations,
the higher resolution runs were not evolved to the same end time.
In particular, the highest resolution run was evolved only until
t ’ 65.

TABLE I. Comparison of small radial pulsation frequencies
for an evolved star using the 3D GRHD code to the linear
perturbation modes [54]. The polytrope is constructed for � �
2 and � � 1. The perturbation results have been appropriately
rescaled for � � 1 [55]. The Fourier transform of the central
density time series is plotted in Fig. 3.

Mode 3D GRHD code Perturbation results Relative difference
(kHz) (kHz) (%)

F 14.01 14.42 2.88
H1 39.59 39.55 0.1
H2 59.89 59.16 1.2
H3 76.94 77.76 1.1
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rescale the perturbation results as described in the
Appendix, which were calculated for � � 100. These val-
idations are a stringent test of our computational methods
and give us considerable confidence that our code accu-
rately reproduces the physics of these systems.

V. BINARY NEUTRON STARS

In this paper, we consider two different binary neutron
star mergers, one resulting in a prompt collapse to a black
hole and one that results in a differentially rotating neutron
star which persists for a long time (as compared to an
orbital time close to merger). We evolve the systems
through several orbits and extract gravitational radiation
from the orbiting phase and the merger. In the course of
performing these evolutions, we carefully examine some
numerical questions to ensure the accuracy of our results.

Initial data for both binaries are set by superposing the
initial data for single, boosted TOV stars [56]. Provided
that the initial separation between stars is sufficiently large,
violations in the momentum and Hamiltonian constraints
are at or below the truncation error threshold. We monitor
that this is indeed the case for our chosen separations by
evaluating the constraints and checking that any violations
are of the same order as those obtained for the single stars
considered in the previous section. Thus, these data are
numerically consistent. The boost velocities are smaller
than the corresponding Keplerian velocities for Newtonian
circular orbits. Thus, our data are not quasicircular (as used
in [12,15]), and they do not correspond to a system result-
ing from a long, slow inspiral. However, these data allow
us to both test our implementation and to examine how
radiative effects circularize the orbits. Forthcoming work
will consider initial data taken from post-Newtonian and
quasiequilibrium approaches.

We extract the gravitational wave information by com-
puting the Weyl scalar �4, and for convenience we further
decompose r�4 as an expansion in terms of (spin-
weighted) spherical harmonics,

 r�4 �
X
l;m

Cl;m
��2�Ylm: (29)

This extraction is done at three different locations from the
center of mass, and we shift the obtained quantities in time
to account for the travel time between the observers along
null rays. These observers are placed within the wave zone,
and the shift in time is given simply by the distance in
Minkowski spacetime between the observers. As we con-
sider here only equal-mass binaries, corrections for gauge
effects should be small [57]. An analysis of these effects
for different binaries will be presented elsewhere [58].

As discussed in [15], boundary and resolution effects
can strongly influence the dynamics of these systems. To
explore the effects of outer boundaries on the simulation
results, we perform two otherwise identical evolutions with
outer boundaries at different locations. While a more de-

tailed discussion of these tests follows below in Sec. VA,
we find that outer boundaries at 80 stellar radii have
negligible influence on the solution. To examine resolution
effects, we adopt a threshold error tolerance for the shadow
hierarchy such that the resulting mesh covers each star with
a minimum of 16 points. While in the previous section we
used much higher resolutions to capture the interior dy-
namics of single stars, binary evolutions at similar resolu-
tions here are prohibitively expensive. Figure 4 gives an
indication of the minimum resolution required to evolve
the binary without resolving the internal dynamics of
individual stars. Figure 5 shows the (coordinate) radial
distance between the center of the stars versus time for
the three different resolutions. The trajectories converge as
the resolution is increased.
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FIG. 4 (color online). This figure shows the maximum value of
�o in binary simulations at four resolutions: 8, 16, 24, and 32
points across each star. With fewer than 16 points across the star,
the stars disperse. For increasing resolutions, the solutions
converge.
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FIG. 3. This figure shows the Fourier transform of the oscil-
lations of �c seen in the highest resolution simulation of Fig. 2.
Five distinct peaks are observed; the first four peaks are com-
pared with results found via linear perturbation (see Table I). The
scale of the vertical axis is arbitrary.
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A. Black hole final state

The first set of initial data gives a binary neutron star
merger that results in a prompt collapse to a black hole. As
mentioned previously, the initial data are constructed from
superposing two equal-mass neutron stars with zero spin
angular momentum. In particular, each star has a mass of
M � 0:89 M
, a radius of R � 16:26 km, and a central
density of 3:24	 1014 g=cm3. The stars are placed ini-
tially at the coordinate locations �x; y; z� � �0;�3; 0� with
the boost vi � ��0:08; 0; 0�.

We first investigate possible effects from the outer
boundaries on the simulation results by performing two
otherwise identical evolutions with the outer boundaries at
different locations. In one, the outer boundary is at 80R,
and in the other it is at 124R. These simulations use the
shadow hierarchy, and the AMR grid structure is deter-
mined by the threshold error parameter. An additional set
of fixed fine grids is placed at larger distances to ensure
sufficient resolution for computing waveforms. As a con-

sequence, the grid structure in the central region is deter-
mined dynamically while at far distances it is kept fixed.
We compare the C2;2 component of the gravitational wave
signal measured by an observer at a fixed coordinate
distance, 50R, for the two computational domains. These
waveforms are shown in Fig. 6, which shows only small
differences in the waveforms at late times. Additional tests
indicate that these differences arise from the location of the
exterior, fixed refinement boxes. This observation is indi-
cated by the coincidence of results obtained with outer
boundaries at 100R and 80R with exactly the same coor-
dinate locations of the exterior grids. The overall excellent
agreement between the wave signals suggests that the
influence of the boundary location is negligible.

The dynamics of the subsequent evolution shows a clear
eccentricity which is reflected both in the gravitational
waveforms (bottom panel of Fig. 6) and the coordinate
trajectories (Fig. 7). It is worth noting that, following the
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FIG. 6 (color online). Top panel: The ‘ � 2, m � 2 mode of r�4 extracted at 50 stellar radii for binary simulations with different
domain sizes. The smaller domain is of size �80 stellar radii while the larger is �124 stellar radii. The two results differ only by a
small phase and amplitude error which appears late in the evolution. For both simulations, the floor value is 1	 10�8. Bottom panel:
This includes three plots of the ‘ � 2, m � 2 mode of r�4 extracted at 30, 40, and 50 stellar radii. The initial data are described in
Sec. VA. The domain of the calculation is 248 stellar radii across. The signals from different extraction surfaces are shifted in time by
the appropriate (flat-space) differences between the extraction radii.
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FIG. 7. The coordinate trajectory of the center of one of the
neutron stars as it spirals into a black hole end state. The points
(filled circles) that have been included along the trajectory are
the coordinate locations of the maximum density. These points
are shown at intervals of �t � 20 in order to give an idea of the
star’s speed.
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FIG. 5 (color online). The coordinate separation between the
stars in a merging binary is shown here as a function of time for
three resolutions. Notice that the merger time, about t � 800, is
almost the same for the two finer resolutions.
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suggestion of [9], a waveform similar to Fig. 6 can be
obtained by using the Newtonian quadrupole approxima-
tion with the coordinate trajectories from Fig. 7. In addi-
tion, these trajectories are similar to those obtained by
integrating the 2.5 post-Newtonian equations. Finally, as
with the black hole case reported in [9], the orbital coor-
dinate frequency !c (computed from the coordinate tra-
jectories) is in good agreement with the orbital waveform
frequency !D (computed from the dominant mode ‘ � 2,
m � 2 of r�4), as shown in Fig. 8.

The eccentricity can be computed using the Newtonian
definition given in [59],

 e �
�������!p
p

�
�������
!a
p

�������!p
p

�
�������
!a
p ; (30)

where !p is the orbital frequency at a local maximum and
!a the subsequent local minimum. The eccentricity of this
simulation is shown in Fig. 9. To compute this, we take

each half-cycle and evaluate expression (30), thus obtain-
ing a discrete set of values. The first point is clearly
affected by the initial data adopted, but the subsequent
points show an overall decrease towards zero. This is
expected as the gravitational radiation carries away angular
momentum, and its loss circularizes the orbit.

Upon merger, the object’s pressure and rotation cannot
support the star and it quickly collapses to a black hole. As
described earlier, our simulations are carried out with
harmonic slicing which is not singularity avoiding [60].
Although the lapse collapses to zero as illustrated in
Fig. 12, it does not collapse sufficiently fast to avoid
numerical problems. As a result, the size of the merged
object decreases rapidly and the code crashes when it can
no longer resolve the physical length scales within the
allowed maximum refinement levels as shown in the final
frame of Fig. 11. Ongoing work excises a region within a
trapped surface to avoid this problem. We defer to future
work a full analysis of the postmerger case and the tran-
sition to a quasinormal ringing pattern in the radiation [61].

B. Differentially rotating neutron star

In the case where the individual stars are initially sepa-
rated (in coordinate space) by 4R and boosted with a speed
of 0.0825, the merger does not give rise to a prompt
collapse to a black hole; rather, it produces a single differ-
entially rotating star. (See Figs.13 and 14.) As in the
previous case, the initial orbital dynamics correspond to
an eccentric inspiral trajectory. But upon merger, the ob-
ject’s pressure and rotation are sufficient to support a newly
formed star. The merged object has a barlike structure that
is spinning with a characteristic pattern frequency. The real
part of the coefficient C2;2 of r�4 for this evolution (shown
here in Fig. 15) carries a signature of the merger (t ap-
proximately from 100 to 200) and of the resulting spinning
bar (t greater than 250). Qualitatively, the outcome of this
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FIG. 9. The eccentricity obtained from Eq. (30). After a tran-
sient behavior due to the initial configuration, an overall mono-
tonically decreasing behavior is seen in the eccentricity as the
binary orbit becomes tighter.
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FIG. 8 (color online). Orbital frequency of the binary as cal-
culated from the numerical evolution in two different ways.!c is
obtained by following the coordinate position of the centers of
the stars, while !D is obtained from the dominant mode of r�4.
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FIG. 10 (color online). The lapse at the origin as a function of
time for the orbiting polytropes and their merger to either a black
hole or neutron star. For the sake of comparison, we have defined
tmerger to be the instant at which the stars come into contact. See
Figs. 12 and 14 for contour plots of the lapse in the two cases.
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FIG. 12. Snapshots of the lapse on the z � 0 plane at times 400, 600, and 820 for the system presented in Fig. 11. The contours
shown correspond to � � 0:8, 0.7, 0.6, 0.5, 0.4, from the outermost to the innermost one. At times prior to merger, only the first contour
value exists. After merger, the lapse collapses, indicating the formation of a black hole. Notice the essentially circular shape of all the
contours except for the innermost one at the latest time. The lapse at the origin as a function of time is shown in Fig. 10.

FIG. 13 (color online). Snapshots at select times viewed down the z axis of the orbiting stars and their subsequent merger into a
differentially rotating star. These snapshots zoom in on the central region of the grid and show only a twentieth of the z � 0 slice of the
computational domain. The stars orbit counterclockwise a couple of times before merging. The arrows indicate the fluid velocity. The
reference vector in the upper right-hand corner of each panel has a magnitude of 0.5. The color scheme indicates the rest mass density.
The plots show the simulation at times 43, 116, and 210 as indicated in the upper left corner of each image. See Fig. 10 for a plot of the
lapse at the origin as a function of time for this system.

FIG. 11 (color online). Snapshots at select times viewed down the z axis of the orbiting stars and their subsequent collapse to a black
hole. These snapshots zoom in on the central region of the grid and show only a twentieth of the z � 0 slice of the computational
domain. The stars orbit counterclockwise 7 times before merging and collapsing to a black hole. The arrows indicate the fluid velocity.
The reference vector in the upper right-hand corner of each panel has a magnitude of 0.5. The color scheme indicates the rest mass
density. The plots show the simulation at times 620, 760, and 820 as indicated in the upper left corner of each image. See Fig. 10 for a
plot of the lapse at the origin as a function of time for this system.
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evolution agrees with the results presented for the fully
relativistic simulation labeled ‘‘E-1’’ in [12], and even with
the results from the post-Newtonian SPH simulation
labeled ‘‘F1’’ in [62]; compare, for example, our Fig. 15
with Fig. 11 in [12] and Fig. 3 in [62]. These two earlier
simulations also followed the merger of equal-mass, ini-
tially irrotational neutron stars having a � � 2 equation of
state. However, the barlike structure survives noticeably
longer in our simulation than in the evolution presented in
[62], and in our simulation the radiation signature appears
to carry more detail about the postmerger dynamics than in
either of these earlier evolutions. Specifically, the structure
discernible in Fig. 15 between the times 180 and 240
reflects the fact that, as viewed from the corotating frame

of the bar, the bar itself is experiencing nontrivial
oscillations.

The neutron star that forms from this merger is strongly
differentially rotating. In an effort to quantify this, in the
latter stages of the evolution we fit the internal motions of
the star to a rotation law of the form

 ��r� �
�c

1� Ar2 sin�	�2
(31)

which has proven to be useful in numerous other inves-
tigations (see, for instance, [12,63,64]). Figure 16 shows
the time-dependent behavior of the fitted parameters �c
and A. We note, in particular, that the ratio of the central
and near-surface value of � at the equator is �c=�eq 

0:34.
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FIG. 15 (color online). The merger waveform for the collision
resulting in a single compact star extracted at three different
stellar radii: 30, 40, and 50. The domain of the simulation is
�152 stellar radii. After the merger a transient behavior is
observed. In particular, the features at t ’ 180, 240 result from
marked oscillations in the produced barlike configuration (as
seen in the corotating frame). Afterwards the gravitational waves
due to the spinning bar exhibit a clear frequency at ’ 12:8 kHz.
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FIG. 16 (color online). The fitted values of �c and A as
determined from the fluid’s tangential velocity. The merger takes
place at about t ’ 140 after which the angular velocity rises
during a transient stage and then slowly decreases.
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FIG. 14. Snapshots of the lapse on the z � 0 plane at times 0, 100, and 200 for the system presented in Fig. 13. The contours shown
correspond to � � 0:9, 0.85 from the outermost to the innermost one. At early times, the contour for the lowest value is not present.
After merger, though the lapse evolves to a slightly lower value, it remains bounded above ’ 0:75. Notice the essentially circular shape
of all the contours at the latest time. The lapse at the origin as a function of time is shown in Fig. 10.
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VI. CONCLUSION

Neutron stars will be important sources of gravitational
waves for the next generation of gravitational wave detec-
tors. While waveforms from neutron star binaries are
weaker than those produced by binary black holes due to
the allowed neutron star masses, their signals are expected
to be richer, as the gravitational waves will also carry
information about the matter. Indeed, gravitational waves
are expected to become an important probe of neutron star
physics, addressing questions such as the equation of state
for nuclear matter and the nature of progenitors for short,
hard gamma-ray bursts.

We have constructed a code that solves the combined
Einstein and fluid equations in three spatial dimensions,
with no symmetry assumptions, and we use HAD for dis-
tributed AMR. AMR is an essential element of our method,
as it allows us to place the outer boundaries far from the
binary, while the shadow hierarchy allows us to refine each
star individually without a priori assumptions about their
motion. We have carefully verified our numerical results by
performing runs at different resolutions, using grids with
different physical outer boundaries, extracting �4 at differ-
ent radii, and varying the floor applied to the fluid densities.
Moreover, we studied the radial pulsation frequencies for a
� � 2 polytropic TOV star, finding excellent agreement
between our results and the expected perturbative values.
The successful conclusion of these tests gives us confi-
dence in the physical results obtained from our code.

As a first application of this code in a demanding sce-
nario, we present a detailed study of two binary neutron
star mergers, one resulting in a final black hole and the
other a final neutron star. In both cases we examine the
gravitational wave emission by extracting the ‘ � 2, m �
2 mode of r�4. �4 is extracted sufficiently far from the
binary within the wave zone, and extraction is done at three
different radii. In the first case, �4 is extracted up until the
lapse collapses, and in the second case the wave signal is
extracted until a final differentially rotating star is reached.
A comparison to a post-Newtonian analysis allows us to
better understand the gravitational wave signals and the
orbital kinematics, such as orbital trajectories, frequencies,
and eccentricities. For example, the initial data describe an
eccentric orbit. The effect of the eccentricity can be ob-
served in the alternating pattern of larger and smaller
extrema in �4, as well as a modulation in the observed
wavelength. Both features are expected from a post-
Newtonian analysis of an eccentric orbit. The orbits circu-
larize through gravitational wave emission, and the solu-
tion around the time of collapse is largely spherically
symmetric. In the second case, the neutron star merger
results in a large, strongly differentially rotating star. The
observed maximum density after the merger does not lie at
the origin but oscillates, in the corotating frame, in a bar-
like fashion in between ’ 0:2Rfinal and ’ 0:4Rfinal (with
Rfinal the equatorial radius of the merged object).

The work presented here raises additional questions that
we will pursue in a continuing research program. For
example, we will continue to study the ringdown of the
final black hole formed in the first merger. Studies of the
second case, in which a differentially rotating star is
formed, continue in an effort to determine whether this
star eventually collapses to form a black hole. We will also
examine a broader class of initial data, including quasicir-
cular and unequal mass binaries. As mentioned previously,
we also are investigating the effect of magnetic fields on
the massive compact object formed in a merger and its
possible subsequent collapse. These results will be pub-
lished in subsequent papers.
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APPENDIX

It is customary in general relativity to adopt geometrized
units G � c � 1, such that all quantities, including mass
(M) and time (T), have units of length (L). Vacuum solu-
tions are invariant under changes in this fundamental
length scale L. A quantity X that scales as LlMmTt can
be converted into geometrized units by multiplying with
the factor ct�G=c2�m. After the conversion to geometrized
units,X scales as Ll�m�t. Most equations of state break this
intrinsic scale invariance, and the fundamental length scale
must be fixed by additional choices. Once the new scale is
chosen, transformations between geometrized and physical
units can be easily made. In the following, we summarize
the basic procedure detailed in [55] to account for the
proper scaling of quantities.

The polytropic EOS (24) is specified by the constants
f�;�g, and the quantities obtained when using a particular
set f�1;�1g can be scaled to those obtained using a second
set f�2;�2g by the factor

 

L1

L2
�
�1

1=2��2�1�

�2
1=2��2�1�

: (A1)

There are two common approaches in the literature to set
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this additional length scale. The first one is obtained by
fixing a constant physical quantity, e.g., the solar mass
M
 � 1, and from it deducing the appropriate conversion
factors. That is, if a quantity X̂ has dimensions of LlMmTt,
its dimensionless counterpart, X, is obtained from the
following equation:

 X̂ �
�
GM

c2

�
l�t Mm




ct
X: (A2)

There is still the freedom to choose �, and all dimensions
are scaled with this parameter. Usually the choice � � 100
is preferred because it leads to physical units which are
close to the current observations. For instance, TOV stars
constructed with these parameters have a maximum stable
mass of M̂max � 1:64M
 with a radius of R̂max �
14:11 km.

The second method for choosing the length scale is
explained in detail in [55], and is more involved. It is based
on fixing the maximum stable mass for the family of
solutions (with given f� � 1;�g) to a physically motivated
value. Thus, a quantity X̂ with dimensions LlMmTt is
obtained by using the relation

 X̂ � �̂xcyGzX; (A3)

where

 

x �
l�m� t
2��� 1�

; y �
��� 2�l� �3�� 4�m� t

�� 1
;

z � �
l� 3m� t

2
: (A4)

In this method �̂ has dimensions. We now identify the
maximum stable mass for the given polytrope to some
physical maximum mass. For a neutron star, the observed
maximum mass is M̂max � 1:4M
.

Although this second method for fixing the fundamental
length scale generally leads to different results from the
first, it can be checked that for � � 2 both methods (the
first one with � � 100, while the second one always has
� � 1) provide the same scaling factors when the physical
maximum stable mass is set to M̂ � 1:64M
. Since the
dimensionless maximum stable mass is M � 0:164,
Eq. (A3) can be solved for �̂ with fl � 0; m � 1; t � 0g,
giving �̂ � 1:456	 105 cm5=�g s2�. With this value, (A3)
can again be used to recover the dimensions of any
quantity.
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