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Critical behavior of gravitating sphalerons

R. Steven Millward* and Eric W. Hirschmann†

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84604, USA
~Received 19 December 2002; published 10 July 2003!

We examine the gravitational collapse of sphaleron type configurations in the Einstein-Yang-Mills-Higgs
theory. Working in spherical symmetry, we investigate the critical behavior in this model. We provide evidence
that for various initial configurations, there can be three different critical transitions between possible end states
with different critical solutions sitting on the threshold between these outcomes. In addition, we show that
within the dispersive and black hole regimes there are new possible end states: namely, a stable, regular
sphaleron and a stable, hairy black hole.
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I. INTRODUCTION

Over the past two decades, substantial effort has b
brought to bear on the study of the gravitating Yang-Mi
fields. This research has resulted in the discovery of num
ous solutions to the coupled Einstein-Yang-Mills~-Higgs
and/or -dilaton! equations. These solutions include bo
black hole and regular or particlelike solutions. In addition
confirming the richness of these nonlinear systems, this w
has also been helpful in clarifying the standing of the bla
hole uniqueness theorems and various ‘‘no-hair’’ ideas.

While many of these solutions have been found by so
ing the appropriate static equations, it was realized early
that understanding the stability of these solutions is imp
tant in order to ascribe relative significance to these soluti
within the context of some of the no-hair conjectures. T
primary means for evaluating stability have been linear p
turbation analyses of various static solutions. As a res
many of these static, gravitating Yang-Mills~-scalar! configu-
rations have been found to be unstable to small tim
dependent perturbations.

That many of these solutions appear unstable in lin
perturbation theory does not necessarily mean that such
lutions are without significance. Indeed, it is now wide
accepted within the context of gravitational critical pheno
ena that some of these solutions will have relevance as
tractors in the critical collapse of gravitating fields at t
threshold of black hole formation@1,2#. As an example, the
Bartnik-McKinnon solutions of the spherically symmetri
static Einstein-Yang-Mills equations are a countably infin
family of regular solutions characterized by the integer nu
ber n of zero crossings of the gauge potential. These so
tions are unstable in linear perturbation theory with thenth

member of the family havingn unstable modes.1 Thus, the
n51 member of this family has a single unstable mode a

*Electronic address: rsm52@email.byu.edu
†Electronic address: ehirsch@kepler.byu.edu
1Strictly, this is true if only the radial, gravitational perturbatio

are excited. If additional components of the gauge potential are
perturbed~i.e., the sphaleron sector!, thenth solution will have 2n
unstable modes, the sphaleron sector contributing an additionn
unstable modes to those from the gravitational sector@3#.
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is a candidate for being a critical solution in the gravitation
collapse of a pure Yang-Mills field. Indeed, this is exactly t
result found in@4# where the full evolution equations for th
model were solved. Then51 Bartnik-McKinnon solution is
the critical solution that sits on the threshold between
complete dispersal of the collapsing field and the format
of a finite size black hole~type I collapse!. The value of the
unstable mode for this solution then correctly predicts
scaling relation for the lifetime of near-critical solutions.

In addition to these regular solutions, the Einstein-Yan
Mills equations also admit another countably infinite fam
of solutions, but with a horizon. These black hole solutio
have non-trivial hair outside their horizons and are ag
characterized by the numbernBH of zero crossings of the
gauge potential. They too are unstable in linear perturba
theory with nBH unstable modes from the gravitational se
tor. In agreement with expectations, it has been shown
the nBH51 solution is also a critical solution@5#. But this
non-Abelian or colored black hole solution, rather than se
rating dispersion and black hole formation as does then
51 Bartnik-McKinnon solution, sits on the threshold b
tween two different kinds of dynamical collapse.

Given this behavior, it is natural to conjecture that oth
configurations of gravitating Yang-Mills fields should like
wise exhibit critical phenomena. With that in mind, we co
sider here the nonlinear evolution of gravitatingSU(2)
sphalerons in the Einstein-Yang-Mills-Higgs theory. We pr
vide evidence that there can be three critical transitions in
initial data space. These include the now standard type I
type II transitions as well as the transition mentioned abo
between different kinds of dynamical collapse on which s
a colored or hairy black hole as the intermediate attractor
the process of examining critical gravitational collap
within this system and the formation of such ‘‘hairy’’ blac
holes as attractors in the black hole regime, we have a
confirmed the stability of two additional end states of c
lapse. One is a regular, gravitationally bound configurat
of the Yang-Mills-Higgs field forming a stable ‘‘sphalero
star.’’ The second is a family of stable, hairy black hol
different from those that serve as the critical solutions in
black hole regime. The existence of such stable soluti
appears to have been first predicted by Maison@6#.

The outline of the remainder of the paper is then as f
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lows. Section II summarizes the equations which constit
the full evolution problem and our numerical approach
their solution. Section III describes the numerical results,
cluding results of our parameter space searches, the cr
solutions and the nature of the stable solutions. Section
offers some conclusions and thoughts for future direction

II. THE MODEL

Our starting point in studying the gravitational collapse
configurations of the Yang-Mills-Higgs fields is the action

S5E d4xA2gF 1

16pG
R2

1

4g2 Fmn
a Famn

2
1

2
~DmF!†DmF2V~ uFu2!G ~1!

whereFmn
a is the Yang-Mills field strength tensor given by

Fmn
a 5]mAn

a2]nAm
a 1eabcAm

b An
c , ~2!

Dm is the gauge covariant derivative whose action on
Higgs doubletF is

DmF5“mF1AmF, ~3!

and the potentialV is taken to be

V~ uFu2!5
l

4
~F†F2h2!2. ~4!

Varying the action with respect to the metric, the fie
strength and the Higgs field result in the Einstein equati
and the curved space Yang-Mills and Higgs equations,
spectively. These are

1

8pG
Gmn5

1

g2FFml
a Fn

al2
1

4
gmnFab

a FaabG1~DmF!†DnF

2 1
2 gmn~DlF!†DlF2gmnV~ uFu2! ~5!

¹mFamn1eabcAm
b Fcmn1tr~@tb]mta# !Fbmn

5 1
2 @~DnF!†taF2F†taDnF# ~6!

DmDmF5l F~F†F2h2!. ~7!

With these general forms for the equations of motion,
make some simplifying assumptions. In particular, we w
restrict ourselves to spherically symmetric gravitational c
lapse and work exclusively with anSU(2) gauge group. We
also make the assumption that the Higgs field lives in
fundamental representation ofSU(2). The corresponding
flat space version of this theory includes the so-called sph
ron solutions@7#. We also setg51.

Our intent is to solve the full set of nonlinear, evolutio
equations representing gravitational collapse. In order to
this numerically we must fix both the coordinate freedo
and the gauge freedom in our model. There are, of cou
numerous possibilities, but we will try to hew fairly close
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to related work of others in the field. For the coordina
system, we will work in maximal, areal coordinates. If th
general form of the spherically symmetric metric is writte
as

ds25~2a21a2b2!dt212a2bdtdr1a2dr21b2r 2du2

1b2r 2sin2udf2 ~8!

where the metric components depend only ont and r, the
choice of areal coordinates amounts tob51 while choosing
maximal time slices corresponds to the vanishing of the tr
of the extrinsic curvature,K50.

For the Yang-Mills field, the most general form for
spherically symmetric gauge potential is the Witten ans
@8#:

A5ut rdt1vt rdr1@wtu1~w̃21!tf#du

1@~12w̃!tu1wtf#sinudf ~9!

where t i ( i P$r ,u,f%) are the spherical projection of th
Pauli spin matrices and form an anti-Hermitian basis for
groupSU(2) satisfying@t i ,t j #5e i jktk . With this ansatz for
the gauge potential there is some gauge freedom that al
us to simplify its form: namely, the potential is invarian
under a transformation of the formU5ec(t,r )tr. We can fix

FIG. 1. This plot is of the initial data space and illustrates t
end states of collapse as the widths and centerx of the initial
Yang-Mills field are varied. The Higgs field is in the ‘‘bland’’ con
figuration, i.e.,d510 and AH50. The filled hexagons give the
boundary between the formation of the sphaleron star solutions
the Schwarszchild black holes. The filled triangles represent
boundary between the formation of the sphaleron stars and the h
black holes. The open hexagons depict the hairy critical soluti
on the boundary between the Schwarszchild and hairy black ho
Near these critical solutions, the type is depicted not only by
existence of the stable hair, but also by the transient hair ei
dispersing or falling down the horizon. Note the similarity betwe
this and Fig. 4 of@5#. Each point depicted on the plot represents
evolution in which up2p* u,1025. For each evolution we used
10401 mesh points and a Courant factor of 0.5 along withh50.1
andl50.5.
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FIG. 2. This plot shows a sequence of snapshots of a typical ‘‘sphaleron star’’ evolution. The majority of the fields disperse w
first few frames after which the regular solution emerges and begins to settle down. Notice that times 700–1400, 2100–2800, a
4100 show the maximum, median, and minimum values of three different oscillations. As can be seen, the first oscillation
pronounced, whereas by the third the amplitude of oscillation is negligible and we are approaching a static, stable solution. The
would appear to be the same to within a few percent for any values of the initial data that do not produce a black hole. The mass o
sphaleron star solution is'(10–20)% of the mass of the initial configuration. Note that in setting the scale of the vertical axis, th
portions of the fields in the first two frames have been cut off. This has been done to emphasize the damped oscillations in subsequ
showing the stable solution. For this evolution, we used 10401 mesh points and a Courant factor of 0.5 along withh50.1 andl50.5.
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some of that gauge freedom by choosingv[0. This choice
effectively eliminates ther dependence in the above gau
transformation. If we choose to work within the so-call
‘‘magnetic ansatz’’ we can fix the remaining freedom in t
following way. It can be shown that in this ansatz, the co
ponentu is a function only oft, i.e., it is now pure gauge an
can be set to zero as part of our gauge fixing. The remain
fields w andw̃ under the remaining constant gauge transf
mations are merely sent into linear combinations of e
other and hence we can fix the last bit of gauge freedom
settingw50. This leavesw̃ as the sole non-zero compone
of the gauge potential, the same form as in@9,10#.2 Our form
for the Higgs field, taken from@9#, is

F5
1

A2
~g122c t r !S 0

1D ~10!

2If we had chosen not to work within the restriction of the ma
netic ansatz, our gauge freedom would only have allowed us to
v50 leaving us with three Yang-Mills functions which would nee
to be evolved@9,11#.
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and though not strictly spherically symmetric, results in
spherically symmetric energy density@6#. We will consider
in this work only the case in whichc50. This is not a gauge
choice but an additional assumption made merely to simp
the resulting equations and dynamics. A similar thing
done, for instance, in@9,10#.

With these assumptions, the evolution equations for
Yang-Mills field become

ẇ̃5
a

a
P1bQ ~11!

Q̇5S a

a
P1bQD 8

~12!

Ṗ5S bP1
a

a
QD 8

1
aaw̃

r 2
~12w̃2!2

aa

4
g2~w̃21!

~13!

while the evolution equations for the Higgs field are given

et
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FIG. 3. This plot shows two near-critical solutions on the boundary between the Schwarszchild collapse and sphaleron star f
The critical line between these two possibilities is characterized by the quasi-static regular solution visible betweent552 andt5138. This
solution acts as an attractor for both near-critical evolutions. The final state is determined by the initial data values and is reflect
evolution away from the attractor. In the one case~solid line!, the majority of the configuration collapses to form a Schwarschild black h
with a mass gap consistent with type I transitions (t5146). In the regular, sphaleron case~dashed line!, about (80–90)% of the mas
disperses, leaving a stable, bound state with mass independent of the initial data and location along the critical line. The fin
sphaleron star is fundamentally different from the quasi-static solution that acts as the attractor. Note that for visualization purposes
rescaled the vertical axis of the last four frames. In all frames, the horizontal axis remains unchanged and measures logarith
coordinate. In addition, all fields are plotted so as to be exterior to any horizons. The gap present in the final seven frames for the
indicated by the solid line is intended to denote this together with the fact that the final solution on the black hole side~solid line! is
Schwarzschild. For this evolution, we again used 10401 mesh points and a Courant factor of 0.5 along withh50.1 andl50.5. The width
of the Yang-Mills kink iss50.8 and the binary search was over the center of the kink,x.
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ġ5
a

a
G1bE ~14!

Ė5S a

a
G1bED 8

~15!

Ġ5
1

r 2 F r 2S bG1
a

a
ED G82

aag

2r 2 ~w̃21!2

2
l

2
aag~g222h2!, ~16!

where, as usual, overdots, and primes denote differentia
with respect tot and r, respectively. Both of these sets
evolution equations are supplemented with the first or
definitionsQ5w̃8 and E5g8 as well as the constraints o
the metric components coming from the Einstein equatio
02401
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r

a95a8S a8

a
2

2

r D1
2a

r 2 S a2211
2ra8

a D14pGa~S23r!

~17!

a85a
12a2

2r
1

3

8
ra3Kr

r214pG ra3r ~18!

K r
r8 52

3

r
K r

r 18pG
1

a FPQ

r 2 1
1

4
EGG ~19!

b5arK u
u . ~20!

The matter stress-energy terms in these equations are g
by

r1Sr
r5

P21Q2

a2r 2 1
E21G2

4a2 ~21!
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FIG. 4. This sequence of snapshots shows a typical evolution of a stable, hairy black hole solution at a generic point in the pha
The first several frames show the partial dispersal of the initial fields and the formation of the black hole solution. In particula
2970–3090, 5550–5670, and 7885–8005 show the maximum, median, and minimum values of three oscillations. As can be see
oscillation is quite pronounced, while by the third, the solution is obviously settling down, ostensibly to a stable, hairy black hole. A
previous figure, all fields are plotted so as to be exterior to any horizons. The gap in the solution in most of the frames for the e
indicated by the solid line is intended to denote this. This run was done using 10400 points with a Courant factor of 0.5 and ag
h50.1 andl50.5.
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r2S r
r 5

~w̃221!2

2r 4
1

g2~w̃21!2

8r 2
1

l

16
~g222h2!2 ~22!

S u
u 5

1

8a2 ~G22E2!1
~w̃221!2

4r 4
2

l

32
~g222h2!2

~23!

j r52
PQ

ar2 2
EG

4a
. ~24!

Boundary conditions are implemented by demand
regularity at the origin and requiring the presence of o
outgoing radiation at large distances~see@5#!. The resulting
constraints on the metric components requirea8(t,0)
5a8(t,0)5b(t,0)5Kr

r(t,0)50. The matter fields may sat
isfy one of two possible regular configurations at the orig
either g(t,0)50 and w̃(t,0)521 or g8(t,0)50 and
w̃(t,0)51. These two choices correspond to the odd a
even node solutions, respectively@9#. In order to find the
critical solution we choose the former and look for the so
tion with a single unstable mode. The outgoing conditio
require that at the edge of our grid,
02401
g
y

:

d

-
s

P52Q ~25!

Q̇5F S a

a
2b DQG8 ~26!

G5
1

r S b
a

a
21D ~g2A2h! ~27!

Ė5F S b2
a

a D S E1
1

r
@g2A2h# D G8. ~28!

It should be noted that there is only one vacuum value
both the Yang-Mills and Higgs fields. That is to say at infi
ity, w̃51 and g5A2h. This can be contrasted with th
model of @5# in which there are two vacuum states for th
Yang-Mills potential in the absence of the Higgs field. F
the initial pulse, we use a ‘‘time-symmetric kink’’ as in@5#
for the gauge potential, namely,

w~0,r !5F11aS 11
br

s De22(r /s)2G•tanhS x2r

s D ~29!
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FIG. 5. This plot shows two near-critical evolutions on the border between the Schwarszchild and hairy black hole formation. Th
line between these two possibilities is characterized by a family of black holes parametrized by their horizon radius and po
non-trivial Yang-Mills-Higgs hair outside the horizon. These colored black holes serve as the attractors for these two types of coll
can be seen here betweent541 andt5166. The final state of the collapse can be distinguished by the subsequent evolution of the
away from the attractor. On the Schwarzschild side~the solid line!, the hair falls into the horizon~at t'204), adding to the mass of the blac
hole, and resulting finally in a Schwarschild black hole. On the hairy side~the dashed line!, the majority of the hair disperses to infinity
However, between 10 and 20% of the initial mass of the system~depending on where one is along the critical line! remains behind,
eventually settling down and forming stable, Yang-Mills-Higgs hair outside a black hole. Note that the horizontal axis is the natural lo
of the radial coordinate and that in the final four frames, the vertical axis is rescaled to visualize better the remaining hair in the ha
Again, all fields have been plotted so as to be exterior to any horizons. The gap~s! present in the plotted solutions is intended to denote t
This evolution used 10401 mesh points, a Courant factor of 0.5 and again hadh50.1 andl50.5. The width of the Yang-Mills kink iss
50.7 and the binary search was over the center of the kink,x.
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where the parametersa and b are chosen so thatw(0,0)5
21 andw8(0,0)50. The parametersx ands are the center
and width of the kink, respectively.

The Higgs field is initialized as

g~0,r !5A2h tanh
r

d
1AH e2(r 2r 0)2/d2

~31!

ġ~0,r !50 ~32!

where the parameterd is usually set tod510. This is pri-
marily due to the fact that varyingd does not significantly
change the final result of the collapse. As a consequence
perturb the Higgs field via a Gaussian pulse. Similar to
initialization for the Yang-Mills field, the parametersAH , r 0,
and d which describe the initialization of the Higgs fiel
02401
we
e

represent the amplitude, center, and width of the Gaus
pulse, respectively. These initial data parameters for
Yang-Mills and Higgs fields will constitute our initial datas
and will be used when tuning our evolutions to the critic
solutions.

Our numerical approach closely follows that of@5#. We
use a uniform grid recognizing that we will not have suf
cient resolution to investigate type II collapse in a co
pletely satisfactory way. Nonetheless, we have indicati
verifying the existence of type II behavior in our model. F
this paper, therefore, we focus our primary interest on
black hole transition and the dynamics occurring within t
black hole regime.

We use an iterative Crank-Nicholson scheme for the e
lution equations while for the constraints, we simply int
grate outward from the origin. As we want to consider ev
lutions that extend to the future of the black hole formatio
our use of maximal slicing is crucial. In our coordinates, t
apparent horizon equation is an algebraic relation
7-6
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arK u
u 51. ~33!

We use the same black hole excision technique develope
@12# and used in@5#. As discussed there, we set a thresh
value slightly larger than 1 such that ifarK u

u exceeds that
value for certain grid points, we discard those points at fut
time steps considering them inside the apparent horizon
the boundary of this region, we need no new boundary c
ditions for the evolution equations. For those variab
solved via constraint equations we either switch to solving
evolution equation subsequent to the formation of a hori
or we ‘‘freeze’’ the variable~e.g.a) such that it retains the
value it had when the horizon formed@5#. As a result, though
we can observe matter falling into the horizon, we can
comment on any dynamics within the apparent horizon as
evolution is effectively frozen for values of the radial coo
dinate less than the horizon radius. This procedure thus
lows us to evolve past the formation of the black hole a
thereby investigate such things as the final end states as
as the critical dynamics in the vicinity of transition region

We have tested the resulting code and shown it to
second-order convergent and to conserve mass. It also re
duces the results of@5# in the limit where the Higgs field and
its coupling vanish. Finally, we note that we made extens
use of RNPL~rapid numerical prototyping language! @13#, a

FIG. 6. This plot is of the initial data space and illustrates
end states of collapse as the widths and centerx of the initial
Yang-Mills field are varied. The Higgs field is in the ‘‘pulse’’ con
figuration, i.e.,r 0520, d51.05, andAH50.03. The filled triangles
represent the boundary between the formation of the sphaleron
and the hairy black holes. The open hexagons depict the col
critical solutions on the boundary between the Schwarszchild
hairy black holes. Near these critical solutions, the type is depic
not only by the existence of the stable hair, but also by the trans
hair either dispersing or falling down the horizon. Note the lack
filled hexagons, existent in Fig. 1, which would represent a typ
transition from the sphaleron star to the black hole formation. T
there is no triple point found in this slice of phase space. Each p
depicted on the plot represents an evolution in whichup2p* u
,1025. For each evolution we again used 10401 mesh points a
Courant factor of 0.5 along withh50.1 andl50.5.
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language written expressly to aid the differencing and so
tion of partial differential equations.

III. RESULTS

In attempting to evolve these equations, it quickly beca
clear that the size of the initial data sets that could be va
is somewhat unwieldy and we had to make choices in or
to restrict the possible sets of initial data parameters.
though we have performed numerous evolutions by vary
the elements of different sets of initial data parameters,
will focus on the evolution of two sets of parameters to hig
light our results. Other sets would appear to give qual
tively similar conclusions. When we evolve these equatio
we confirm many of the same aspects that have come to
expected in similar models. However, there are, at the sa
time, a number of unexpected surprises.

To begin our examination of the dynamics of this mod
we consider varying two parameters describing the initiali
tion of the gauge potential, namelyx and s, the center and
width of the kink, respectively. The amplitude of the pertur
ing Gaussian pulse for the Higgs field is set to zero,AH
50, and the width of the tanh function describing the Hig
field is d510. We call this configuration the ‘‘bland’’ Higgs
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d
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f
I
s
nt

a

FIG. 7. This plot is of the initial data space and illustrates t
end states of collapse as the widths and centerx of the initial
Yang-Mills field are varied. The Higgs field is in the ‘‘pulse’’ con
figuration, i.e.,r 0520, d51.05, andAH50.06. The filled triangles
represent the boundary between the formation of the sphaleron
and the hairy black holes. The open hexagons depict the col
critical solutions on the boundary between the Schwarszchild
hairy black holes. Near these critical solutions, the type is depic
not only by the existence of the stable hair, but also by the trans
hair either dispersing or falling down the horizon. Note the lack
filled hexagons, existent in Fig. 1, which would represent a typ
transition from the sphaleron star to the black hole formation. T
there is no triple point found in this slice of phase space. It is e
to see that the seperation of the sphaleron solution from
Schwarzschild black holes has increased from Fig. 6. Each p
depicted on the plot represents an evolution in whichup2p* u
,1025. For each evolution we again used 10401 mesh points a
Courant factor of 0.5 along withh50.1 andl50.5.
7-7
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field. Note that in this section, all the pictured results are
values of the Higgs coupling parameters,h50.1 and l
50.5. A region of this slice of the phase space is shown
Fig. 1.

On varying the center and width of the Yang-Mills pote
tial, w̃, one finds three distinct regions of the initial da
space. These correspond, as in@5#, to two distinct black hole
regions, and a ‘‘dispersive’’ region in which no black ho
forms. On the boundaries between these regions sit appr
ate critical solutions. It is worth noting, however, that in t
region in which no black hole forms, we no longer obser
the complete dispersal of all the matter fields. Instead, w
a majority of the fields do escape to infinity, a nontrivi
portion of the fields forms a bound state, or ‘‘sphaleron sta
Shortly after formation, this solution oscillates rapidly, b
settles down to what appears to be a static solution. L
evolutions witht;30000M ~with M the initial mass of the
spacetime! confirm the stability of this solution. The mass
this stable star is, to within a few percent, independent of
of the initial field parameters. The solution and its mass
appear to depend on the coupling parametersh and l @6#.
Snapshots of a typical evolution in the dispersive regime
shown in Fig. 2.

In one of the black hole regions, we note no significa

FIG. 8. This is another plot of the initial data space and illu
trates the end states of collapse as the widths of the initial Yang-
Mills field and the amplitudeAH of the Higgs pulse are varied, with
r 0520, d51.05, andx51.8. This plot intersects Fig. 1 at the lin
defined byx51.8 andAH50. It should be noted that the structu
for negative values ofAH is symmetric across thes axis. Again, the
filled hexagons denote the boundary between the sphaleron
and the Schwarzschild black holes, the filled triangles represen
boundary between the sphaleron stars and the hairy black h
while the open hexagons denote the location of the critical solut
separating the Schwarszchild and hairy black holes. In this mi
phase space, we find a small region in which we have a typ
transition. As a result, it would appear that this portion of the init
data space contains a triple point. Note the difference in the lim
of the vertical axis in this and Fig. 1. Each point on the respec
critical lines represents a critical solution at a levelup2p* u/p*
,1025. For each evolution we again used 10401 mesh points a
Courant factor of 0.5 along withh50.1 andl50.5.
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change in the dynamics from those similarly exhibited in@5#.
The collapsing matter forms a black hole with finite ma
which, after the residual fields have dispersed to infin
settles down to the Schwarzschild solution. On the typ
critical line separating the black hole formation and t
sphaleron star configuration, we find a regular sphaleron
the critical solution analogous to the Bartnik-McKinnonn
51 solution. An example of the critical behavior at this typ
I transition is given in Fig. 3 in which a sub-critical and
super-critical evolution are shown.

Within the other black hole region, however, there a
some new features. As in@5#, this region is again characte
ized by the dynamical formation of a black hole with fini
mass. As the critical line which separates dispersion~or
strictly, the sphaleron star formation! from the black hole
region is approached, the mass of these black holes begi
decrease such that we interpret the critical transition as t
II. However, the black holes that form away from the critic
line after the transient hair has dispersed to infinity do
settle down to the Schwarzschild black holes. Instead,
final end state would appear to be a stable, colored bl
hole with non-trivial Yang-Mills and Higgs fields outside th
event horizon. This, of course, is analogous to the sphale
star that forms in the no-black-hole region of this syste
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FIG. 9. This is another plot of the initial data space and illu
trates the end states of collapse as the widths of the initial Yang-
Mills field and the amplitudeAH of the Higgs pulse are varied, with
r 0520, d51.05, andx52. This plot intersects Fig. 1 at the lin
defined byx52 andAH50. It should be noted that the structure fo
negative values ofAH is symmetric across thes axis. Again, the
filled triangles represent the boundary between the sphaleron
and the hairy black holes while the open hexagons denote the l
tion of the critical solutions separating the Schwarszchild and h
black holes. Note that the overlap of some of the polygons den
only that the boundaries are near one another, not that they ove
In this mixed phase space, we find no region with a type I tran
tion. As a result, it would appear that this portion of the initial da
space does not contain a triple point. Note the similarity in
limits of the vertical axis in this and Fig. 1. Each point on th
respective critical lines represents a critical solution at a levelup
2p* u/p* ,1025. For each evolution we again used 10401 me
points and a Courant factor of 0.5 along withh50.1 andl50.5.
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rather than the complete dispersal of the fields seen in@5#.
The basic dynamics in this case are illustrated in Fig. 4. T
collapsing configuration forms a finite mass black hole w
a significant portion of the remaining field escaping to infi
ity. Nevertheless, some of the hair remains behind and wi
the vicinity of the event horizon. This hair oscillates f
some time and eventually settles down to a stable config
tion. Evolutions of the order oft;30000M show no appre-
ciable diminution or instability in the fields.

The mass of the hair in these black hole solutions a
seems to be independent of the initial data paramet
Though the radius of the black hole will vary with the initi
parameters, the exterior mass remains unchanged. This
servation is consistent with and similar to that for the spha
ron stars in which a single stable, regular solution is fou
throughout the no-black-hole region. In addition, like th
regular counterparts, the black hole solutions will depend
the parametersh andl. Curiously, the mass of this exterio
hair is very nearly the same value as the mass of the sph
ron star. Thus, in one sense, these hairy black hole solut
can be thought of as sphaleron star solutions within wh
the central density increases to the point where a hori
forms. This is similar in turn to gravitating ’t Hooft–

FIG. 10. This is another plot of the initial data space and illu
trates the end states of collapse as the widths of the initial Yang-
Mills field and the amplitudeAH of the Higgs pulse are varied, with
r 0520, d51.05, andx52.4. This plot intersects Fig. 1 at the lin
defined byx52.4 andAH50. It should be noted that the structu
for negative values ofAH is symmetric across thes axis. Again, the
filled triangles represent the boundary between the sphaleron
and the hairy black holes while the open hexagons denote the
tion of the critical solutions separating the Schwarszchild and h
black holes. In this mixed phase space, we find no region wit
type I transition. As a result, it would appear that this portion of
initial data space does not contain a triple point. Note the simila
in the limits of the vertical axis in this and Fig. 1. Also note th
increased seperation between the sphaleron solutions and
Schwarzschild black holes, compared to the previous two figu
Each point on the respective critical lines represents a critical s
tion at a levelup2p* u/p* ,1025. For each evolution we again
used 10401 mesh points and a Courant factor of 0.5 along with
50.1 andl50.5.
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Polyakov monopoles. For certain values of the coupling,
monopoles can have a black hole form at their center.

For the solutions near the threshold separating the b
hole formation and dispersion, we find hints that these
indeed type II critical solutions and that the black hole ma
scales as expected. However, we stress again that our un
code is not able to settle this issue definitively and tha
awaits additional study.

We are able, though, to consider the transition betw
the different types of dynamical collapse in the black ho
regime. Again, we find a family of critical solutions separa
ing the Schwarszchild and hairy black holes. These criti
solutions are themselves sphaleron black holes paramet
by their horizon radius such that as one moves away from
‘‘triple point’’ in Fig. 1, the radius increases. On the hair
side of this line, near-critical evolutions have dynamics d
scribed above with the collapsing configuration forming
black hole of finite mass with non-trivial hair outside. How
ever, as the transition between the hairy and Schwarszc
black holes is approached, there is an intermed
solution—a hairy black hole—which forms and to which th
evolving solution is attracted. This intermediate solution
unstable and eventually collapses. For initial configuratio
on the hairy side, the collapse is distinctive in that very lit
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FIG. 11. This is another plot of the initial data space and illu
trates the end states of collapse as the centerx of the initial Yang-
Mills field and the amplitudeAH of the Higgs pulse are varied, with
r 0520, d51.05, ands50.8. This plot intersects Fig. 1 at the lin
defined bys50.8 andAH50. It should be noted that the structur
for negative values ofAH is symmetric across thex axis. Again, the
filled hexagons represent the boundary between the sphaleron
and the Schwarzschild black holes with type I transitions, the fil
triangles represent the boundary between the sphaleron stars an
hairy black holes while the open hexagons denote the locatio
the critical solutions separating the Schwarszchild and hairy bl
holes. In this mixed phase space, we find a small region in wh
type I behavior borders the region of the sphaleron star format
As a result, it would appear that this portion of the initial data spa
contains a triple point. Each point on the respective critical lin
represents a critical solution at a levelup2p* u/p* ,1025. For each
evolution we again used 10401 mesh points and a Courant fact
0.5 along withh50.1 andl50.5.
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of the exterior fields falls into the black hole. Rather, some
it is dispersed to infinity while the remainder reconstitutes
a new and different colored configuration outside the bla
hole already present. This is shown in Fig. 4 for a gene
collapse in the hairy regime as well as in the last frames
Fig. 5 for a near-critical evolution.

On the Schwarszchild side of the critical line, simil
near-critical evolutions exhibit the same early time dynam
with the formation of a finite mass black hole and the a
proach to the intermediate hairy black hole. However, as
critical line is approached, this unstable black hole now c
lapses and loses most of its hair into the black hole causin
to grow in size. A picture of both collapse dynamics is sho
in Fig. 5.

If we allow the amplitude of the Higgs field to be non
zero, i.e., explore the ‘‘pulse’’ Higgs configuration, we s
that a slightly different phase space structure exists.
sphaleron star region of the space is completely bounde
a type II critical transition. The Schwarschild black holes
longer make a critical transition into the sphaleron stars.
stead, the hairy black holes exist in a thin shell dividing t
Schwarschild and sphaleron solutions. Thus, in these s
of phase space, the triple point is not present. This is sh
in Figs. 6 and 7 for amplitudes of 0.03 and 0.06, respectiv

FIG. 12. This is another plot of the initial data space and illu
trates the end states of collapse as the centerx of the initial Yang-
Mills field and the amplitudeAH of the Higgs pulse are varied, with
r 0520, d51.05, ands51.0. This plot intersects Fig. 1 at the lin
defined bys51.0 andAH50. It should be noted that the structu
for negative values ofAH is symmetric across thex axis. Again, the
filled hexagons represent the boundary between the sphaleron
and the Schwarzschild black holes with type I transitions, the fil
triangles represent the boundary between the sphaleron stars an
hairy black holes while the open hexagons denote the locatio
the critical solutions separating the Schwarszchild and hairy b
holes. In this mixed phase space, we find a small region in wh
type I behavior borders the region of the sphaleron star format
As a result, it would appear that this portion of the initial data sp
contains a triple point. Each point on the respective critical lin
represents a critical solution at a levelup2p* u/p* ,1025. For each
evolution we again used 10401 mesh points and a Courant fact
0.5 along withh50.1 andl50.5.
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So far, our entire description has been within the cont
of varying two of the initial data parameters that describe
Yang-Mills field, while keeping the values of the Higgs p
rameters fixed. The natural thing to do is to extend our sea
into phase space regions in which we vary one Yang-M
parameter and one Higgs parameter. We choose to vary
amplitude of the Higgs field along with the Yang-Mills pa
rameters. It should be noted that we could choose to vary
center or width of the Higgs pulse. But, in order to minimi
the size of the phase space under investigation, we exp
regions where the width and center are fixed at the value
and 1.05, respectively. These regions of the phase spac
shown in Figs. 8–12. Note the existence of the triple poin
some regions, and its absence in others. This suggests th
our three dimensional phase space, this triple ‘‘point’’ is n
a true point, but is a line of finite extent.

Finally, we note that the critical solutions separating t
Schwarszchild black hole formation from the sphaleron s
formation and the two types of collapse exhibit time scali
as would be expected. As the single, unstable mode cha
teristic of each critical solution is tuned out, near-critic
solutions spend increasing amounts of time as measure
an asymptotic observer on the critical solution. These sca
relations are given byT'2l lnup2p* u wherel is the char-
acteristic time scale for the collapse of the unstable criti
solution. It corresponds to the inverse Lyapunov exponen
the unstable mode. Such scaling relations specific to po
on the relevant critical lines are shown in Figs. 13 and 1
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FIG. 13. This plot gives the elapsed time~as measured by an
observer at infinity! spent by an evolving configuration in th
sphaleron regime as the critical line separating the Schwarszc
black holes and the sphaleron star formation is approached. On
black hole side of the critical solution, there is a scaling relation
the time given by T52l Iup2p* u where l I is the inverse
Lyapunov exponent of the corresponding unstable mode of the c
cal solution sitting on the threshold between the black hole form
tion and sphaleron star formation. In the current case, we find f
a least squares fit thatl I54.27(1). Wedefine the elapsed timeT as
the time from the beginning of the evolution until the pulse cros
r 540. As before, for these evolutions, we used 10401 mesh po
and a Courant factor of 0.5 along withh50.1 andl50.5.
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IV. DISCUSSION

We have presented evidence for critical phenomena in
gravitational collapse ofSU(2) sphaleron configurations o
the Yang-Mills-Higgs fields. In many respects, this collap
is qualitatively similar to that in the Einstein-Yang-Mills sy
tem but does have some notable suprises. The critical be
ior is seen again in three possible transitions. On each
these transitions sit critical solutions which serve as interm
diate attractors for nearby evolutions in the initial data spa
Near the critical line separating the Schwarszchild bla
holes from the regular solution as well as for the critical li
separating the two types of dynamical black hole formati
there are time scaling relations as the near-critical soluti
approach the critical solutions. In addition, the mass of
black holes formed in the appropriate region will exhibit
mass gap in crossing these critical lines. Near the critical
separating the hairy black holes from the regular end s
region, we have indications that the mass of the black h
scales without a mass gap, but again, due to our uni
code, we cannot settle this conclusively although expe
tions and indications would bear this out.

Among the surprises in this model are that in certain
gions of the initial data space, we find that regular, stab
sphaleron solutions are produced rather than the purely
persive regime seen in@5#. However, we also have stable
hairy black holes produced in the supercritical, black h
regime. This contrasts again with earlier results in which

FIG. 14. This graph gives the elapsed time~as measured by an
observer at infinity! spent by an evolving configuration in the hai
black hole region as the critical line separating the Schwarszc
and hairy black holes is approached. As the critical solution is
proached, the evolution spends more and more time on the cri
solution and we expect a linear relationship between that time
logarithmic distance in the initial data space:T52l I–IIup2p* u.
The slope of this line,l I–II , is the inverse Lyapunov exponent o
the corresponding unstable mode of the critical solution. From
least squares fit, we findl55.27(1). The time on thecritical solu-
tion is defined as the time between the beginning of the evolu
until the pulse in the type II case crossesr 540. As before, for these
evolutions, we used 10401 mesh points and a Courant factor o
along withh50.1 andl50.5.
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end state in spherical symmetry was always a Schwarzsc
black hole. Within one region, the end state is always
Schwarzschild black hole with the exterior gauge and Hig
fields either falling into the existing black hole or dispersi
to infinity. In the other region, the final black holes are stab
hairy black holes. It is worth reemphasizing that the color
black hole solutions sitting on the critical line separating t
types of black hole collapse are not the same as the sta
colored black holes that are the final end states in one of
supercritical regions. This can be seen most easily in Fig

It is also noteworthy that the existence of all the solutio
which we find is contingent on the magnetic ansatz with
which we have chosen to work. In general, both the regu
and colored black hole solutions which we find to be t
stable end states of collapse are expected to be uns
based on a linear perturbation analysis@10#. However, such
an analysis assumes that both the gravitational and spha
sectors in the theory are perturbed. Our evolutions pert
only the gravitational sector. It is reasonable to assume
the stable solutions which we find will become unstable
perturbation of the Yang-Mills gauge field away from th
magnetic ansatz. We hope to address this issue in fu
work.

Another noteworthy issue is the structure of the init
data space. A curiosity of our current results is that the tri
point is not present in every two-dimensional slice of t
phase space, but seems to be present within some finit
terval. As a result, in some regions of the phase space
boundary between the regular end states~the sphaleron sta
formation here! and the black hole formation is taken u
entirely by a type II transition.

Nonetheless, given the structure of the initial data spa
one can draw an analogy with the gravitating monopole c
in which a small black hole can form within a ’t Hooft–
Polyakov monopole coupled to gravity. This stable obje
can be rendered unstable above a maximum value of
horizon radius at which point the exterior Yang-Mills-Higg
hair will either fall into the black hole or disperse leaving
final Schwarzschild black hole. A similar thing happens
the current sphaleron case. For example, following a line
constantx in Fig. 1 that intersects each region, we see tha
s decreases, one can interpret the process in a similar wa
regular solution develops a small, stable black hole at
center which~with decreasing width of the initial Yang-Mills
potential,s) increases in size until the combined sphaler
and black hole system becomes unstable and is replaced
a larger Schwarzschild black hole. As a result, it would
interesting to consider the full dynamical evolution of th
gravitating monopole and compare with the sphaleron c
reported here.
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