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Quantum-electrodynamic treatment of photoemission by a single-electron wave packet
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A quantum-field-theory description of photoemission by a laser-driven single-electron wave packet is presented.
We show that, when the incident light is represented with multimode coherent states then, to all orders of
perturbation theory, the relative phases of the electron’s constituent momenta have no influence on the amount of
scattered light. These results are extended using the Furry picture, where the (unidirectional) arbitrary incident
light pulse is treated nonperturbatively with Volkov functions. This analysis increases the scope of our prior
results in [Phys. Rev. A 84, 053831 (2011)], which demonstrate that the spatial size of the electron wave packet
does not influence photoemission.
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I. INTRODUCTION

Recent advances in high-intensity laser physics have re-
newed interest in fundamental processes of quantum elec-
trodynamics. Physicists can now probe new regimes of the
theory, testing its framework as well as our intuition for its
complexity. References [1,2] provide a summary of high-
intensity processes of QED. In this paper, we examine the
process of photoemission from a laser-driven electron wave
packet, as an extension of our previous work in Ref. [3].

A brief summary of the question addressed in our previous
paper is as follows: A classical description of radiation from a
specified charge current density superposes the contributions
from different spatial regions by use of the retarded Green
function

Aμ(x) = 4π

c

∫
d4x ′Gret(x − x ′)Jμ(x ′) (1)

in the Lorenz Gauge [4]. In the classical case, radiation from
different regions of the current density Jμ(x1) and Jμ(x2) can
interfere at spacetime point x if (x1 − x)2 = (x2 − x)2 = 0. It
is natural to wonder if this interference arises in the quantum
mechanical problem where the source is a single (laser-driven)
electron wave packet. If such interference exists in the quantum
problem, one might expect its effects to become salient when
the size of the electron wave packet spans a wavelength (or
more) of the stimulating light.

Intuitively, one might want to replace the classical current
density in Eq. (1) by the quantum probability current density
(multiplied by the charge of the electron). The precedent
for this line of thinking goes back to some of the founders
of quantum mechanics, including Schrödinger [5], Gordon
[6], and Klein [7]. By closely paralleling the classical-field
solution, this model predicts interference akin to that obtained
from a classical charge current [8–10].

In our previous paper, we emphasized that, in order
for a first-quantized theory to match the lowest-order QED
amplitude, one must perturb the laser-electron system with a
fixed single-mode photon potential, representing a particular
scattered photon. The single-electron transition amplitude is
then reinterpreted as a probability amplitude for both the
scattered electron and the scattered photon. From a classical-
field perspective, this approach seems to suggest the repugnant
idea that the scattered radiation is plane-wave in nature.

Insights from QED, however, indicate that this reflects the
incoherence of the electron’s emitted radiation, rather than the
particular form of the emitted field. Hence, this model predicts
that emission from different spatial regions of the wave packet
do not interfere. This conclusion supports those suggested
by the fully quantized model of [11] and the numerical
simulations of [12].

This “informed” semiclassical analysis only artificially
connects to the framework and language of the fully quantized
radiation theory. Moreover, it does not consider the possibility
of multiphoton emissions and is restricted to the lowest order
of perturbation theory. Interesting physics sometimes emerge
beyond lowest-order calculations. The high-intensity case was
considered only for an infinite-duration plane-wave field. This
prevents one from conceptually specifying the spatial size of
the electron wave packet during the interaction. In the analysis
given here, we remove these shortcomings using the techniques
of QED scattering theory.

Section II gives an overview of photon coherent states and
provides the framework we use for counting scattered photons.
We choose the stimulating light field to be a multimode
coherent state representing an arbitrary unidirectional pulse.
This choice allows for the conceptual possibility of phase-
mismatching across the electron packet, as the induced oscil-
lations of the probability current would carry the (reasonably)
well-defined phase of the coherent state [13]. We choose
the initial electron state to be an arbitrary superposition of
momentum eigenstates. In Sec. III, we show how the dis-
entangled initial state evolves into the final state via the
scattering operator. To all orders of perturbation theory, the
average number of scattered photons (detected in a different
direction from that of the incident beam) does not depend on
the relative phases of the momentum amplitudes of the initial
electron state. The inevitable conclusion is that the size of the
electron wave packet does not affect the detection of scattered
photons.

In Sec. IV, we reexamine our results to lowest order in
the Furry picture, which enables consideration of arbitrarily
intense incident light. It is well known [2] that QED pertur-
bation theory fails for ultra-intense light fields. In such cases,
the stimulating light pulse must be treated nonperturbatively
through quantization via Dirac Volkov states. The Furry picture
treats the quantized light field as a perturbation against the
backdrop of a classical high-intensity light field. We show that
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this method of quantization does not affect the validity of our
conclusions. Our nonperturbative approach accommodates an
arbitrary unidirectional light pulse. In Sec. V, we expand the
analysis to all orders of perturbation theory and for all numbers
of emitted photons in the Furry picture.

II. COUNTING SCATTERED PHOTONS

We begin by identifying two regions of k space that are
of interest, depicted schematically in Fig. 1. We define the
region Vkz

to contain photon momentum vectors comprising
the incident light field, which propagates only along the
ẑ direction. We define the region Vk′ to contain photon
momentum vectors that may be intercepted by a detector
aligned off axis (blind to the incident light). The latter region
need not be limited to a single ray emanating from the origin,
as real photon detectors may subtend a nonvanishing solid

angle. The regions Vkz
and Vk′ should not be confused with the

(position-space) quantization volume V .
Without loss of generality, we suppress spin and polariza-

tion indices. We also use scaled units such that h̄ and c vanish
from the equations. In calculating the amount of detected
radiation, we are interested in the object

〈
NVk′

〉 = 〈�(t)|
∑
Vk′

a
†
k′ak′ |�(t)〉. (2)

This quantity represents the expected number of photons
scattered into the region Vk′ . The use of QED scattering theory
will require the eventual limit that t → ∞.

We write (2) in terms of traditional scattering amplitudes.
In the space of states that includes a single electron and an
arbitrary number of photons, we can resolve the identity as
follows:

1 =
∑

p′
|p′〉〈p′| ⊗

∑
{nk}

|{nk}〉〈{nk}| =
∑

p′
|p′〉〈p′| ⊗

∑
{nkz }

(∣∣0k′′ ;
{
nkz

}〉〈
0k′′ ;

{
nkz

}∣∣ +
∑

k′′

∣∣k′′;
{
nkz

}〉〈
k′′;

{
nkz

}∣∣

+
∑

k′′

∑
k′′′

∣∣k′′,k′′′;
{
nkz

}〉〈
k′′,k′′′;

{
nkz

}∣∣ + · · ·
)

, (3)

where {nkz
} represents a configuration of photons in modes kz ∈ Vkz

, and it is understood that {k′′,k′′′, . . .} /∈ Vkz
. This mixture

of notations for modes in and out of Vkz
will prove useful in the scattering analysis, as it explicitly distinguishes newly scattered

photons from those that were already present in the incident pulse. If we insert this identity between the creation and annihilation
operators of (2) and note that k′ /∈ Vkz

, we find that the detected photon number may be written as

〈
NVk′

〉 =
∑

p′

∑
Vk′

∑
{nkz }

[∣∣〈p′; k′;
{
nkz

}|�(t)〉∣∣2 + 2|〈p′; 2k′ ;
{
nkz

}|�(t)〉∣∣2 +
∑

k′′ 	=k′

∣∣〈p′; k′,k′′;
{
nkz

}|�(t)〉∣∣2 + · · ·
]
. (4)

We see explicitly that the state |�(t)〉 is projected onto a
single basis vector before squaring and summing over the
states of that basis. This is in agreement with the probability
interpretation of quantum mechanics [14], where (4) is a
weighted sum of the probabilities of scattering photons into
the k-space region Vk′ .

k-space Vkz

Detector

Vk `

FIG. 1. (Color online) Depiction of k-space regions for the
incident pulse (Vkz

) and photon detector (Vk′ ).

We represent the incident laser field with a coherent state
[15]. It is well known that coherent states, which satisfy

ak1 |{αk}〉 = αk1 |{αk}〉, (5)

are the closest quantum analog of classical oscillating fields.
Whereas the expectation value of the electric field operator
vanishes for photon number states, coherent states can be
constructed in such a way to match the field expectation
value to any real-valued and well-behaved classical-field
function. Such multimode coherent states are eigenvectors of
the Maxwell field annihilation operator Aν(+)(x), such that

Aν(+)(x)|{αk}〉 =
∑

k1

1√
2ωk1V

ak1ε
ν
k1

e−ik1·x |{αk}〉

= aν(x)|{αk}〉, (6)

where aν(x) ≡ ∑
k

1√
2ωkV

αkε
ν
ke−ik·x is the eigenvalue cor-

responding to the coherent state |{αk}〉. We employ the
Minkowski metric characterized by (+1,−1,−1,−1). We see
that {αk} is the set of Fourier coefficients of the corresponding
classical field aν(x). There is, of course, some “quantum flesh
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on the classical bones” [16] that matches the uncertainty of the
vacuum field.

III. SCATTERING OF COHERENT LIGHT STATES

We are now prepared to compute the average number of
photons scattered to a detector that is aligned off axis to the
incident photon beam. Let the initial state of the system be
represented by the disentangled state

|�in〉 =
(∑

p

βp|p〉
)

⊗ ∣∣{αkz

}〉 =
∑

p

βp
∣∣p;

{
αkz

}〉
, (7)

where {αkz
} are chosen to represent a unidirectional light pulse.

Note that only modes kz ∈ Vkz
are initially occupied in the

light field. The coefficients βp can be chosen to construct
an arbitrary (potentially large) free-electron wave packet. We
time-evolve this state in the interaction picture using the
scattering operator S. The Dyson expansion is

S =
∞∑

n=0

(−i)n

n!

∫
d4x1 · · · d4xnT[Hint(x1) · · ·Hint(xn)], (8)

where

Hint(x) = e : ψ̄(x)γμψ(x)Aμ(x) : (9)

is the normally ordered interaction Hamiltonian density, T
is the time-ordering operator, and ψ(x) and Aμ(x) are the
standard free-field operators for electrons or positrons and
photons, respectively [17].

As shown in Eq. (4), we must compute and then square
amplitudes of the form 〈p′; k′,k′′, . . . ; {nkz

}|S|�in〉, where
primed wave vectors represent photons scattered outside of
Vkz

. We emphasize that the parameters defining the bra are
fixed before squaring. To properly characterize the Feynman
diagrams that contribute to these amplitudes, we must examine
the general framework (not the fine details) of the relevant
Wick expansion of (8). Wick’s theorem rewrites the time-
ordered operator products in Eq. (8) as sums of normally
ordered operator products. We find (after some algebra) that〈

p′; k′,k′′, . . . ;
{
nkz

}∣∣S|�in〉

=
∞∑

n=2

∑
p

βp
(−ie)n

n!

∫
d4x1 · · · d4xn

×
∑

ξ

CξSF

(
xξ1 ,xξ2

) · · · SF

(
xξn−1 ,xξn

)
×

∑
0�l�n−2

∑
ζ

D
(
xζ1 ,xζ2

) · · ·D(
xζl−1 ,xζl

)
× 〈

p′; k′,k′′, . . . ;
{
nkz

}∣∣ψ̄ (−)
(
xξn

)
: A

(
xζl+1

) · · ·
×A

(
xζn

)
: ψ (+)(xξ1

)∣∣p;
{
αkz

}〉
, (10)

where ξ represents a particular set of n − 1 contractions of
fermion operators, ζ represents a set of contractions of an
even number l of photon operators, and Cξ contains all gamma
matrices and any constants that arise from fermion contraction
ξ . All polarization, spin, and spinor and gamma matrix indices
have been suppressed. The functions SF (x,x ′) and D(x,x ′)
represent fermion and photon propagators, respectively. The

p

p ′

)1(
zk

k ′
)2(

zk

+ ...

)3(
zk

)(a
zk

)(b
zk

)(c
zk

+ ...

FIG. 2. Generic Feynman diagram showing possible external
lines. Time runs upward.

photon propagators introduce radiative corrections, which,
among other terms, require renormalization for explicit cal-
culation. This does not affect our analysis. We note that (10)
is valid only as an asymptotic series in n [18].

We will not compute any terms of (10) explicitly, although
a few comments are in order. Since k′, k′′, etc. do not belong
to Vkz

, there must be a creation operator A(−)(xi) for every
primed photon to “create” that state from the initial one (or
else the amplitude would vanish from orthogonality between
the bra and the ket). One can also show that all matter
operators ψ̄ and ψ must be contracted except for the two
that annihilate and create the incoming and outgoing electron
states; hence, there are n − 1 fermion contractions. It can be
shown kinematically that {k′,k′′, . . .} /∈ Vkz

implies that p′ 	= p
in nonvanishing diagrams. These arguments indicate that
certain types of intuitively plausible Feynman diagrams vanish
trivially. Figure 2 shows a generic nonvanishing Feynman
diagram. The external lines referring to primed quantities are
fixed before squaring, as demonstrated by (4).

For every field that is not contracted, there is an external
particle line [19]. All A(+)(x) operators appear to the right,
owing to normal ordering. Acting on the coherent state, they
repeatedly pull out the eigenvalue

aν(x) =
∑

kz∈Vkz

1√
2ωkz

V
αkz

εν
kz
e−ikz·x, (11)

without changing the state. We note that each operator A(+)(xi)
produces a different sum aνi (xi) with its own summation
index k(i)

z . This feature will be important to our analysis. All
A(−) operators appear on the left. Some of them produce the
scattered photons k′, k′′, etc., while the remainder produce
photons that are forward scattered into Vkz

. In the usual manner,
they contribute complex exponentials of the form

1√
2ωk′V

eik′ ·x,
1√

2ωk′′V
eik′′ ·x, . . . (12)
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for photons scattered outside of Vkz
, and

∑
kz∈Vkz

g
({

nkz

}) 1√
2ωkz

V
eikz·x (13)

for photons forward-scattered into Vkz
. The items (11)–(13)

designate the external photon lines of Feynman diagrams. In
typical low-order calculations, the external lines are deter-
mined uniquely by the initial state (ket) and the projection
(bra). That is clearly not the case when considering coherent
states, especially for high-order terms in the expansion. The
electron may, in principle, absorb an arbitrary number of
photons from Vkz

[dictated by the number of A(+)(x) operators
in the product] or forward scatter as many photons as are
allowed by the final projection onto 〈{nkz

}|. In this important
respect (owing to indeterminacy of photon number), our
calculation differs from the packet-packet considerations of
[20,21], who only considered narrow momentum distributions
of number states. However, the kinematic principles have some
similarities.

The integrations over d4x1 · · · d4xn produce delta functions
that enforce energy-momentum conservation at every vertex.
These delta functions allow for the evaluation of many of
the momentum-space integrals that compose the electron and
photon propagators in Eq. (10). When the smoke clears,
there remains [for each summed term of (10)] a single four-
dimensional delta function that enforces energy-momentum

conservation of the external lines. (Three of the delta functions
are of the Kronecker variety if we quantize in volume V ,
although this does not change the arguments that follow.)
These kinematic constraints are well known and constitute one
of the Feynman rules for evaluation of transition amplitudes
[22]. Ignoring numerical factors, the complex exponentials in
the previous paragraph indicate that (10) must include delta
functions of the form

δ(4)
(
p′ + k′ + k′′ + · · · + k(1)

z

+ k(2)
z + · · · − k(a)

z − k(b)
z − · · · − p

)
, (14)

where, as in Fig. 2, numerical superscripts indicate forward-
emitted photons and letter superscripts indicate photons
absorbed from the incident light. It appears, at first glance,
that the square of the amplitude (10) might include cross terms
between different electron momenta as well as different photon
momenta, because a single four-delta cannot collapse the many
sums in Eq. (10).

A careful examination of the kinematic constraints enforced
by (14) demonstrates that the scattering does not depend on the
relative phases of the momenta that compose the initial electron
wave packet. We remind the reader that, in the amplitude (10),
the momenta of all primed external lines (belonging to the bra)
are fixed before the amplitude is squared. If the incident light
pulse is unidirectional, then the kinematic constraints make
the scattering amplitude (10) zero except when

p′
x + k′

x + k′′
x + · · · = px, p′

y + k′
y + k′′

y + · · · = py,

p′
z + k′

z + k′′
z + · · · + k(1)

z + k(2)
z + · · · = k(a)

z + k(b)
z + · · · + pz,

Ep′ + k′ + k′′ + · · · + |k(1)
z | + |k(2)

z | + · · · = |k(a)
z | + |k(b)

z | + · · · + Ep. (15)

The x and y constraints collapse two dimensions out of the
sum over p. Since the incident pulse is unidirectional, we
have kz = |kz| for all kz ∈ Vkz

. Then both of the bottom two
constraints contain the identical quantity k(a)

z + k(b)
z + · · · −

k(1)
z − k(2)

z − · · ·, which can be substituted between them. This
results in

p′
z + k′

z + k′′
z + · · · = Ep′ + k′ + k′′ + · · · − Ep + pz. (16)

This constraint must be the same for every nonzero contri-
bution to (10) (to all orders of perturbation theory), because
the substitution of momenta from Vkz

can always be made for
a unidirectional pulse. This final constraint, along with the
simpler ones in the x and y directions, entirely determines
the value of p = p̄ for which the amplitude (10) is nonzero.
Thus, kinematic constraints collapse the sum over p, and the
amplitude squared of (10) depends on βp only via

∣∣〈p′; k′,k′′, . . . ;
{
nkz

}∣∣S|�in〉
∣∣2 ∝ |βp̄|2. (17)

That is, the relative phases of βp have no influence on the
scattered radiation.

The relative phases of βp play a key role in determining the
spatial size of an electron wave packet. A simple change of
these phases such as

βp → βpe
−iEpT (18)

accounts for the natural quantum spreading experienced by
a free particle during a time interval of duration T . This
spreading can drastically change the spatial scale of a wave
packet from being almost pointlike (relative to the wavelength
of the stimulating field) to spanning many wavelengths. We
have shown that such transformations have no effect on the
scattered radiation; that is, size does not matter. This result
holds for all emission configurations and to all orders of
perturbation theory, instead of only to lowest order as done
in our previous work [3].

Once the sum over p is collapsed, there remains only
a single delta function. This delta function determines the
precise value that

�kz ≡ k(a)
z + k(b)

z + · · · − k(1)
z − k(2)

z − · · · (19)

must take for the amplitude to be nonzero. This suggests
that absorption and reemission of multiple photons into Vkz

can effectively be treated kinematically as the absorption or
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emission of an single unidirectional photon of momentum
�kz. Evidently the remaining delta function does not collapse
all of the remaining sums over Vkz

. This indicates that the
relative phases of αkz

do matter. This result is unsurprising,
however. The relative phases of αkz

can determine the incident
light’s state of chirp, for example. Rearrangement of those
phases can change the temporal profile of the pulse from
short to long without changing the spectral content. This can
drastically affect the instantaneous intensity experienced by
the electron, thereby altering nonlinear radiative transitions
[23,24].

If the incident light is not unidirectional, our analysis breaks
down, and the photoemission indeed depends on the relative
phases of βp. On physical grounds, we would expect this to be
the case. A spatial translation such as

βp → βpe
−ip·r0 (20)

could shift a wave packet into or out of the path of a focused
laser [3]. Our choice of a unidirectional field is the only way to
guarantee that the entire electron wave packet (large, small, or
spatially translated) experiences the same incident light pulse.

IV. LASER-DRESSED PHOTOEMISSION

It is well known [2] that QED perturbation theory fails for
ultra-intense fields. In such cases, the above arguments do not
apply, and we must treat the incident light nonperturbatively.
In the Furry picture of QED [25], we account for the intense
(classical) light field A

μ
ext by requiring the matter field operator

to satisfy

(iγ · ∂ − eγ · Aext − m)ψL = 0. (21)

If A
μ
ext depends on x only via η ≡ n · x = x0 − n̂ · x, then we

may expand the quantized field operator ψL(x) in the basis of
Volkov functions {ψv±

pr (x)} instead of plane waves. Appendix
gives explicit expressions for the laser-dressed matter field
operator and its Volkov basis.

Scattering calculations proceed in much the same way as
in regular perturbative QED. The interaction Hamiltonian (9)
changes only in substituting the dressed operator ψL for the
free-field operator ψ , as shown in Eq. (A4). We expand the
scattering operator in a Dyson series, use Wick’s theorem
to produce sums of normally ordered operators (multiplied
by propagators), and evaluate Furry-Feynman diagrams. The
chief difference is that fermion lines must be calculated using
Volkov functions instead of free-particle plane waves.

With the proper tools in hand, we now address the radiation
of light from a laser-dressed electron wave packet. As in
previous sections, we suppress spin and polarization indices.
The initial electron state is given as a superposition of
Volkov states individually denoted by |p〉 (whereas in previous
sections this ket denoted a free-particle state). Since the
incident laser field is accounted for in the dressing of the
Dirac field operator, the initial quantum state contains no
photons [26]:

|�in〉 =
(∑

p

βp|p〉
)

⊗ |0k′ 〉 =
∑

p

βp|p; 0k〉. (22)

p

p ′ k ′

FIG. 3. Furry-Feynman diagram for photoemission from a laser-
dressed electron. The double lines denote field-dressed electrons.

The lowest-order matrix element represents the emission of a
single photon:

〈k′; p′|S(1)|�in〉 =
∑

p

βp〈k′; p′|S(1)|p; 0k′ 〉

= −ie
∑

p

βp

∫
d4xψ̄v+

p′ (x)γμψv+
p (x)

× 1√
2ωk′V

ε
μ

k′e
ik′ ·x. (23)

The corresponding Furry-Feynman diagram is shown in Fig. 3.
We note that, to lowest order, this matrix element is squared
(with fixed k′ and p′) when computing the expectation of
emitted photons in Eq. (4).

Most calculations make the assumption that A
μ
ext(x) is

a single-mode plane-wave field. In contrast, we consider a
(unidirectional) light pulse with arbitrary spectral content.
This feature has the conceptual advantage of limiting the
interaction time so that the particle does not have an infinite
time interval during which it can spread. Hence, the spatial
size of the wave packet during the interaction is well defined
by (22). Treatments of arbitrary unidirectional pulses appear
to be relatively new in the literature [23,27,28]. The approach
introduced here makes overall energy-momentum conserva-
tion more transparent. The results also generalize naturally
to arbitrary numbers of emitted photons and to all orders of
perturbation theory, as outlined in the next section.

As usual, we let the intense light pulse propagate in the ẑ
direction (kz > 0 for all kz ∈ Vkz

):

A
μ
ext(x) =

∑
kz

Akz
ε

μ

kz
cos

[
kz(t − z) + φkz

]
, (24)

where ε
μ

kz
represents some nonscalar polarization orthogonal

to ẑ, and Akz
> 0. Defining as before η ≡ n · x = t − z, we

have the unit propagation vector n = (1,0,0,1).
We anticipate the appearance of kinematic delta functions

in Eq. (23) that will collapse the sum over p. To investigate
this structure, we expand the Volkov functions as a series
of complex exponentials. Ignoring the constant phase factor
produced by the lower limit of integration in Eq. (A5), we find
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that the exponent becomes

1

p · n

∫ η
(

ep · Aext(η
′) − e2

2
A2

ext(η
′)
)

= 1

p · n

(
e
∑
kz

Akz
p · εkz

∫ η

cos
(
kzη

′ + φkz

)
dη′

− e2

2

∑
kz

∑
k̃z

Akz
Ak̃z

εkz
· εk̃z

∫ η

cos
(
kzη

′ + φkz

)
cos

(
k̃zη

′ + φk̃z

)
dη′

)
. (25)

Evaluating these indefinite integrals yields

1

p · n

(
e
∑
kz

Akz

kz

p · εkz
sin

(
kzη + φkz

) + e2

8

∑
kz

A2
kz

kz

[
2
(
kzη + φkz

) + sin 2
(
kzη + φkz

)]

− e2

4

∑
kz

∑
k̃z 	=kz

Akz
Ak̃z

εkz
· εk̃z

{
sin

[
(kz − k̃z)η + φkz

− φk̃z

]
kz − k̃z

+ sin
[
(kz + k̃z)η + φkz

+ φk̃z

]
kz + k̃z

} )
. (26)

Because η ≡ n · x, the middle term e2

4p·n
∑

kz
A2

kz
η can be absorbed into the p · x term in the exponent of (A5) to produce q · x,

where we define the dressed momentum four-vector:

qν ≡ pν + e2

4p · n
nν

∑
kz

A2
kz
. (27)

This is a natural generalization of single-mode [29,30] and double-mode [24,31] dressed momenta, but it is not necessarily a
definitive expression for dressed momentum in all contexts. However, its suits our purposes here.

It can be algebraically shown that the integrand of (23) is proportional to

ūp′

[
1+ e

2p · n
γ ·Aext(η)γ · n

]
γ · εk′

[
1+ e

2p · n
γ · nγ · Aext(η)

]
upe

i(q ′+k′−q)·xg1(η)g2(η)g3(η)g4(η), (28)

where

g1(η) ≡ exp

[
−i

∑
kz

eαAkz

kz

sin
(
kzη + φkz

)]
, g2(η) ≡ exp

[
−i

∑
kz

βe2A2
kz

8kz

sin 2
(
kzη + φkz

)]
,

g3(η) ≡ exp

{
i
∑
kz

∑
k̃z 	=kz

e2βAkz
Ak̃z

εkz
· εk̃z

4(kz − k̃z)
sin

[
(kz − k̃z)η + φkz

− φk̃z

]}
, (29)

g4(η) ≡ exp

{
i
∑
kz

∑
k̃z 	=kz

e2βAkz
Ak̃z

εkz
· εk̃z

4(kz + k̃z)
sin

(
(kz + k̃z)η + φkz

+ φk̃z

)}
,

and

α ≡ p · εkz

p · n
− p′ · εkz

p′ · n
, β ≡ 1

p · n
− 1

p′ · n
. (30)

We may expand the gi(η) further using the generating function of Bessel functions [32]

eiz sin θ =
∞∑

m=−∞
Jm(z)eimθ , (31)

where the Jm(z) are standard Bessel functions. We find that

g1(η) =
∏
kz

[∑
�

J�

(
eαAkz

kz

)
e−i�(kzη+φkz )

]
, g2(η) =

∏
kz

[∑
m

Jm

(
e2βA2

kz

8kz

)
e−i2m(kzη+φkz )

]
,

g3(η) =
∏
kz

∏
k̃z 	=kz

[∑
r

Jr

(
e2βAkz

Ak̃z
εkz

· εk̃z

4(kz − k̃z)

)
eir[(kz−k̃z)η+φkz −φk̃z

]

]
, (32)

g4(η) =
∏
kz

∏
k̃z 	=kz

[ ∑
s

Js

(
e2βAkz

Ak̃z
εkz

· εk̃z

4(kz + k̃z)

)
eis[(kz+k̃z)η+φkz +φk̃z

]

]
.
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To more easily distinguish between product expansions, we use
a different summation index letter for each product expansion
gi(η). We remark that A

μ
ext(η), as defined in Eq. (24), is also a

sum of complex exponentials. Hence the entire integrand, as
a function of x, is equivalent to products of sums of complex
exponentials. We are now prepared to compute the integral
over d4x in Eq. (23).

The integrals over x and y are straightforward because the
integrand depends on those variables only through

ei(q ′+k′−q)·x. (33)

This indicates that (23) is proportional to

δ(q ′
x + k′

x − qx)δ(q ′
y + k′

y − qy)

= δ(p′
x + k′

x − px)δ(p′
y + k′

y − py), (34)

since the incident field only dresses the momentum in the
direction of its propagation. These delta functions uniquely
determine px and py in Eq. (23) in terms of p′

x , p′
y , k′

x , and

k′
y—quantities that are fixed before the square is performed.

That is, the sums over px and py collapse.
The integrals over z and t in Eq. (23) require more care,

since gi(η) and Aext(η) also depend on these variables of
integration. At first glance, it might appear that the sum over
pz in Eq. (23) will not fully collapse. However, integrating
the sums of exponentials in Eqs. (28) and (32) produces pairs
of delta functions that are just right to fully collapse the sum
over pz, the reason being that gi(η) and Aext(η) depend on z

and t only via exponentials of η = t − z. The important point
is that the arguments of individual delta-function pairs share
{kz} dependence that can be substituted between them. When
this is done, one of the delta functions becomes identical for
all pairs and can be factored out to collapse the sum over pz.

To make this explicit, consider a generic exponential term
of the integrand. We expand the products for each gi(η),
enumerating kz for g1(η) and g2(η), and enumerating pairs
(kz,k̃z) for g3(η) and g4(η). Before integration, the integrand
contains terms of the form

ei(q ′+k′−q)·xe−i(�1kz1+�2kz2+···)ηe−i2(m1kz1+m2kz2+···)ηei[r1(kz1−k′
z1)+r2(kz2−k′

z2)+···]ηei[s1(kz1+k′
z1)+s2(kz2+k′

z2)+···]η. (35)

If we define [33]

�kz{�i ,mi ,ri ,si } ≡ (�1kz1 + �2kz2 + · · ·) + 2(m1kz1 + m2kz2 + · · ·) − r1(kz1 − k′
z1)

−r2(kz2 − k′
z2) − · · · − s1(kz1 + k′

z1) − s2(kz2 + k′
z2) − · · · , (36)

we find that (35) may be written compactly as

ei(q ′+k′−q)·xe−i�kz{�i ,mi ,ri ,si }η. (37)

When integrated over z and t , the resulting delta functions are

δ
(
q ′

0 + k′ − q0 − �kz{�i ,mi ,ri ,si }
)

× δ
(
q ′

z + k′
z − qz − �kz{�i ,mi ,ri ,si }

)
. (38)

As mentioned, we can solve for �kz{�i ,mi ,ri ,si } in the argument
of one of the delta functions and substitute that into the other
delta function. One of the delta functions becomes

δ(q ′
0 − q ′

z + k′ − k′
z − q0 + qz). (39)

The definition of dressed momentum qν in Eq. (27) indicates
that (39) is equivalent to

δ(Ep′ − p′
z + k′ − k′

z − Ep + pz), (40)

which is independent of the sums over {�i,mi,ri,si}. Thus, pz

is uniquely determined from parameters that are fixed, and
the sum over p in Eq. (23) is collapsed before squaring. This
indicates that |βp̄|2 then neatly factors out of the detection
probability. We conclude, as before, that the size of the electron
wave packet does not matter. Notice that the delta functions
enforce a constraint that agrees with the general result (16)
obtained in the previous section by use of coherent states. We
note that the constraints (34) and (40) can also be derived
using lightcone coordinates, as in Ref. [27]. In fact, their
approach is more suitable for calculating scattering spectra,
particularly because it avoids the cumbersome expansions
of Bessel functions. However, the approach we have taken

parallels the low-intensity analysis in the previous section,
as a net exchange of unidirectional laser photons (and the
dressing of electron momenta) can be partially substituted out
of energy-momentum conservation. Moreover, it also lends
itself well to higher orders of perturbation theory and the
emission of multiple photons, as will be discussed in the next
section.

This exercise also confirms the previous result that the
relative phases of momenta in the incident light, here denoted
by {φkz

}, do matter, as products of sums of these phases
are different for every term. We argued in Sec. III that
this is expected and does not affect our conclusion that
radiation scattering is independent of the electron wave-packet
size.

V. COMPLETE EXPANSION FOR LASER-DRESSED
PHOTOEMISSION

The conclusions of the previous section generalize to higher
orders of perturbation theory in the Furry picture. The full
amplitude

〈p′; k′|S|�in〉 (41)

can be computed from the Furry-Feynman diagrammatic
expansion shown in Fig. 4. We note that the higher-order
terms of (41) introduce only internal particle lines, as the
bra and ket have only 0 and 1 for occupation numbers.
This is a beneficial consequence of treating the incident field
nonperturbatively.
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k ′

+ ...+ ...+

p

p ′ k ′k ′ p ′ p ′

p p

FIG. 4. Furry-Feynman diagrammatic expansion for the photoe-
mission amplitude.

The presence of dressed field operators in the interaction
Hamiltonian density (A4) changes the explicit calculation
of internal fermion lines, but not the general structure
thereof [34]. The dressed fermion propagator, a 4 × 4 ma-
trix, is still computed as the time-ordered product of field
operators

SL(x,x ′) = 〈0|T ψL(x ′)ψ̄L(x)|0〉, (42)

where T is the time-ordering operator and ψL(x) is defined by
(A8). Inserting the expression for ψL(x) yields

SLαβ(x,x ′) = θ (t − t ′)〈0|ψLα(x)ψ̄Lβ(x ′)|0〉
− θ (t ′ − t)〈0|ψ̄Lβ(x ′)ψLα(x)|0〉

= θ (t − t ′)
∑
pr

ψv+
prα(x)ψ̄v+

prβ(x ′)

− θ (t ′ − t)
∑
pr

ψv−
prα(x)ψ̄v−

prβ(x ′), (43)

where we have included spinor indices α and β. The
laser-dressed electron propagator has received considerable
attention in the literature [29,35,36].

The spacetime dependence of (43) is thus equal to a sum
of products of two Volkov functions of identical parameters
p and r , but different argument x. We showed in Sec. IV
that products of Volkov functions can be expanded as sums
of complex exponentials. In this case, the generic exponential
term has the form

e±iq·(x−x ′)ei�kz1ηei�kz2η
′

(44)

for some suitably chosen �kz1 and �kz2. When these ex-
ponentials are integrated over d4x and d4x ′ in Eq. (10),
kinematic delta functions appear. Hence, energy-momentum is
still conserved at each vertex (where the dressed momentum qν

represents the electron), the �kzi specifying a net exchange of
laser photons between vertices. The overall energy-momentum
conservation for the entire amplitude must take account of
these local net exchanges with a global net exchange of laser
photons. In the end, one may still define a global �kz that
may be substituted away as done in connection with (38)
and (39).

The conclusion is that the sum over p in higher-order
amplitudes will always collapse to the same value p̄ (for
a given bra), dictated by the delta functions (34) and (40).
These same arguments also apply to amplitudes that reflect
multiphoton emission since the external lines from scattered
photons enter the kinematic constraints in the usual way, as
shown in Eq. (15). Reference [37] computes the amplitude
corresponding to Fig. 5, in which two photons are emitted
by the (monochromatic) laser-dressed electron. In agreement

p

p ′

k ′

k ′′

FIG. 5. Furry-Feynman diagram for the emission of two photons.

with our discussion, they find that the kinematic constraints
predictably include the dressed momenta, emitted photons,
and a global net exchange of laser photons.

We therefore conclude that, to all orders in a high-intensity
picture, the detection of scattered photons does not depend on
the phases of βp. This result holds for the emission of arbitrary
numbers of radiative photons.

VI. SUMMARY

In summary, we have investigated the radiation scattering
from a single-electron wave packet that is stimulated by a
unidirectional pulse. In contrast to our previous work [3], the
present analysis considers the possibility of interference at all
orders of perturbation theory and for all numbers of emitted
photons. We moreover treat intense-field stimulation with
multimode pulses instead of single-mode plane waves, because
this makes the electron wave packet’s “size” less ambiguous
during the interaction. This makes the present analysis more
relevant to a high-intensity laser experiment [11].

When describing the incident light pulse as a coherent state,
we showed that the relative phases of momenta that compose
the initial electron wave packet have no influence on the scat-
tered radiation, owing to energy-momentum conservation and
Born’s probability interpretation of quantum mechanics. This
implies that wave-packet size cannot influence light scattering.
We have shown this to be true even for high-intensity pulses of
arbitrary spectral content, taking account of nonperturbative
effects by working in the Furry picture of QED. On the other
hand, classical electrodynamics dictates that the emissions
from different regions of a charge current add coherently. The
intuition gleaned from such classical scenarios clearly does
not carry over to single-particle, quantum probability currents.
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APPENDIX: FURRY PICTURE OF QED

In the external-field approximation, we separate the inter-
action Lagrangian density as follows:

Lint(x) = −eψ̄(x)γμψ(x)
[
Aμ(x) + A

μ
ext(x)

]
, (A1)

where A
μ
ext(x) represents the classical external potential

(a c-number function) and Aμ(x) becomes the free photon
field operator upon second quantization [34]. In the Furry
picture [25], we absorb the interaction with the external field
into the free electronic Lagrangian density:

LDirac = ψ̄(iγ · ∂ − m)ψ → ψ̄L(iγ · ∂ − eγ · Aext − m)ψL.

(A2)

The quantized matter field operator must therefore
satisfy

(iγ · ∂ − eγ · Aext − m)ψL = 0. (A3)

The interaction Hamiltonian density in this laser-dressed
picture is

Hint(x) = e : ψ̄L(x)γμψL(x)Aμ(x) : . (A4)

If A
μ
ext(x) is a function of only η = n · x = x0 − n̂ · x, then

the Volkov functions ψv±
pr [38] are an orthonormal solution

basis for (21) [36,39]. Explicitly, these c-number solutions
are

ψv+
pr (x) =

√
m

V Ep

[
1 + e

2p · n
γ · nγ · Aext(η)

]
upre

−ip·x−i
∫ η

−∞ Sp(η′)dη′
,

(A5)

ψv−
pr (x) =

√
m

V Ep

[
1 − e

2p · n
γ · nγ · Aext(η)

]
vpre

ip·x−i
∫ η

−∞ S−p(η′)dη′
,

where

Sp(η′) = ep · Aext(η′)
p · n

− e2Aext(η′) · Aext(η′)
2p · n

, (A6)

and upr and vpr are Dirac spinors satisfying

(γ · p − m)upr = 0, (γ · p + m)vpr = 0. (A7)

for p0 > 0. We expand the laser-dressed matter field operator ψL(x) in creation and annihilation operators of Volkov functions,
rather than free-particle plane waves:

ψL(x) =
∑
pr

[
bprψ

v+
pr (x) + d†

prψ
v−
pr (x)

]
. (A8)

We then impose the standard fermionic anticommutation relation, {ψLα(x,t),πLβ(x′,t)} = iδαβδ3(x − x′), between the new field
operator and its conjugate momentum πL. The creation (annihilation) operators in Eq. (A8) create (annihilate) particles in Volkov
states. These operators also satisfy the usual anticommutation relations pertinent to fermions.
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