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Abstract:  A solution to the Klein Gordon equation for a laser-driven 
electron is constructed from a superposition of Volkov states.  The time- 
and space-dependent three-dimensional superposition integral can be 
evaluated analytically for an initial Gaussian momentum distribution 
when the expression for relativistic energy is expanded in a Taylor series 
over the scaled initial momenta.  The solution preserves many 
complicated wave-packet dynamics in a strong field, including so-called 
wave-packet shearing and the formation of multiple peaks when the 
wave packet spreads to the scale of the driving-field wavelength. The 
range of applicability of the solution applies to much of the parameter 
space accessible by current intense ultra-short laser systems. 
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1. Introduction 

Wave-packet dynamics for charged particles in relativistic electromagnetic fields have 
been investigated numerically using either the Dirac or the Klein-Gordon equation. 
Mocken et al. have performed a series of ab initio calculations in 2-D of electron wave-
packet dynamics in strong laser fields [1,2].  The Dirac equation is needed if one wants to 
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account for spin effects.  At currently available laser intensities, however, spin effects for a 
free electron are in most cases of little consequence, and the Klein-Gordon equation 
approximates well the behavior of a Dirac particle such as an electron [1,3,4].  
Nevertheless, ab initio calculations for either equation is numerically challenging and time 
consuming [2]. 

A wave packet for a free charged particle can be constructed from a superposition of 
Volkov states [5], which are available as exact solutions to both the Dirac and the Klein-
Gordon equation in an electromagnetic plane-wave field.  That is, the applied field can 
have an arbitrary temporal profile but must propagate uni-directionally.  Román et al. used 
this approach to explore wave-packet dynamics in a relativistic regime [6,7].  Their 
technique had a side effect of populating the wave function with a small amount positronic 
amplitude, in addition to the electron amplitude.  Although the superposition integral for 
wave-packet construction is less numerically intensive than ab initio calculations, it is still 
challenging, especially in three dimensions, since the integration must be repeated at every 
point in space and time where one wishes to view the dynamics. 

Volkov solutions are also available for the Schrödinger equation in an oscillating 
electric field, but they exist only in the dipole approximation.  They do not countenance, 
for example, the Lorenz drift, which arises from the action of the magnetic field 
component. Verschl et al. showed how to inject this property within the framework of the 
Schrödinger equation for dynamics beyond the dipole approximation [8].  However, the 
complex dynamics that occur when a wave packet spreads to the scale of a laser 
wavelength (i.e. different parts of the wave packet responding to varied phase in the 
propagating electromagnetic field) were included only to first order. 

In this article, we develop a closed analytical approximate solution to the Klein Gordon 
equation for a free charged particle in a strong plane-wave electromagnetic field.  The 
three-dimensional expression, which assumes an initial Gaussian distribution in 
momentum, is valid well into the relativistic regime, which includes intensity parameters 
typical of current state-of-the-art high-intensity laser technology.  We also sketch how to 
extend our approach to include spin effects, using the Dirac equation.  The results 
presented in this article represent a unique and useful tool for studying wave-packet 
dynamics in a strong laser field.  We illustrate the use of our approach through a series of 
computer animations, generated with very little computational overhead. 

2. Volkov-state solution to Klein-Gordon equation 

The Klein Gordon equation [10-12] for a spinless electron of charge !e  is 
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where in the radiation gauge an electromagnetic field is described solely by the vector 
potential 
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A(z ! ct) , here taken to propagate in the z-direction with arbitrary temporal 

profile;  
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The energy and momentum are connected through 
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The normalization and orthogonality [10] of the Volkov states is expressed through the 
relativistically invariant inner-product between states with momenta 
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We construct a wave packet from the Volkov states as follows: 
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We choose a Gaussian superposition of states according to 
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for which the inner product ! ! = 1 , and the width of the momentum distribution is 
governed by the parameter p

o
.  The form of Eq. (6) dictates a frame of reference wherein 

the center of the wave packet is stationary in the absence of an applied field.  The 
evolution of the wave packet is managed entirely by Eq. (5).  However, since the variables 
 

!
r  and t  are entangled with the variable of integration

 

!
p , the three-dimensional integral 

must be repeated for each point in space and time in order to retrieve the wave-packet 
dynamics. 

3. Approximations 

To make progress on the integral in Eq. (5), we make a multi-variable Taylor-series 
expansion on Eq. (3): 
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The momentum is restricted by the Gaussian profile in Eq. (6) to the scale of p
o
.  Since 

p
o
 describes the rate of wave-packet spreading only, as opposed linear motion, one 

expects values for p
o
 that lie well below mc .  Note that p

o
~ mc  would dictate an electron 

wave packet confined initially to the unusually small spatial scale of a Compton 
wavelength.  For p

o
<< mc , we may safely approximate the factor mc2 E  out in front of 

Eq. (2) by unity.  However, we retain the quadratic terms in Eq. (7) for the first occurrence 
of E  in the exponent of Eq. (2).  For the second occurrence of E  in the exponent, we 
utilize the following Taylor-series expansion: 
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We retain only two terms of Eq. (8) when multiplying the integral of  
!
A  in Eq. (2), but we 

retain the other terms in Eq. (8) in connection with the integral of A2 , which for high 
fields dominates after appreciable time. 

With these approximations, Eq. (5) remains valid as long as the following conditions 
hold: 
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where we have introduced the definitions 
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It is clear that the last condition in Eq. (9) cannot hold at arbitrary space-time points (in 
particular, in the case of a continuous laser field) as the integrand is non-negative 
everywhere. Therefore, it is implicitly understood that the analysis is restricted to the 
‘region of interest’ where the electron wave packet is actually present. In a continuous 
field, the conditions for validity can be expressed in terms of the number of applied laser 
cycles N .  Eq. (9) then becomes N !po

4
<< " , !po

3
!Ao << " , and N !Ao

2
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4
<< " , where 

 
! " !# / mc

2 is the scaled photon energy and !A
o
" eA

o
/ mc  is the scaled vector potential. 

The conditions in Eq. (9) are met over a surprisingly broad range of parameters, 
including for relativisitic intensities of the applied field.  This is especially true if the 
initial momentum spread is narrow.  For example, if p

o
= 10

!3
mc , the middle condition 

isn’t violated until the intensity exceeds 1023 W/cm2, for 800 nm light.  For this 
wavelength and intensity, the final condition of Eq. (9) holds for several tens of laser 
cycles, and the first condition holds for more than 105 laser cycles.  As the initial 
momentum spread of the wave packet increases, the maximum tolerated applied intensity 
drops quickly.  These restrictions are discussed further in connection with examples given 
in section 5. 

4. Evaluation 

Under the preceding approximations, the integrals for p
x
 and py  disentangle from each 

other with exponents containing only linear and quadratic terms in p
x
 and py .  The two 
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where ! " 1+ i #po
2$

t

+ , !t

±
" kCct ± f , !x " kC x + fx , !y " kC y + fy ,  and !z " kCz + f . 

To perform the remaining integral (over the dimensionless variable ! " p
z
p
o

, which 
is on the order of unity), we must make further approximations.  Fortunately, this can often 
be done while remaining within the purview of the approximations made in Eq. (9).  In the 
exponent, we expand the following factor:  
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In the denominator of the integrand of Eq. (11), we approximate the same factor by only 
the leading term, one, since when !po

3
f  becomes appreciable, the magnitude of !  tends to 
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compensate by !po
"1  times.  In the exponent of Eq. (11), we can easily retain the corrections 

in Eq. (12) insofar as we allow them to contribute only to linear and quadratic terms. 
After performing the integration in Eq. (11), the wavefunction becomes  
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arise from the expansion terms in Eq. (12) and often are of minor consequence and can be 
ignored.  Moreover, these corrections can give rise to spurious contributions of no physical 
significance at large distances away from the wave packet, where the amplitude should 
approach zero. This problem is avoided by applying the formula to the ‘region of interest’. 
Alternatively, we can avoid the corrections altogether if we retreat to the more stringent 
requirement !po

3
f <<1 .  Note that the approximations in Eq. (9) do not imply that terms 

involving orders greater than !po
3  in Eq. (15) are negligible. 

5. Wave-packet dynamics 

We illustrate the usefulness of Eq. (13) with several examples.  Figs. 1-3 show animations 
generated using a laptop computer.  Each frame required only a fraction of a second to 
calculate, making it possible to view movies while calculating on the fly.  The animations 
in each case display a 2-D cut through the wave packet in the y = 0  plane.  Nevertheless, 
the dynamics described by Eq. (13) are fully three-dimensional.  In accordance with 
standard procedure for the Klein-Gordon equation [10-12], the ‘probability density’ is 
computed from 
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In Fig. 1(a)-(c), we show the effect of wave-packet spreading in a strong linearly 
polarized field, characterized by 

 

!
A = x̂A

o
cos kz !"t( ) .  Eventually, spreading causes 

different parts of the wave packet to interact with very different phases of the applied field.  
This distinctively non-dipole behavior exemplifies the sophistication of Eq. (13), which is 
able to accurately portray a broad range of dynamics.  The momentum spread in this 
example was set to !po = 0.005 , which corresponds to an initial wave packet with a spatial 
extent of approximately 1Å.  The scaled amplitude of the vector potential !A

o
" eA

o
mc  was 

set to one, which for 800 nm light corresponds to an intensity of 2.1x1018 W/cm2.  The 
Lorentz force causes the wave packet to drift in the z-direction (to the right).  The positive 
x-axis is directed down the page.  The movies in Fig. 1(a), (b), and (c), respectively, were 
generated during three intervals of equal duration: 0-10 field cycles, 50-60 field cycles, 
and 100-110 field cycles.  Note that the Lorentz drift causes the wave packet to oscillate 
fewer times than the number of laser periods.  The movies are positioned along the z-
direction respectively at 0-2λ, 10 λ -12 λ, and 20 λ -22 λ. 
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Fig. 1. (64 KB, 276 KB, 820 KB) Movies of an electron wave packet in a linearly 
polarized plane-wave field during (a) 0-10 cycles, (b) 50-60 cycles, and (c) 100-110 
cycles.  The intensity is 2.1x1018 W/cm2 at 800 nm wavelength; the initial momentum 
spread is p

o
= 0.005mc . 

It is instructive to consider the conditions mandated by Eq. (9) in connection with the 
above example.  The first and the final expressions in Eq. (9) increase without bound in 
time.  Eventually our analytical approximation for the wave function will fail to apply.  
For the final frame of the movie 1(c) (t = 110 laser cycles), the expressions 
become !po

4
kCct ~ 0.14 , !po

3
fx ~ 0.04 , and !po

4
f ~ 0.04 , which all remain safely below one.  

Since the expressions are very sensitive to the momentum width !po , a slightly narrower 
momentum distribution enables the approximations to hold for longer times and/or to 
tolerate higher applied fields. 

2!

6!

 
Fig. 2. (88 KB) Movie of an electron wave packet in a linearly polarized plane-wave field 
during 0-6 cycles.  The intensity is 5.3x1019 W/cm2 at 800 nm wavelength; the initial 
momentum spread is p

o
= 2 !10

"6
mc . 

Figure 2 shows a wave packet under conditions similar to those studied by Román et 
al. [6].  We chose !A

o
= 5 , which corresponds to an intensity of 5.3x1019 W/cm2. The Lorentz 

drift is much stronger in this example, and consequently the wave packet is significantly 
contracted in the z-direction. A double-hump feature, previously noted [7], is evident at 
each turning point.  This distinctively non-dipole effect requires the wave function to have 
a spatial extent on scale with the laser wavelength.  For this example, we created a 
sufficiently large wave packet by restricting the initial momentum spread via the 
parameter p

o
= 2 !10

"6
mc .  This extremely small momentum range permits Eq. (13) to 

retain validity even at intensities many orders above that presented here.  For higher 
intensities, the Lorentz contraction becomes more pronounced, such that the wave packet 
would appear as a thin vertical stripe in the movie.  It is instructive to note that combining 
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the initial momentum spread of Fig. 1 with the higher intensity of Fig. 2 leads to a 
violation of Eq. (9) before the wave packet has time to spread to the large spatial extent 
seen in Fig. 2. 

Figure 3 is essentially a repeat of the simulation shown in Fig. 1(b), except for 
circularly polarized light. In this case, the vector potential is given 
by

 

!
A = x̂A

o
cos kz !" t( )+ ŷA

o
sin kz !" t( ) . With the same value for A

o
 as before, the intensity 

doubles: 4.2x1018 W/cm2.  The momentum distribution was again set to !po = 0.005 , the 
same as for Fig. 1. The movie interval for Fig. 3 ranges from 50 to 60 laser cycles, the 
same as for Fig. 1(b), and the frame is positioned along the z-direction from 16.5 λ to 
20.5 λ.  The continuously applied field accounts for a stronger Lorentz drift.  For this 
movie, the peak value of the plotted probability density varies as the wave packet spirals 
under the influence of the circularly polarized field, moving in and out of the page.  For all 
other animations in this article, the peak value of the wave function was normalized to one 
on each frame.  This example explicitly demonstrates the three-dimensional character of 
Eq. (13). 

!

4!

 
Fig. 3. (180 KB) Movie of an electron wave packet in a circularly polarized plane-wave 
field during 50-60 cycles.  The intensity is 4.2x1018 W/cm2 at 800 nm wavelength; the 
initial momentum spread is p

o
= 0.005mc . 

6. Dirac-Volkov solution and laser-induced spin dynamics 

We wish to sketch briefly how our approach can be generalized to include the electron 
spin. The Volkov solution to the Dirac equation can be written as 
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For definiteness, we choose  
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to describe an electron with a positive spin component along the z axis.  As before, we can 
construct a Gaussian wave packet from the Volkov states in Eq. (17). In the spirit of our 
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previous treatment, we employ the approximations 
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and (19).  Then the superposition integral reduces to the Klein-Gordon case, aside from a 
momentum-independent spinor appended to the front: 
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Consequently, the standard probability density !D " #
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Note that the prefactor in Eq. (21) can also be written as 
 
! "!

t

"
mc

2 .  This expression is 
contained in the Klein-Gordon probability density Eq. (16), where it is the dominate term 
in the prefactor generated when performing the required time derivative.  Thus, the Klein-
Gordon and Dirac approaches generate essentially the same probability density. 

With the help of Eq. (20), we can directly calculate the laser-driven spin dynamics of 
the electron. Taking into account only the spinor-valued part in Eq. (18), we find that the 
expectation value of the Dirac spin operators [12] are essentially given by 
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Hence, a precessive motion of the spin vector is induced [3]. We point out, however, that 
these are only approximations to the exact spin operators for a moving electron. 

7. Conclusion 

In summary, we have developed a closed analytical expression that accurately portrays a 
three-dimensional wave packet for a charged particle in a moderately strong 
electromagnetic field.  The temporal envelope of the applied field is arbitrary, but it must 
propagate in a single direction.  The initial wave packet is taken to have a Gaussian 
distribution in momentum.  The validity of the approximation is governed by the spread of 
momentum in the initial wave packet, as opposed to momentum acquired during 
interaction with the field.  The approximation breaks down eventually for large times or 
for large field strengths.  With a narrower spread in momentum, the approximation lasts 
longer and tolerates higher applied fields.  If the momentum distribution is chosen such 
that the wave packet has an initial spatial extent on the scale of an angstrom, the analytical 
expression remains valid into moderate relativistic conditions. How quickly the analytical 
solution departs from the actual one as conditions of validity are violated could be tested 
by comparison with corresponding numerical simulations [1,2,6,7], at the boarder of 
applicability of our approximation. 

The approximate analytical solution presented in this article represents a useful tool, 
both for research and for education purposes.  An array of interesting non-dipole and 
relativistic wave-packet dynamics can be observed and explored using very little 
computational overhead.  The three-dimensional nature of the solution is immediately 
appreciated by anyone who has computed similar wave-packet dynamics numerically.  To 
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our knowledge, we have presented the first animations showing the behavior of a 
spreading wave packet in a relativistic circularly polarized field, an intrinsically three-
dimensional problem.  The analysis presented here is limited to free spreading and motion 
of a Gaussian wave packet in a plane-wave field; it does not countenance, for example, the 
ionization process or collisions.  A free electron wave packet obtained through 
tunneling/over-the-barrier ionization would likely exhibit a more complicated spatial 
structure.  Ponderomotive gradients in a tight laser focus could also induce distortions. 
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