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Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids
Ross L. Spencera) and S. Neil Rasband
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 18 June 1996; accepted 30 September 1996!

Computations of damped diocotron oscillations~quasi-modes! are described for non-neutral plasmas
and inviscid fluids. The numerical method implements a suggestion made by Briggs, Daugherty, and
Levy some 25 years ago@Phys. Fluids13, 421 ~1970!# to push the branch line that forms the
continuum into the complexv-plane by solving the mode equation in the complexr -plane. For the
special case of power-law density profiles the calculation finds the same quasi-mode frequencies
found recently by Corngold@Phys. Plasmas2, 620 ~1995!#. It is found that the feature of the
continuum eigenfunctions which indicates the presence of a nearby quasi-mode is continuity of the
derivative of the regular part of the eigenfunctions near the singularity. The evolution of Rayleigh
modes, found in density profiles with steps, is also studied as the density steps are smoothed.
© 1997 American Institute of Physics.@S1070-664X~97!00801-X#
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I. INTRODUCTION

The existence of a continuous spectrum and the poss
ity of damped oscillations for magnetized electron colum
was discussed in an early paper by Briggs, Daugherty,
Levy,1 which was based on even earlier work by Cas2

These oscillations are connected to the continuous spec
and their damping is called ‘‘spatial Landau damping’’
Briggset al.More recently these oscillations have been st
ied experimentally by Pillai and Gould3 and analytically~for
the case of power-law equilibrium density profiles! by
Corngold.4 ~Corngold refers to these damped oscillations
‘‘quasi-modes,’’ a terminology that will be followed in thi
paper.! The continuation problem in the complex plan
solved analytically by Corngold for power-law profiles ca
be solved numerically by implementing the suggestion
Briggs et al. to solve the radial mode equation along a co
tour in the complexr -plane (r is radius in cylindrical coor-
dinates!. Solving the mode equation along this compl
r -contour moves the branch line~which corresponds to the
continuum when the contour is real! into the complex
v-plane, making it possible to ‘‘uncover’’ the damped qua
modes discussed by Briggset al.

The diocotron mode equation and its general proper
are discussed in Sec. II, the numerical method is describe
Sec. III, and comparisons with Corngold’s analytic resu
are described in Sec. IV. In Sec. V the behavior of qua
mode frequencies as density profiles are changed from s
like to very broad is described. The behavior of the qua
mode is tracked from its weakly damped beginnings wh
the analysis of Briggset al. applies all the way to the para
bolic quasi-mode of Corngold. In Sec. VI we explore t
connection between quasi-mode frequencies and contin
eigenfunctions. It is found that for weak damping the re
part of the quasi-mode frequency is close to the frequenc
the continuum eigenfunction whose regular part near the
gularity has a continuous first derivative. In Sec. VII t
behavior of quasi-modes in density profiles with multip
steps is studied. We find that as such profiles are smoo

a!Electronic mail: spencer@xray.byu.edu
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enough that there is no apparent remnant of the density s
there are three different fates for the quasi-modes. They
either become highly damped and join the deformed bra
line; they can become very weakly damped with reson
radii in a neighborhood of the center of the plasma if t
density there is nearly constant; or two of them can b
approach a common quasi-mode. In Sec. VIII we conclu
the paper.

II. MODE EQUATION

Consider an infinitely long column of non-neutr
plasma. The plasma is assumed to be so highly magnet
by a strong magnetic field in thez-direction that the Larmor
radius is effectively zero, making it possible to model it as
charged fluid moving at theE3B drift velocity. Under these
conditions the diocotron mode equation in cylindrical coo
dinates (r ,u) for perturbations proportional toei (mu2vt) is

1

r

d

dr
r
df

dr
2
m2f

r 2
2
qn08

e0B

mf

r ~v2mv0~r !!
50, ~1!

where f is the perturbed electrostatic potential;q is the
charge of the particles that make up the plasma;e0 is the
permittivity of free space;B is the uniform axial magnetic
field strength;v0 is theE3B drift rotation frequency in the
equilibrium radial electric field v0(r )52E0 /rB; and
n08(r ) is the radial derivative of the equilibrium density. Th
perturbed potential must be regular at the origin and van
at r5r w , the location of the conducting cylinder which su
rounds the plasma. Note that Eq.~1! is also the mode equa
tion for inviscid fluid motion, as pointed out by Briggset al.
Hence, all of the results discussed here also apply to invis
fluids.

If the equilibrium density drops to zero rapidly in radiu
leaving a sufficiently large vacuum region outside of t
plasma, or if the density has discontinuous steps, then Eq~1!
will have solutions corresponding to undamped modes. T
rest of the fluid dynamics described by this equation, ho
ever, is associated with the continuum, singular modes w
frequencies that resonate with the equilibrium rotatio
v5mv0(r ) for values ofr wheren08(r )Þ0.
53/$10.00 © 1997 American Institute of Physics
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 This a
As pointed out by Briggset al., if a step-like density
profile having an undamped normal mode of frequencyv is
smoothed so that there is a small amount ofn08 at the radius
wherev5mv0(r ), then there are two ways to describe t
new dynamics. Either we can say that the mode has me
with the continuum and has lost its identity, or we can s
that it has been ‘‘pushed through’’ the continuum into t
lower half of the complexv-plane, becoming a dampe
quasi-mode.@Note that havingv move down into the lower
half-plane is opposite to the figures in Briggset al.The rea-
son is that their perturbations are proportional to exp(ivt)
instead of to exp(2ivt), the convention in this paper.# This
second description is similar to what happens in the cas
Landau damping, and indeed this effect for diocotron mo
is often referred to as ‘‘spatial Landau damping.’’ As in La
dau’s calculation, special care must be taken to analytic
continue the solutions into the lower half-v-plane.

Briggset al.show how this continuation may be effecte
in their Figs. 6 and 9, where the interval inr along which the
mode equation is to be solved is deformed into the comp
plane. The remainder of this paper is a description of w
happens when this picture is taken seriously.

III. NUMERICAL METHOD

The quasi-mode may be ‘‘uncovered,’’ as described
Briggset al., by deforming into the complex plane the inte
val along which Eq.~1! is solved. The idea is to make th
analytically-continued functionmv0(r ) describe a curve in
the complexv-plane that dips sufficiently far into the lowe
half-v-plane. Sincemv0(r ) gives all the values ofv at
which the mode equation is singular, this deformation pus
the branch line down into the lower half-v plane, leaving the
quasi-mode exposed above it. With the branch line out of
way it is then possible to calculate the quasi-mode f
quency.

As an example, consider the family of power-law pr
files discussed by Corngold:4

n0~r !5n00F12S rr wD
2pG ;

~2!

v0~r !5v00F12
1

11p S rr wD
2pG ; v0052

qn00
2e0B

,

wherep takes on integer values 1,2,3, . . . , r w is the radius of
the conducting cylinder that surrounds the plasma, andn00 is
the central density. Substitution of complex values ofr /r w
into the expression forv0(r ) shows that to makev0(r ) dip
into the lower half of thev-plane ther -contour must be
pushed up into the upper half of the complexr -plane.

This deformation may be made numerically by chang
the independent variable fromr to s according to

r5r w@s1 ih~s!#,
~3!

h~0!50; h~1!50; h~s!>0; 0<s<1,

where r w is the radius of the conducting cylinder that su
rounds the plasma.

The numerical procedure consists of rewriting Eq.~1! in
terms ofs instead ofr , subdividing thes-interval @0, 1# into
54 Phys. Plasmas, Vol. 4, No. 1, January 1997
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small subintervals. The resulting differential equation
solved in two different ways. The first is to make finite
difference approximations to the derivatives that appea
the transformed mode equation. The second is to expanf
in terms of cubic splines and to use a Galerkin approxim
tion to the differential equation. These two different ways
calculating have provided a check on the numerical res
presented here. In either case a homogeneous syste
equations is obtained which is solved by matrix shootin5

This simply means that the numerical approximation to
mode equation at one of the grid points ins is removed and
replaced by the equationf51; then the resulting inhomoge
neous system is solved. The mode frequencyv is then varied
until the equation that was removed from the system is
isfied. If h(s), the imaginary part ofr (s), is large enough
and properly shaped, this algorithm finds quasi-modes.

The analytic continuations of some density profiles,
pecially those with sharp gradients, often have places in
complexr -plane where they become large or change rapid
making it difficult to compute efficiently. In such cases it
sometimes helpful to shape ther -contour so that it only has
a large imaginary part near the radius where the quasi-m
is located. Practical experience has shown that the follow
form for h(s) is usually sufficiently flexible to find quasi
modes:

h~s!54h0s~12s!e2~s2s0!2/w2, ~4!

whereh0 is a parameter that determines the height of
r -contour. The parameterss0 andw make a Gaussian multi
plier that can be used to maker (s) nearly real except nea
r (s0), making it possible to avoid troublesome places in t
complexr -plane.

IV. COMPARISON WITH ANALYTIC CALCULATIONS

Corngold4 studied the power-law profiles given in Eq
~2!, showing that the mode equation could be put in the fo
of the hypergeometric differential equation. This makes
relatively easy to effect the required analytic continuation
f(r ) into the complexr -plane. An exact calculation like this
is precisely what is needed to verify that the numeri
method described above is working, but Corngold does
give exact results; he emphasizes the qualitative behavio
the quasi-mode frequencies as functions of mode num
m and density profile parameterp. Moreover, there are two
misprints in his paper that must be corrected in order to
that the numerical method described here agrees with
analytic treatment. Hence, it is necessary to briefly revi
his calculation.

The exact dispersion relation for the quasi-mode f
quencies in Corngold’s calculation is

F~ ā,b̄;ā1b̄11;z!22p i
G~ ā1b̄11!

G~ ā!G~ b̄!
~12z!F~ ā11,b̄

11;2;12z!50, ~5!

whereF is the hypergeometric function. The quasi-mode f
quencyv is related to the solutionz of this equation by
R. L. Spencer and S. N. Rasband
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

17 Mar 2014 23:22:46



t
by

1
le

s

i-

as
i-
tu

e

ch

d

file
ius

r ap-
to

nsity
ant

st
file

sity
q.
uum
so

ius
ld
fol-

d
ind

e
o

d
the

as-

e

 This a
v5mv00

~11p!z21

~11p!z
, ~6!

and the parametersā and b̄ are given by

ā5
m

2p
2AS m2pD

2

1
p11

p
;

~7!

b̄5
m

2p
1AS m2pD

2

1
p11

p
.

In Corngold’s paper the factor 2p i in Eq. ~5! is given with a
positive sign, but22p i as given above is correct.6

As a first check the numerical procedure was applied
the m52 mode of the parabolic density profile used
Corngold (p51) with contour parametersh050.5,
s050.5,w5106 ~effectively setting the Gaussian to 1!, and
with 5000 subintervals. This contour is shown in Fig.
while Fig. 2 shows the corresponding contour in the comp
v-plane of the functionmv0(r ), the deformed branch-line
contour. Using the numerical procedure of Sec. III, a qua
mode was found atv/v0051.062496482 i0.04260298
while the corresponding solution of Eq.~5! is v/v00

51.062496472 i0.04260304. This quasi-mode is also ind
cated by the stars in Figs. 1 and 2.~In Sec. III of Corngold’s
paper the frequency of this mode is given
v50.941 i0.046, but this is also a misprint. The approx
mate procedure outlined in Sec. II of Corngold’s paper ac
ally givesv51.062 i0.04.6! Other comparisons of Eq.~5!
with matrix shooting along a complexr -contour for other
choices ofm andp give similar accuracy, indicating that th
numerical method works quite well.

FIG. 1. A contour in the complexr -plane which uncovers the dampe
quasi-mode for a parabolic density profile is shown. The arrowheads
cate the direction of increasing contour parameters, with the arrowheads
equally spaced ins. This contour hash050.5,s050.5, andw5106 @mean-
ing that the Gaussian inh(t) is essentially unity#. The star shows the plac
in the complexr -plane where the quasi-mode lies, i.e., the complex value
r wheremv0(r ) is equal to the complex frequency of the quasi-mode.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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V. TRANSITION FROM STEP TO PARABOLIC

Briggs et al. discuss the case of a density profile whi
is a sharp step with constant densityn00 for r<r p and zero
density forr p,r<r w . In this case there is no continuum an
a single undamped mode with frequency,

v5v00@m211~r p /r w!2m#. ~8!

They then show that as the sharp edge of this density pro
is smoothed, putting a small amount of density at the rad
where the frequency of Eq.~8! is the same asmv0(r ), the
undamped mode becomes a damped quasi-mode. Thei
proximate procedure is not powerful enough, however,
investigate what happens to the quasi-mode when the de
profile is smoothed enough that the density at the reson
radius is no longer small.

To study this problem a form for the density profile mu
be chosen. A simple choice would be the power-law pro
studied by Corngold@Eq. ~2!#, for asp approaches infinity
these profiles approach a sharp step. However, if the den
goes to zero at the wall, as it does in the profile given in E
~2!, then we are restricted to cases where there is no vac
region outside the plasma. And if we modify these profiles
that there is a vacuum region~Corngold’s ‘‘gap’’ profiles4!
then the density profile is not analytic across the entire rad
and we would have to modify our numerical method. It cou
be done, but it is awkward, so we consider instead the
lowing analytic form for the equilibrium densityn0(r ):

n0~r !5n00
@ tanhk~r w

22C!2tanhk~r 22C!#

@ tanhk~r w
22C!1tanhkC#

, ~9!

or ~equivalently!

i-

f

FIG. 2. A contour in the complexv-plane which uncovers the dampe
quasi-mode for a parabolic density profile is shown. This contour is
deformed position of the branch linemv0(r ) corresponding to the
r -contour shown in Fig. 1. The arrowheads indicate the direction of incre
ing contour parameters, with the arrowheads equally spaced ins. The star
shows the place in the complexv-plane where the quasi-mode lies. Th
dashed line shows the position of the branch line~continuum! before the
r -contour was deformed.
55R. L. Spencer and S. N. Rasband
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n0~r !5n00
@12exp~22k~r w

22r 2!!#@11exp~22kC!#

@11exp~2k~r 22C!!#@12exp~22krw
2 !#

,

~10!

where

kC5
1

2
lnS 2e 21D

and

e52e22krp
2

3
122 exp~22k~r w

22r p
2!!1exp~22krw

2 !

12exp~22krp
2!2exp~22krw

2 !1exp~22k~r w
21r p

2!!
.

~11!

The form of the density function given in Eq.~9! is chosen to
represent either sharp steps or broad transitions, depen
on the value chosen fork. The equivalent form in Eq.~10!
and the formula fore in Eq. ~11! are built to avoid the nu-
merical overflow problems that arise when using t
tanh-function directly. The density at the plasma radiusr p is
alwaysn00/2 and the parameterk governs the sharpness o
the density step. The density is constrained to be zer
r5r w . Whenk is large the step is sharp and ask is reduced
the step becomes broadened. The only choice ofr p that al-
lows k to become arbitrarily small isr p /r w51/A2; all other
choices forr p have a minimum value ofk below which
kC becomes imaginary and the functional form no long
works.

Figure 3 shows what these density profiles look like
three different values ofkrw

2 , all with r p /r w51/A2. For this
special choice ofr p , as k→0 the density profile become
parabolic. Because tanhz is analytic, except at isolate
points along the imaginary axis, the density function of E
~9! can be continued into the complex plane to search for
quasi-mode associated with the undamped mode tha
found when the step is infinitely sharp.

Figure 4 shows the result of matrix shooting to det

FIG. 3. Three density profiles that interpolate between a sharp step a
parabola are shown. The values ofkrw

2 used in Eq.~11! to give these profiles
are indicated just above each profile.
56 Phys. Plasmas, Vol. 4, No. 1, January 1997
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mine v with r p fixed at r p /r w51/A2 and for values of
krw

2 ranging from 20~sharp step! down to 0.03~nearly a
parabolic density profile!. The solid curve gives the variatio
of the quasi-mode frequency as it changes from the sh
edge value~the star on the right end of the curve! to the
parabolic value~the * on the left end!. Note that many dif-
ferent density profiles were used to make this curve in Fig
not just the three profiles shown in Fig. 3.

VI. ESTIMATING THE QUASI-MODE FREQUENCY
FROM THE CONTINUUM

One of the mysteries of the damped quasi-mode is w
determines its frequency,v r . In an earlier study of these
quasi-modes deGrassie and Malmberg used a nume
technique to ignore the resonance in Eq.~1!7 and got good
quantitative agreement with experimentally observed qu
mode frequencies, but it seems qualitatively that this f
quency should somehow be connected to the continu
modes. But of all the frequencies in the continuum, wha
special about the frequency of the quasi-mode? To see
connection of the quasi-mode frequency with the continu
we must first recall what the continuum eigenmodes lo
like. They are singular solutions of Eq.~1! with v belonging
to the range of real frequencies that make the resonant
nominator in the equation vanish. At the singular radiusr s
the perturbed potential has a finite value, but its derivati
are singular. Near the singular point the leading terms in
expansion off obtained from the usual Frobenius analys
are

f'f~r s!S 12
qn08~r s!

e0Brsv08~r s!
x lnuxu D 1b6x, ~12!

aFIG. 4. ~a! The path of them52 quasi-mode frequency is shown as th
density profile is changed from a sharp step~the star atv/v0051.25) to a
parabola~the asterisk atv51.062 i0.043). The three symbols along th
curve correspond to the three density profiles shown in Fig. 3. The num
cal values ~2,5,10! associated with the symbols correspond to t
krw

2 -values indicated in Fig. 3.~b! The approximate path of them52 quasi-
mode frequency is shown for the same profile variation as in curve~a!.
Along this curvev r was obtained from theb15b2 condition on the con-
tinuum eigenfunction andv i was obtained from the approximate Brigg
formula @their Eq.~50!#.
R. L. Spencer and S. N. Rasband
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 This a
wherex5r2r s . The coefficientb6 of the regular part of the
solution actually represents two coefficients,b1 for the so-
lution when x is positive andb2 when x is negative. In
general these two coefficients are not equal, but they m
be. And, in fact, the continuum frequency at which they a
equal gives a good estimate of the quasi-mode frequenc

To see why, consider the limit in whichn08(r s) becomes
vanishingly small. In this limit the logarithmic singularity i
Eq. ~12! becomes quite insignificant, so the continuu
eigenfunctions are mostly characterized by the mismatch
tween b1 and b2 . Since the damped quasi-mode is ve
close to a real undamped mode in this limit, and since
real mode has continuous derivatives, the only continu
eigenmode which can become the real eigenmode of
point spectrum is the special one withb15b2 .

These coefficients are found by numerically comput
the continuum eigenfunctions and comparing the soluti
near the singular point with the approximation in Eq.~12! to
determineb6 . This approximation technique has been co
pared with exact results from Corngold’s calculation4 for
many combinations ofm and p, and it is found that the
relative error in the determination ofv r is of orderv i /v r .
When v i is large, however, this continuum approximatio
becomes increasingly poor, then fails altogether. The rea
is that modes with large imaginary part may not be reson
in the plasma at all, as pointed out by Corngold.4

It is also possible to estimate the damping rate by co
bining the estimate ofv r given above with the approximat
formula forv i given by Briggset al. @their Eq.~50!#:

v i

v00
5

pr pn08~r s!

2mn00
S r pr sD

2m23F12S r sr wD
2mG2, ~13!

wherer s is the resonant radius, i.e.,mv0(r s)5v r . In doing
this calculation the resonant radius was taken to be the r
nant radius of the continuum eigenfunction approximation
the quasi-mode~the one for whichb15b2). Oncer s was
determined in this way the actual value ofn0(r s) for the
diffuse density profile was used. The dashed curve in Fig
shows the result of this approximate calculation on the sa
equilibrium sequence used for the solid curve. Note that
small v i the approximate calculation works very well. B
for very broad profiles this is a rather crude estimate si
Eq. ~13! is based on a step-like density profile. Indeed, as
be seen from Fig. 4, it only predictsv i within about a factor
of 2 for such profiles.

More elaborate approximation methods based on
continuum eigenfunctions have also been tried, but th
have always turned out to be quite poor and even more
ficult to carry out than the correct numerical calculati
along the complexr -contour.

VII. DENSITY PROFILES WITH MULTIPLE STEPS

Briggs, Daugherty, and Levy1 also discuss the problem
of multiple steps in the density profile. In the case of seve
sharp steps, Rayleigh8 showed that there is a discrete mo
associated with each step. Briggset al. showed that as eac
step is smoothed slightly each of these modes becom
damped quasi-mode. In this section the question of w
Phys. Plasmas, Vol. 4, No. 1, January 1997
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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happens to these quasi-modes as changes are made
density profile will be addressed. First to be discussed is
case of a double-step profile in which the outer step is k
sharp while the inner one is first smoothed, then reduce
size to approach a single-step profile. Discussed in the
ond part of this section is the case in which a double-s
profile is smoothed so that the end result is a parabolic p
file. In both cases the double-step profile is made by co
bining two of the hyperbolic-tangent profiles discussed
Sec. V. Finally, the problem of power-law profiles wit
vacuum gaps discussed by Corngold4 will be discussed and it
will be shown that for most gap widths there is an addition
undamped mode present in addition to the damped qu
mode discussed in Ref. 4.

A. Double-step to single-step

Consider the sequence of density profiles shown in F
5. The sequencea–c involves smoothing the inner step b
reducing itsk-value while increasing the radius at which th
step occurs. Figure 6 shows what happens to the freque
of the quasi-mode associated with the inner step as this tr
formation is made. As expected from the analysis of Brig
et al., it acquires a negative imaginary part.~The quasi-mode
associated with the outer step remains resonant and es
tially undamped in the space between the plasma and
wall during all of these changes. This rather uninterest
behavior is not shown.!

The second sequencec–e is made by keeping the
k-value of the inner step constant while reducing its si
This sequence is interesting because the final profile~curve
e in Fig. 5! is a single step, which is expected to have only
single quasi-mode, resonant between the plasma and
wall; so what is to become of the inner quasi-mode?

The answer for this case is shown by the dashed pat
Fig. 6. Its damping rate goes to zero and its real freque
approachesmv00, indicating at first glance that this mod

FIG. 5. A sequence of density profiles is shown which modifies a dou
step profile (a) into a single-step profile (e). Both steps of the profile are
made by using the hyperbolic tangent form of a smooth step discusse
Sec. V. The transition from (a) to (c) is made by reducingk for the inner
step while keeping the size of the step constant. The final transition f
(c) to (e) is made by keeping the innerk constant while reducing the size
of the step to zero.
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 This a
should be resonant atr50. This is not the case, howeve
The numerical calculation gives a resonant radius for
entire sequence fromc to e that varies between 0.66r w and
0.62r w , while the imaginary part of the complex resona
r is nearly constant atr i50.023r w . This apparent discrep
ancy between the sizes ofv i and r i is resolved by noticing
that for smallr i they are related by

v i'mri
d

dr
v0~r !. ~14!

Hence, if thev0-profile is nearly constant, as it is inside th
plasma for profilee in Fig. 5, the damping rate can be ve
small even thoughr i is finite. ~The eigenfunction along the
real-r axis for this quasi-mode would have a rather lar
discontinuity because of the logarithmic branch cut exte
ing down to the real axis fromr /r w50.621 i0.023, as illus-
trated in Fig. 8 of Briggset al.!1

So density profiles that look very much like a single-st
might actually have several quasi-modes: the usual one r
nant outside the the plasma, as discussed by Briggset al.,
and one or more quasi-modes resonant inside the pla
corresponding to small wrinkles in the density profile. C
culations of this kind have also been done for triple-s
profiles where it is found that there can be two interior qua
modes as a single-step profile is approached, provided
the triple-step profile structure is still present, albeit w
vanishingly small size. These quasi-modes are the remn
of Rayleigh’s discrete modes, but because they all have v
small damping rates and frequencies very nearmv0(0), it is
not clear that they have any dynamical importance.

B. Double-step to parabola

Consider now the sequence of density profiles shown
Fig. 7. In this case the final parabolic profile is one for whi
we know there is only one quasi-mode, raising the ques
of how the transition is made from the two quasi-modes

FIG. 6. The behavior of them52 quasi-mode frequency associated with t
inner step of the double-step profile (a) in Fig. 5 is shown. Ate the damp-
ing rate is nearly 0 whilev r'mv00 . Even thoughv i is small ~about
331024) and v r'mv00 , however, the resonant radius in the compl
r -plane isr /r w50.621 i0.023.
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profile a to the single one of profilef . The answer is shown
in Fig. 8. The dashed curve shows what happens to the qu
mode which is resonant in the space between the plasma
the conducting wall. As the profile changes from a doub
step to a parabola, it simply makes its way toward t
quasi-mode frequency of a parabolic profilev/v00

51.06252 i0.0426.
The solid curve shows what happens to the inner qu

mode. As expected, it becomes more damped as the profi
smoothed, but in the neighborhood of profilesc andd in Fig.

FIG. 7. A sequence of density profiles is shown which modifies a dou
step profile (a) into a parabola (f ). Both steps of the profile are made b
using the hyperbolic tangent form of a smooth step discussed in Sec
Profilesc andd, though very nearly the same, have quite different qua
mode frequencies for the quasi-mode associated with the inner step~see Fig.
8!.

FIG. 8. The behavior of both of them52 quasi-mode frequencies assoc
ated with the two steps of the double-step profile (a) in Fig. 7 is shown. The
solid curve shows the behavior of the quasi-mode associated with the i
step. Notice that the slight profile change betweenc and d ~see Fig. 7!
corresponds to a large change inv i for this mode. Indeed, the quasi-mod
cannot be tracked further because it has rushed downward to join
deformed branch line. The dashed curve shows the behavior of
quasi-mode associated with the outer step. Its frequency varies smo
between the double-step value (a) and the parabolic value (f ) where
v/v0051.06252 i0.0426.
R. L. Spencer and S. N. Rasband
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

17 Mar 2014 23:22:46



.
th
te

d

e
e
it
ap
o
T
h

e
te
d

he
a
tin

nc
ga
g
c

d
t o
lly
a
ns

a
o

oi
ef
in
-
n
a

q.
an
tin
ta
9
or

ost
er-
rm
l

the
he

l

de
a
in
is
di-
e to

asi-
on-

n a

fre-
Fifty

ode
old.
nd to

rofile
step

 This a
7 the imaginary part rapidly becomes larger in magnitude
becomes so large, in fact, that it is not possible to move
deformed branch line contour ahead of it without encoun
ing wild places in the complexv-plane, and it joins the
branch line. This is the reason that no points beyondd are
indicated on its path. So in this case one of the quasi-mo
is eliminated by having it join the~deformed! branch line.

C. Parabola with a gap to a single-step

The reviewer of this paper asked a question and mad
interesting observation, both of which will be address
here. The question does not involve density profiles w
multiple steps, but it is related to the question of what h
pens to two quasi-modes when the profile is changed to
that has only one, so it seems best to discuss it here.
question is whether it is not also possible to approac
single-step by increasingp in Corngold’s profiles@see Eq.
~2!#. It is, of course, possible to do it this way, but if th
density vanishes at the conducting wall then the single-s
just fills the entire region, which is not very interesting. An
if the density goes to zero at a radius less thanr w , then there
is a vacuum gap~as discussed by Corngold!, but the density
profile is non-analytic which is awkward to study using t
numerical methods discussed here. But thinking about
proaching a single-step in this way leads to the interes
observation made by the reviewer.

The observation is that there is a qualitative discrepa
between Corngold’s discussion of the spectrum when a
is present and the results presented here. In Corngold’s
calculation4 there is a single quasimode whose frequen
approaches the mode frequency of the single-step asp is
increased without bound. But in the case of profilec in Fig.
5 there are two quasi-modes: the first is the one describe
the curve in Fig. 6 and the second is one that is resonan
in the exponentially small density tail so that it is practica
undamped. This second one is the one whose frequency
proaches the mode frequency of the single-step as the de
profile goes through the sequencec to d to e in Fig. 5. But
profile c in Fig. 5 does not look much different from
power-law profile with a vacuum gap, so why do we find tw
quasi-modes while Corngold only finds one?

The answer to this question is that there is a subtle p
in the power-law profile calculation that was missed in R
4. This point is illustrated by Fig. 9. The solid circles
frame ~a! of Fig. 9 show the variation of quasimode fre
quency with gap width using Corngold’s dispersion functio
but instead of setting it to zero it is required to satisfy the g
boundary condition, Corngold’s Eq.~23!:

c1
p

m F12S r pr wD
2mGdc

dz
50, ~15!

wherec(z) is the function given on the left-hand side of E
~5!. The solid circles were obtained by using the sec
method and a standard hypergeometric function subrou
to solve Eq.~15!, and they agree very well with the da
given in Fig. 7 of Ref. 4. Note, however, that our Fig.
covers a larger range of gaps than does the figure in C
gold’s paper~his data correspond tov r /v00 . 0.8 in Fig. 9!.
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But in addition to the quasi-mode solution of Eq.~15!
discussed in Ref. 4, there is also an undamped mode for m
gap widths. This mode may be obtained simply by not p
forming the analytic continuation that gives the extra te
containing 2p i in Eq. ~5!, working instead with the origina
functionc(z)5F(ā,b̄;ā1b̄11;z). When there is no gap no
modes are obtained from this sheet ofc(z), as noted by
Corngold. But as the gap is widened, at aboutr p /r w50.97 a
mode appears. This undamped mode is resonant in
vacuum gap and its variation with gap width is shown by t
open circles in frame~a! of Fig. 9. Similar calcultions with
other values of mode numberm and profile parameterp
show that asp increases the critical value ofr p /r w ap-
proaches 1@for m52 andp5(1,2,3) the critical values are
r p /r w5(0.97,0.98,0.99)# and asm increases the critica
value decreases, but not by much. For example, forp51 and
m58 an undamped mode exists forr p /r w,0.9. Hence, for
most power-law profiles with gaps~and particularly for pro-
files with gaps as big as the one in Fig. 5! there are both a
damped quasi-mode and an undamped mode.

Now we may explore what happens to the quasi-mo
and the undamped mode asp is increased, approaching
single-step profile. The answer to this question is shown
frame ~b! of Fig. 9 where, once again, the quasi-mode
indicated by solid circles and the undamped mode is in
cated by open circles. Note that both frequencies converg
the single undamped mode of the single-step profile~indi-
cated by the symbol3 in the figure!. This is yet another
scenario for what happens when a profile that has two qu
modes is changed to one that only has one: both may c
verge to the same location.

So here are three scenarios for what happens whe

FIG. 9. ~a! Shown here is the behavior of the quasi-mode and mode
quencies of a parabolic density profile as the vacuum gap is increased.
different equally spaced gaps ranging fromr p /r w50.99 down to
r p /r w50.01 were used. The solid circles show the 50 damped quasi-m
frequencies corresponding to the analytically continued sheet of Corng
The open circles show the undamped mode frequencies that correspo
the original sheet. There are no such modes untilr p /r w,0.97. ~b! The
behavior of the quasi-mode and undamped mode forr p /r w50.707 asp is
increased is shown. As the density profile approaches a single-step p
(p→`) both converge to the undamped mode frequency of a the single
at v/v0051.25 ~indicated by the symbol3!.
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 This a
profile that has two quasi-modes is changed into one that
only one: ~1! one can disappear by joining the deform
branch line~Figs. 7 and 8!, ~2! one can disappear by ap
proachingmv0 while being resonant at a finite radius~Figs.
5 and 6!, or ~3! the two can both converge to the one qua
mode of the final profile~Fig. 9b!. The numerical experi-
ments we have performed indicate that these three poss
ties are common, but we are now sufficiently humbled by
complexity of these problems that we would not be surpri
if something else were also possible.

VIII. CONCLUSION

Damped diocotron quasi-modes have been compute
using standard shooting techniques along contours in
complex r -plane, implementing a suggestion made
Briggs, Daugherty, and Levy.1 This numerical technique
agrees with the analytic dispersion relation found
Corngold,4 but can handle a much wider variety of dens
profiles. We also find an answer to the question, ‘‘Of all t
frequencies in the continuum, what is special about the
quency of the damped quasi-mode?’’ We find that the f
quency of the quasi-mode matches the frequency of the
60 Phys. Plasmas, Vol. 4, No. 1, January 1997
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tinuum eigenfunction whose regular part has a continu
first derivative across the singularity. Finally, these comp
tations have been used to learn what happens to quasi-m
as density profiles are changed from one form into anoth
The ability to compute these quasi-modes and unders
their behavior as density profiles are modified should
helpful in understanding their significance in the dynamics
non-neutral plasmas and inviscid fluids.
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