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Introduction

Each of the terms in the multipole expansion, Griffiths Eq (3.95), can be separated into two pieces: one
that describes the source (which does not depend on r), and one that describes how that source produces a
potential (which does depend on r). For example, for the monopole term, n = 0, we have:
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Here p is the charge density function and r’ represents the locations where the charges are (which varies
over the integral). The net charge g can also be called the “monopole moment”. All of the information
about the charge distribution is contained in the calculation for (1). All of the information about the field
point is contained in the calculation for (2).

Similarly, for the dipole term n = 1, we have:
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Here p is the “dipole moment” with components p,, p,,, and p,. As usual, T is a unit vector pointing
towards the field point, and 7; for i = x,y, z represents the Cartesian components of £. All of the
information about the charge distribution is contained in the calculation for (3) and all of the information
about the field point is contained in the calculation for (4).

Each successive term in the multipole expansion involves a larger and larger collection of numbers
needed to specify the more-and-more complicated “moment” that describes the source, and each
successive term falls off by an additional power of .

Name Symbol (i, j, etc. Tensor | Number of r-dependence
represent Cartesian rank components to
coordinates) specify the moment
monopole q 0 1 1/r
dipole porp; 1 3 1/r?
quadrupole Qor Qi 2 9 1/r3
octopole 0ijk 3 27 1/r*

These moments are called “tensors”, which can be thought of as an extension of vectors. A “rank 0”
tensor is a scalar, a “rank 1” tensor is a vector, a “rank 2” tensor can be represented by a matrix, and so
forth.

Quadrupole moment and potential

Here are the two equations (source and field) for the quadrupole term.

Quadrupole moment and potential - 1



3 . 1, ! ’

1

unad ) = pr—

Y iy Qi) (6)

All of the information about the charge distribution is contained in the calculation for (5). All of the
information about the field point is contained in the calculation for (6).

Q;; is called the “quadrupole moment,” also the “quadrupole moment tensor.” It is a collection of nine
numbers (i and j each can be x, y, z) which can be written as a 3x3 matrix, just like p can be written as a
3-element vector. Moreover, the formula in (5) is symmetric in reversing i and j, so there are actually
only six independent matrix elements. In matrix form it can be written like this:

Qxx Qxy Qxz
Qj=(Cy @y Oy (7
Qxz Qyz Qzz

Once the quadrupole moment tensor is known, the potential can be determined via (6). Recall that 7;
represents the three Cartesian components of the unit vector pointing to the field point, F.

The similarities between the quadrupole potential equation and the dipole potential equation can be made
even more striking by rewriting the dot product in Eq (4) in terms of a summation:

1 N
Vaip = —— X" fipi (8)
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The derivation of (5) and (6) is given at the end of the handout.
Extensions

The next term of the multipole expansion will give rise to an “octopole” potential and an octopole
moment O, (O for octopole) as a rank 3 tensor which will contain 27 components in a 3x3x3 array of
numbers. The potential will involve a 27 term summation. Recognizing the patterns, we can write them as
the following:

5 r_r../ 3
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For the sake of completeness the “stuff” in Eq (16) is the following: r’Z(ri'6jk + rj'dik + 1 6; j), but you
don’t need to know that for this class.

Disclaimer

Equations (5) and (6) are given in Griffiths 5™ edition problem 3.57 and 4™ edition problem 3.52. By
contrast, the 3™ edition (in problem 3.45) defines Q; ; without the factor of 1/2 in the two terms, choosing
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instead to include an extra 1/2 in the equation for V4. A check of the internet reveals some continued
disagreement on this, but most sources actually seem to favor the 3 edition version of the equations.
However, I personally prefer the 5™ and 4™ edition equations because it makes the Legendre polynomials
more apparent so that’s what I’ve used in this handout.

Derivation of quadrupole moment and potential

Setting n = 2 in Griffiths equation (3.95) and recognizing that P,(cos a) = %cos2 a— %, we obtain the

quadrupole term:

3 N
Vauaa (™) = pr T3 [r'? (2 cos?a — E) p(rdr (11)

Here, a is the angle between r and r'.
Working with the two terms inside the integral, we have:
First term
3 3
Er'z cos?a = > (' cos a)? (12)
Note that 7' cos @ = f - r’ which can be written as a summation, Zl f; - 1/, where like before #; are the

Cartesian components of f.

Because we have two different r’ cos a terms multiplied together, we’ll have two summations. We can
write the second one as being over j.

—r 2cos?a == Zlﬂ”ﬂ” firi (13)

Second term
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This is true since f -  is just equal to one. We can then write £ - £ as a summation, Y;;* #; - #;, and turn it
into a double summation using the Kronecker delta function 6;;: - F = Z” 7;7j6;j. Thus we have

~r' = N6y (15)

Piecing together

Interchanging the order of the integral and the summation, (11) turns into the following:

’ 1 A A
Vauaa®) = 5= 505 [ (Gt = 57728:8,8,) pr') e’ (16)

Next I’ll pull out 7;7; from each terms and put in front of the integral because the integral is over the
primed coordinates:
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The stuff in the curly braces no longer has any r dependence! That was exactly our goal—we have
separated out the source information. Equation (11) can now be written as two separate equations, namely
equations (5) and (6).
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