Dirac delta function






by John S. Colton, Feb 2008
Definitions

1. Definition as limit.  The Dirac delta function can be thought of as a rectangular pulse that grows narrower and narrower while simultaneously growing larger and larger. 


rect(x, b) = 

(x) = lim(b→0)  rect(x, b)
Note that the integral of the delta function is the area under the curve, and has been held constant at 1 throughout the limit process.
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Shifting the origin.  Just as a parabola can be shifted away from the origin by writing y = (x – x0)2 instead of just y = x2, any function can be shifted by plugging in x – x0 in place of its usual argument x. 



(x - x0) = 

Shifting the position of the peak doesn’t affect the total area if the integral is taken from –( to (.
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Disclaimer: Mathematicians will object that the Dirac delta function defined this way (or any other way, for that matter) is not a real function. That is true, but physicists recognize that for all practical purposes you really can just think of the delta function as a very large peak. 
2. Definition as derivative of step function.  The step function, also called the “Heaviside step function” is usually defined like this: 

h(x) = 0 for x < 0, 

h(x) = 1 for x > 0
h(x) = 0.5 for x = 0

It’s a function whose only feature is a step up from 0 to 1, at the origin:



What’s the derivative of this function?  Well, the slope is zero for x < 0 and the slope is zero for x > 0.  What about right at the origin?  The slope is infinite! So the derivative of this function is a function which is zero everywhere except at the origin, where it’s infinite—and the integral of the derivative function from –( to ( must be 1 because h(x) is the anti-derivative and has a value of 1 at x = ( and a value of 0 at x = –( (think Fundamental Theorem of Calculus).  
An infinite peak at the origin whose integral is 1?  Sound familiar? Therefore (x) can also be defined as the derivative of the step function.
3. Definition as Fourier transform. We’ve seen that taking the Fourier transform of a function gives you the frequency components of the function. What about taking the Fourier transform of a pure sine or cosine wave oscillating at 0?  There is only one frequency component, so the Fourier transform must be a single, very large peak at 0 (or possibly two peaks, one at 0 and one at –0). A delta function!
4. Definition as density.  What’s the density of a 1 kg point mass located at the origin? Well, it’s a function that must be zero everywhere except at the origin—and it must be infinitely large at the origin because for a mass that truly occupies only a single point, the mass must have been infinitely compressed. How about the integral? The integral of the density must give you the mass, which is 1 kg.  A function that is zero everywhere except at the origin, and has an integral equal to 1?  Sounds like the delta function again!
More precisely, this would be a three-dimensional analog to the regular delta function (x), because the density must be integrated over three dimensions in order to give the mass. This is sometimes written (r)  or as  3(r): 


3(r) = (x) (y) (z)

Properties
1. Integral. One of the most important properties of the delta function has already been mentioned: it integrates to 1.

2. Sifting property. When a delta function (x – x0) multiplies another function f(x), the product must be zero everywhere except at the location of the infinite peak, x0. At that location, the product is infinite like the delta function, but it might be a larger or smaller infinity (now you see why mathematicians don’t like physicists), depending on whether the value of f(x) at that point is larger or smaller than 1. In other words, the area of the product function is not necessarily 1 any more, it is modified by the value of f(x) at the infinite peak. This is called the “sifting property” of the delta function:
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Mathematicians may call the delta function a “functional”, because it is really only well-defined inside integrals like this, in terms of what it does to other functions. (A “functional” is something that operates on functions, rather than a “function” which is something that operates on variables.)

3. Symmetry. A few other properties can be readily seen from the definition of the delta function:
a. (–x) = (x)


(Note that (x) behaves as if it were an even function)

b. (x – x0) = (–x + x0)
4. Linear systems. If a physical system has linear responses and if its response to delta functions (“impulses”) is known, then in theory the output of this system can be determined for almost any input, no matter how complex. This rather amazing property of linear systems is a result of the following: almost any arbitrary function can be decomposed into (or “sampled by”) a linear combination of delta functions, each weighted appropriately, and each of which produces its own impulse response. Thus, by application of the superposition principle, the overall response to the arbitrary input can be found by adding up all of the individual impulse responses.

Fourier Transforms

1. A single delta function. The Fourier transform of a single delta function in time can be obtained using the sifting property and the definition of the F.T.: 
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Similarly, the Fourier transform of (t – t0) is:
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The Fourier transform has a constant amplitude but a phase that varies linearly with . 

Another interesting way to define the delta function can be obtained by doing the reverse Fourier Transform and setting it equal to the original delta function:
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Note: the negative sign in the exponent is optional, as can be seen by substituting in ( = –: the d becomes –d(, but the limits of integration are reversed.

2. Finite comb function. A series of equally spaced delta functions, sometimes called the comb function, is written as: 
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   where tn = n t0
(note that comb is also a function of N)

One potential use for the comb function might be to perform a sampling operation on another function (see “Linear systems,” above).

The Fourier transform of the comb function is 
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For example, if N = 1, the Fourier transform is:
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For arbitrary N, the Fourier transform is given by
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which, after summing the finite series and doing lots of algebra, reduces to:
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This is a periodic function made up of large primary peaks surrounded by secondary peaks that decrease in amplitude as you move away from the primary peak. 
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Notice that the function is periodic and repeats every 2. 

As can easily be found from L’Hospital’s Rule, the amplitude of the primary peak depends on N:

amplitude = (2N+1)/sqrt(2)


The first zero (a measure of the width of the primary peak) is given by
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3. Infinite comb function: Using the previous two equations, one can see that in the limit as N→(, the large peaks (like the ones at –2, 0, and 2) get infinitely tall and infinitely narrow. They are delta functions! Thus, the Fourier transform of an infinite comb function in the time domain, is a similar infinite comb function in the frequency domain.
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FT(comb) plotted here as a function of t0, for N=10, without the 1/sqrt(2)
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