Physics 581: Solid State Physics
Exam 1 - due Wednesday 2/23/11, at class time

Rules/Guidance:

· The exam is completely open notes/books. You may use the textbook, other textbooks, class notes, internet websites, etc.

· You may not consult with any person about the exam (classmates, friends, relatives, other professors, internet chat rooms, etc).

· I will not help you do the exam problems, although I will answer any questions about homework problems (from this semester or last semester), in-class worked examples, how to program functions into Mathematica, etc.

· If the wording of any of the exam problems seems unclear, please talk to me and I will clarify what is meant.
The Problems:

1. (20 pts) Crystal structure questions. A certain material* has the crystal structure shown. 













The filled spheres are atom “A”, and are located at the eight corners and the six centers of faces of the big cube (dimensions a ( a ( a). The hollow spheres are atom “B” and are located at the centers of the eight smaller cubes. You should be able to convince yourself that there are twice as many of atom B as there are of atom A. (Even though there are more filled spheres shown, they are shared among neighboring cubes.)
(a) What are the coordinates of all of the atoms shown here? (There are 14 calcium atoms and 8 fluorine atoms.)

(b) What is the Bravais lattice type?

(c) How many atoms are in each conventional unit cell? What could be a basis for this unit cell?

(d) How many atoms are in each primitive unit cell? What could be a basis for this unit cell?

(e) Express the x-ray intensity diffracted from the (111) planes in terms of the atomic form factors for atom types A and B, fA and fB respectively. This involves calculating the structure factor; use the conventional unit cell.
2. (20 pts) Madelung energy: a worse model. In the model we used to describe Van der Waals forces, the repulsive energy term had an R-12 dependence. On the other hand, in the potential we used to model ionic forces, the repulsive term had an e-R/ dependence. Why didn’t we use a power law for the ionic case? Let’s see if it works: assume the repulsive potential between nearest neighbors in the NaCl crystal has the form of R-m, where m could be 12, but isn’t necessarily restricted to that number. In fact, we will use experimental results to determine the best value for m.

(a) Calculate the equilibrium nearest-neighbor distance, R0, and use that to determine the total cohesive energy, U(R0). Show that the energy can be written as:
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and the cohesive energy as:
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(For SI units, replace e2 with e2/(40) in both those equations.)

(b) For NaCl, the measured values are R0 = 2.82Å and U(R0)/N = –1.27 ( 10-18 joules/ion pair (Table 7, pg 66). Use those values to numerically determine the best value of m. 

(c) Show that total volume of the crystal is given by V = 2NR3, where N and R have the same meaning as in part (a), namely the number of ion pairs and the nearest neighbor distance.

(d) Calculate the bulk modulus,  = –V(dP/dV) (evaluated at the equilibrium volume). Hint: if no heat is added, the first law of thermodynamics tells us that P = –dU/dV. One way to approach this problem is to use the relationship between R and V you found in part (c) to express U as a function of V. Then you can take whatever derivatives are needed. Show that the bulk modulus can be written as:
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(For SI units, replace e2 with e2/(40).)

(e) The experimental value is  = 2.40 ( 1010 newtons/m2 (Table 7, pg 66). What would be the best value of m to fit this data? The fact that this value of m does not agree with the value of m found in part (b) is a large reason why we don’t use a power law repulsive energy to model ionic crystals.

3. (15 pts) Long wavelength waves in [111] direction. When you solved for the transverse velocity of acoustic waves in the [111] direction in HW 3 problem 5, I gave you a head-start by telling you that the two transverse directions were degenerate. So, for this problem, don’t make that assumption. In fact, don’t even assume that one of the three eigenmodes is a longitudinal wave.* Instead, solve the full 3(3 matrix equation you get from Eqn 3.57a, b, and c, without assuming any particular relationship between u, v, and w. Show that you get two degenerate eigenvalues, that the eigenvectors corresponding to those two eigenvalues do in fact correspond to two transverse directions, and that the third eigenvalue corresponds to a longitudinal direction. Feel free to use the Mathematica Eigenvalues[ ] and Eigenvectors[ ] commands.
4. (15 pts) Finite 1D chain of atoms & springs. As discussed in class on Feb 9,** in our ball & spring models of atoms, the finite length of the system of balls causes the allowed frequencies to be discrete rather than continuous as one would expect from the dispersion curves that we have been drawing. However, for macroscopic numbers of atoms, the spacing between frequencies (and allowed k-values) is so small that the points basically blur together and become the same continuous solutions that we obtain for Chapter 4-type problems. So, let’s test it out for the simplest case. 

(a) Numerically solve the problem of a finite length chain of 100 identical atoms. Assume all masses and spring constants are equal to 1. They are described by displacements u1, u2, …, us-1, us, us+1, … u99, u100. As discussed in class, you should use Newton’s Second Law on each one to get 100 coupled equations which you have to solve with a matrix equation. That gets you 100 allowed frequencies that are closely related to the eigenvalues of the matrix. Each frequency corresponds to a particular relationship between the us’s, that is to say, a particular wavelength (or k-value). (To find the correspondence, we would have to work out the eigenvectors, but that’s too complicated for this problem.) When solving this problem, you have to make some assumption about the boundary conditions to get the first and last rows of your matrix, such as “wrap around” or “u = 0”, etc. Since those are just two rows out of 100, it turns out to not matter very much what assumption you pick. Try at least two different sets of boundary conditions. See the paragraph below for help with how to set up the matrix in Mathematica.

(b) In class on Feb 4, we solved this same problem for an infinite chain, and found a particular dispersion relation:
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Assuming that there are 100 equally-spaced k values across the Brillouin zone that actually work, use that equation to generate a list of  values that correspond to those k values. Compare that list to the list from part (a). See below for a suggestion on how to generate this list, and how to compare the two lists. 

When you turn in your problem, please don’t include long printouts of huge matrices. Instead, just summarize the matrices you used… but do give the lists of allowed  values from both parts (a printout of that part of your Mathematica code is fine), along with an explanation/evidence of how you compared them.

Help with Mathematica: This took me some trial and error, and there may well be an easier way to do things, but this sequence of six Mathematica commands will produce a 100 ( 100 matrix called “M”, with values “a”, “b”, and “c”, along the diagonals of the 98 interior rows.

lowerdiags = Table[a,{i,1,98}]

diags = Table[b,{i,1,99}]

diags[[1]] = 0

upperdiags = Table[c,{i,1,99}]

upperdiags[[1]] = 0

M = DiagonalMatrix[lowerdiags,-1,100] +

   DiagonalMatrix[diags,0,100]+DiagonalMatrix[upperdiags,1,100];
You can manually set values of elements in the first and last rows to nonzero numbers by using commands like this:

M[[1]][[1]] = 1.75

or this:
M[[100]][[99]] = -3.1

You can view the matrix with this command:

MatrixForm[M]

The eigenvalues of a numerical matrix can be calculated fairly quickly using this command:

N[Eigenvalues[M]]
(The “N” command is useful here because if you just use the command Eigenvalues[M], it gives you the eigenvalues in an odd non-numerical format.)

I also found these commands to be useful:

The  Sqrt[  ] command (to get  instead of 2)

The  Sort[  ] command (to put the  values in ascending order) 

The  Table[f[k], {k, -Pi+Pi/100, Pi - Pi/100, 2 Pi/100}] command (to generate a list of the predicted  values, with 100 equally separated k-values, where I previously defined f(k) to be the equation we derived in class)

The  ListPlot[  ] command (to graphically display the allowed  values, as a way of comparing part (a) of this problem with part (b))

5. (10 pts) We spent a lot of time analyzing the 1D diatomic lattice model. That included at least one class lecture, one worked homework problem, and one laboratory homework problem. Plus, I referred back to that model several times after the initial lecture. Please summarize what we learned about the 1D diatomic lattice, and explain how/why it is such an important model for helping us understand the behavior of phonons (vibrational modes) in real materials. 

6. (20 pts) Create a homework or take-home exam problem. That is, pick a topic from one of the chapters, and write a problem that I could use on one of next year’s homework assignments or take home exams. And a matching solution, too, of course. Your problem will be graded as to how accurate it is, how much I feel it would help students learn a topic (without being too simple and without being too complicated) and how likely I would be to actually use it next year.
















a








* This is a real substance, but I decided against telling you which material it is so you can’t just google it.


*  Oddly enough that doesn’t always have to be the case, although it was for the specific directions we considered in class. In the [123] direction in tungsten, for example, which I almost gave as an exam question instead of this one, I believe the three eigenvectors are (-0.27, -0.54, -0.80), (0.95, -0.27, -0.14), and (-0.14, -0.80, 0.58). The allowed waves in this case travel neither completely longitudinally nor completely transversely! 


** If you weren’t in class that day, please come talk to me and I will summarize; this topic is not in the textbook, nor was it in my posted notes for that day.
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