Physics 581: Solid State Physics
Exam 2 - due Wed Apr 13, 2011, at class time

Rules/Guidance:

· The exam is completely open notes/books. You may use the textbook, other textbooks, class notes, internet websites, etc.

· You may not consult with any person about the exam (classmates, friends, relatives, other professors, internet chat rooms, etc).

· I will not help you do the exam problems, although I will answer any questions about homework problems (from this semester or last semester), in-class worked examples, how to program functions into Mathematica, etc.

· If the wording of any of the exam problems seems unclear, please talk to me and I will clarify what is meant.
The Problems:

1. (15 pts) Debye model, revisited. Kittel Eqn 5.30 represents the Debye model result for the heat capacity due to phonons. We looked at the low temperature limit of this equation (CV ~T3), and the high temperature limit (CV = 3NkB), but we didn’t say much about the in-between behavior. Nevertheless equation 5.30 actually has enough information in it to plot the entire temperature range. (a) Use that equation to make a plot of the molar heat capacity vs T for silicon. Plot temperatures from 0 to 300 K. Hint: To make the plot, you will need the Debye temperature of silicon; you can find it in Table 5.1. Your result should look like Fig 5.8, except for you will have J/mol(K as your y-axis instead of cal/mol(K. (b) Notice how high the Debye temperature is for diamond (carbon). That means that almost all reasonable temperatures are “low temperature” to some extent, for diamond. If you were to make a plot like that for diamond, from 0 to 300 K, what would be the largest molar heat capacity value on the graph? That is, 300 K for diamond would be the equivalent of what temperature, for silicon? 
2. (15 pts) When does  = 0? As discussed in class, the chemical potential  is the energy at which the Fermi distribution function has a value of ½. For small temperatures (including up to room temperature), that is very close to the Fermi energy. However, at large temperatures, the chemical potential starts shifting towards lower energies, and at very large temperatures, it can even become negative. For a bit of solid sodium,* calculate the temperature at which the chemical potential crosses over from positive to negative values. (I.e., the temperature for which  = 0.)  
Hint: start with this equation:
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You should get an integral which is do-able (by Mathematica, anyway).

3. (15 pts) bcc in [110] direction. Do an empty lattice approximation calculation for a bcc lattice in the [110] direction. Scale your x-axis so that x goes from 0 to 1 as k goes from zero to the zone edge (that is the “N point”, I believe). Scale your y-axis so that the lowest band’s energy at the zone edge equals one unit. Include enough bands to cover at least up to at least y = 6. Note: somewhat unexpectedly, my answer didn’t look much like the Wikipedia graph in the “Empty Lattice Approximation” handout. So yours might not, either. Or perhaps I did something wrong… I’ll have to double-check.
4. (20 pts) Parabolic bands from perturbation theory. In the Perturbation Theory handout, page 6, I unfortunately gave you a wrong equation. The correct equation has a factor of ¼ which I neglected to include:
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This was the result of degenerate perturbation theory, which lifts the degeneracy between energy states. In class I showed that this equation proves when you are at the band edge, where Ek0 = Ek(0, this results in a bandgap between the upper and lower branch, equal to 2Ukk(. 

In class I stated that if you consider what happens near the band edge, but not exactly there, you find a quadratic dependence on k. The goal of this problem is to derive that dependence.
Let’s consider two specific values for k and k(: the zone boundary for the lowest band in the 1D case: k0 = /a, and k0( = –/a. In the reduced zone scheme, those two k’s are plotted at the same point because they are connected by a reciprocal lattice vector: k0 – k0( = 2/a = G. Let us then move away from each of those two k-vectors by the same small amount k:  k = k0 – k  and  k( = k0( – k. The above equation then becomes:
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where 
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 are now the average and the difference of the unperturbed energies at k and k(, respectively (not at k0 and k0().
(a) Show that 
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, where 
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(b) Show that 
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(c) Plug those two expressions back into the equation above, use a small k approximation to get rid of the square root, and show the energy bands for k close to zero are: 
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Thus, as expected, there is a quadratic dependence on k for each of the two bands.

(d) What energy gap is predicted by that equation? 
(e) What effective mass is predicted by that equation for each band? (You can solve for 1/m* instead if you like.)
(f) Given your answers to parts (d) and (e), think about how the energy gap and effective mass relate. In class on Mar 28, I said something like, “In materials with a small bandgap, you tend to get a small effective mass,” and I cited HW problem 9.8 as “proof” (but didn’t assign it). Is that the same thing that you found from this problem, or did you find something different?

5. (15 pts) Simple semiconductor. Suppose you are given the following band diagram for a semiconductor, where the numbers are chosen so that k is in units of m-1 and E is in units of eV. This made-up semiconductor also has a dielectric constant of 10.





(a) What will be the donor and acceptor binding energies?
(b) If it is undoped, what the chemical potential be at 4K? At 300 K?
(c) How many electrons will be in the conduction band for T = 300K? (still undoped)

(d) Now suppose the semiconductor is doped with donors at a concentration of Nd = 1017 cm-3. What would the chemical potential be at 4K? (approximately)
(e) How would the electrical conductivity be expected to change if Nd = 1020 cm-3? How would it be likely to depend on temperature (at low T)?
6. (20 pts) As you did for the last exam: create a homework or take-home exam problem. That is, pick a topic from one of the chapters 5-8, and write a problem that I could use on one of next year’s homework assignments or take home exams. And a matching solution, too, of course. Your problem will be graded as to how accurate it is, how much I feel it would help students learn a topic (without being too simple and without being too complicated) and how likely I would be to actually use it next year. 
7. (Extra Credit, 15 pts) In this article, http://en.wikipedia.org/wiki/Fermi_gas, Wikipedia gives the chemical potential of a Fermi gas, assuming that kT<<EF: 
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This equation must come from what I told you in class, that the chemical potential is set by the constraint that the total number of states has to add up to N:
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In this equation, the density of states is as given on the “Heat capacity of 3D electron gas” handout, and f(E) is the Fermi-Dirac distribution function. 

However, I tried for a while and couldn’t figure out how to get from my equation to the equation for listed in Wikipedia. Also, Wikipedia doesn’t even give a reference for where that particular equation was found, and I couldn’t find it in any of my textbooks. So, if you can derive the chemical potential equation from my equation for N, I’ll give you extra credit. 







Ev = –1.0(10-19 k2





Ec = 2.0 + 1.5(10-19 k2
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* …which granted wouldn’t actually stay solid at the temperature that this problem predicts…
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