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Pauli Algebra

Geometric Algebras

Geometric algebras (also called Cli�ord algebras) are used to endow physical
spaces with a useful algebraic structure. By analyzing the physical system within
this context, we can �nd alternate interpretations of the underlying physics.
These can simplify computational problems in addition to giving us much more
compact and clean notation. In most cases the results can be expressed in a
coordinate free way, introducing an appropriate coordinate system only when
necessary.

An algebra is constructed by providing a linear space with an additional
binary operation called the product of the algebra. Although this product is
usually non-commutative, it is distributive with respect to the linear space ad-
dition, and it is assumed to be associative for our case. With these rules, the
idea of matrix multiplication immediately comes to mind. It will actually be
useful to keep this picture in mind, as long as we conceive the algebra's sum and
product in an abstract way. An additional essential condition for the algebra
is closure with respect to its product, i.e. the complete algebra must contain
all possible products of its elements. Again, in our matrix multiplication refer-
ence, this would imply choosing square matrices of �xed size: a product of two
n × n matrices is again an n × n matrix � in addition to the fact that a linear
combination of matrices is again a matrix.

Geometric algebras constitute a very speci�c instance of associative algebras.
The constraint imposed on their structure allows us to give concrete geometric
interpretations to both the elements and the operations within the algebra. In
a sense this is the natural extension of the Cartesian conception of identifying
geometry and algebra, and unifying them into a single structure. The geometric
building blocks are points, vectors, oriented surfaces, and oriented volumes. The
algebraic part relates them in a constructive way and allows us to unify both
concepts and equations from di�erent �elds of physics.

Next section introduces the main concepts of geometric algebras, as well as
the notation that we will use. In particular we de�ne the algebra associated to
the 3-dimensional space, known as the Pauli algebra.
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Geometric Product of Vectors

We �rst want to build up the geometric algebra starting from a physical vector
space V regarded as an underlying part of the larger linear space of the algebra
G. We also need to admit a metric de�ned by the usual dot product of two
vectors a, b ∈ V:

a · b = ab cos θ (1)

in terms of their magnitudes a and b, and the angle θ between them, thus
forcing us to include the real numbers R as a linear subspace. This in turn
provides the Cli�ord algebra with a graded structure where the scalars have
grade zero and the physical vector space V has grade one. We next �nd the
elements of grade two, called bivectors, by forming the �wedge� ∧ (or exterior or
Grassmann) product of two vectors encoding the plane de�ned by them. Given
that two collinear vectors do not form a plane,

a ∧ a = 0. (2)

Applying this to the sum of two vectors a+b and using distributivity, we obtain
the general antisymmetry property of the wedge product:

a ∧ b = −b ∧ a (3)

Furthermore, the area of the the parallelogram formed by the two vectors is
Area = ab |sin θ|, so the bivector represents an oriented surface (see Fig.1).

Cli�ord's stroke of genius converted Schwartz's inequality (for both the dot
and wedge products) to an equality by de�ning the geometric product of two
vectors a and b in V as:

ab = a · b + a ∧ b (4)

and then building up the geometric algebra by demanding closure. This geo-
metric product combines zero grade scalars with second grade bivectors with a
resulting magnitude[1]:

‖ab‖ = ab (5)

Thus geometric algebras constrain the symmetric part of the product of two
vectors to correspond to their dot product, as is evident in Eq.(4).

In order to close the algebra, we need to keep incorporating new multivectors
of higher grade. The wedge product of two vectors gives a bivector, bivectors can
now be wedged with another vector to produce a trivector, and so on. These ad-
ditional structures represent oriented volumes (and hypervolumes) as illustrated
in Fig.1 and will eventually close the algebra in a �nite number of steps due
to the antisymmetry property Eq.(3). With this geometric interpretation, the
wedge product turns out to be associative. Because of their geometric liaison,
multivectors are also very useful for interpreting the behavior of many familiar
physical quantities as we will show below.
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Figure 1: The wedge product of two vectors a, b is an oriented area, while the
wedge of a ,b , c is an oriented volume.

Geometric Algebra in 3-d

Our main example is the Cli�ord algebra G3 associated to the three dimensional
Euclidean space V = R3. This Pauli algebra[2] is eight dimensional and consists
of linear combinations of multivectors of grades zero to three, i.e. scalars, 3-d
vectors, 3-d bivectors, and 1-d trivectors (also called pseudoscalars). The basis
element of the real line R is the number 1. For R3 we choose an orthonormal
basis, namely three orthogonal unit vectors, e1, e2, e3. The advantage of using
orthonormality is that we can rely on the more versatile Cli�ord product in
order to construct the subsequent multivector bases. For instance, the bivector
basis element e1 ∧ e2 turns out to be the same as the product e1e2 in this case.
The eight basis elements of the Pauli algebra are classi�ed by grades in the
following Table:

Table I

Grade Basis �Complex form� Space

0 1 1 R
1 e1, e2, e3 e1, e2, e3 R3

2 e1e2, e2e3, e3e1 ie1, ie2, ie3 iR3

3 e1e2e3 i iR
�
Notice that the three resulting unit bivectors square to -1 instead of 1. This

follows from their antisymmetry as illustrated with the �rst one:

e1e2 = e1∧e2 = −e2 ∧ e1 = −e2e1 (6)
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and hence (e1e2)2 = e
1
e2e1e2 = −(e1e1)(e2e2) = −1.

This is also true for the pseudoscalar (unit trivector):

(e1e2e3)2 = e1e2e3e1e2e3 = −1 (7)

It can also be appreciated from Fig.1 that this trivector e1e2e3 represents the
(right handed) oriented unit cube. At the same time we can use this property,
Eq.(7), together with the fact that it commutes with all the basis elements, to
identify it with the imaginary unit i (in an algebraic sense). This is the actual
meaning of the third column in Table I.

In summary, we can take i as the basis element of the trivectors, and {iek}
as the basis of the bivectors for the Pauli algebra. In other words, every vector
a ∈ R3 has a corresponding dual bivector A = ia, and vice versa, a = −iA.
This duality associates a vector a normal to the surface de�ned by the bivector
A in a natural way.

For the present example G3 the duality property is expressed as:

a ∧ b = ia× b (8)

in terms of the unit pseudoscalar i. Two main features distinguish Grassmann's
wedge product from Gibbs's cross product:

a) the ∧ is well de�ned for any number of dimensions (as well as for pseudo-
Euclidean spaces), and

b) the ∧ is associative while the × ful�lls Jacobi's identity.
For the particular case of the Pauli algebra we can thus rewrite the de�ning

Eq.(4) as:

ab = a · b + ia× b (9)

in terms of the usual dot and cross products between two 3-dimensional vectors.
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Example: The Inertia Tensor

Angular Velocity and Angular Momentum Vectors

The classical mechanics formula for the angular momentum vector in terms
of the mass m, the position vector r, and the velocity v is L = m r× v, with
corresponding dual bivector L= iL. For any particle rotating with angular
velocity ω the tangential velocity is given by v = ω× r . Consider a rigid body
rotating about some axis (see Fig.2). Each particle will have the same angular
velocity ω. Using Eq.(8) the total angular momentum of the rigid body can
be written in terms of the Cli�ord product in Eq.(9) by summing over all the
particles k= 1 : N ,

L =
N∑
k

mkrk × (ω × rk )

= −i
N∑
k

mkrk∧ (ω × rk)

= −i
N∑
k

mkrk (ω × rk)

=
N∑
k

mkrk (rk ∧ ω)

=
∫

r(r ∧ ω)dm (10)

where the last step is an abstraction from a �nite number of point particles to
a mass distribution over the rigid body.

The inertia tensor plays the role of the mass (tensor) for rotational motion:
the angular momentum vector L is obtained as the (scalar) product of the inertia
tensor I with the angular velocity vector ω. We can describe I is a �one-slot�
machine sending vectors to vectors, so its matrix representation has two indices.
In other words, it is a linear mapping I : R3 →R3, and hence L =I(ω).
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Figure 2: All points in a rigid body rotate about the rotation axis (here, indi-
cated by an x) at the same angular velocity, ω.

Moment of Inertia for an Axisymmetric Body

Eq.(10) de�nes the inertia tensor as a linear function i.e. given any vector A
the image vector B is given by:

B = I(A) =
∫

r (r ∧A)dm (11)

and the matrix elements Ikl with respect to the given orthonormal basis {ek}
can be extracted as the projection:

Ikl = ek · I(el). (12)

This 3x3 matrix {I kl} is symmetric and includes the moments and products of
inertia with respect to the original basis.

Let us now look at a concrete simple example. Using Eq.(10), it is straightfor-
ward to �nd the inertia tensor for a rotating rod and write it in a coordinate-free
way. Consider a thin rod of length a extending from −a/2 to a/2 and rotating
about an arbitrary axis passing through its center (see Fig.3).

Choosing s as the integration variable, dm = mds/a, and r = sn̂ in terms
of the unit vector n̂ along the rod:

I(ω) =
∫ a/2

−a/2

sn̂ (sn̂ ∧ ω)
mds

a

=
ma2

12
n̂ (n̂ ∧ ω) (13)
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Figure 3: A thin rod of length a rotating about its center at angular velocity
ω.

This result can be rewritten in terms of geometric products only, using n̂ ∧
ω = (n̂ω − ωn̂)/2 from Eq.(4). This yields a more symmetric form:

I(A) =
ma2

24
(A− n̂An̂). (14)

The second term A′ = -n̂An̂ has a simple geometric interpretation: A′ corre-
sponds to the vector A re�ected with respect to the plane in̂.

Axially Symmetric Case

Let us next consider the more general case of an axially symmetric body rotated
about an arbitrary axis ω. Given that the inertia tensor is symmetric, it can be
diagonalized with corresponding orthogonal eigenvectors. The eigenvalues {I1,
I2, I3} are real numbers and represent the principal moments of inertia. De�ne
{f1, f2, f3} as the respective unit vectors along the principal axes of the rigid
body, and assume that f3 is the symmetry axis, so that the two moments of
inertia associated to the plane if3 are equal, i.e. I1 = I2.

In the body-�xed basis (see Fig.4), the inertia tensor can be written in terms
of the components of ω as:

I(ω) = I1ω1f1 + I2ω2f2 + I3ω3f3
= I1(ω1f1 + ω2f2) + I3ω3f3
= I1ω + (I3 − I1)ω3f3. (15)

The last term contains the component of ω along the symmetry axis and can
be rewritten in terms of the geometric product:
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Figure 4: An axisymmetric rigid body rotated about the arbitrary axis ω. Due
to the symmetry of the system I1 = I2.

ω3 = ω · f3

=
1
2

(f3ω + ωf3). (16)

Substituting back in Eq.(15) we obtain the desired form for the inertia tensor
for the case of an axisymmetric body[?]:

I(A) =
1
2

(I1 + I3)A +
1
2

(I3 − I1)f3Af3 (17)

expressed as a linear transformation from vectors to vectors.
Written in this form the inertia tensor for any axisymmetric rigid body

appears as a simple generalization of the much simpler case of a rotating rod.
In what follows we will deal with the non-trivial case of bivector valued mappings
of bivectors and will be able to �nd very similar algebraic expressions to the
ones above, but with a di�erent geometric interpretation.

Biforms in Physics: Mapping Bivectors to Bivec-

tors

When we considered the inertia tensor above we used vectors to de�ne the
rotation axes. In order to generalize rotations to higher dimensions we need
to de�ne them with respect to a plane de�ned by a bivector. For the 3-d
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Pauli algebra, we can still use Table I and let the vector ω be replaced by the
corresponding bivector

Ω = iω (18)

which de�nes the plane perpendicular to the ω axis. This can indeed be inter-
preted as an imaginary vector in a pure algebraic sense.

On the other hand, we also know that the angular momentum L behaves as a
vector with respect to rotations but not with respect to inversions or re�ections.
We saw in section that angular momentum can also be correctly described as a
bivector. We thus de�ne the bivector

L = r ∧ p = ir× p = iL. (19)

For instance, for a particle moving in a central potential, the bivector L is
conserved and hence de�nes the �xed plane of the orbit.

For the case of a rigid body we have to sum over all the particles (or integrate
over the mass distribution) as in Eq. (10) :

L = i

∫
r(r ∧ ω)dm

= i

∫
1
2

(r2ω − rωr)dm

=
∫

1
2

(r2Ω− rΩr)dm (20)

The inertia tensor now becomes a biform, i.e. a bivector valued linear trans-
formation of bivectors. Thus the inertia tensor I is reinterpreted as mapping
the plane de�ned by a bivector B to a new plane C:

C =I(B) =
∫

1
2

(r2B − rBr)dm (21)

This in turn leads directly to the analogue of Eq. (17):

L = I(Ω) =
I1 + I3

2
Ω +

I3 − I1
2

f3Ωf3 (22)

as a mapping from bivectors to bivectors for the axisymmetric case.
We would like to emphasize that, although this last equation looks almost

identical to Eq. (17) they are conceptually di�erent. While the latter refers to
a second rank tensor mapping vectors to vectors, Eq. (22) is a biform, i.e. a
bivector valued transformation of a bivector.
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[1] This property also allows (non-vanishing) vectors to be invertible with re-
spect to the Cli�ord product.

[2] The well known Pauli matrices form a representation of the basis elements
of R3 in terms of traceless Hermitian 2×2 matrices.
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