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Lab 1

Introduction to Matlab

Differential equations are the language of physics, but most of the interesting
problems involve differential equations that can’t be solved analytically. In this
course we’ll learn techniques to numerically solve differential equations with the
goal of studying interesting physics problems. Our first step is to learn the basics
of the Matlab programming language.

Basic Syntax

P1.1 Read and work through Introduction to Matlab, Chapter 1. Type and execute
all of the material written in this kind of font. After you have worked
through the chapter, use the Matlab command line to define the matrices

A=[1,2,3;4,5,6;7,8,9]

B=[1,4,5;9,6,3;2,3,1]

Also define the row and column vectors

v1=[1,1,2]

v2=[0.40824829 ; -0.81649658 ; 0.40824829]

(a) Use both * and .* to multiply A and B. Explain the difference.

(b) Perform the operation A./B and explain the result.

(c) Perform the operations A*v1, v1*A, and A*v2 and explain the results.

(d) Multiply only the center elements of A and B together

(e) Perform the operation exp(A+i*B) and explain what it means.

(f) Extract the center column of A, and then divide each element of this
column by the corresponding element in v2.

Writing Scripts

P1.2 Read and work through Introduction to Matlab, Chapter 2. Type and execute
all of the material written in this kind of font. Then complete the
following exercises:

(a) In your Freshman physics course, you learned that in the absence of
air resistance, a battleship’s projectile travels a horizontal distance

d = v2

g
sin(2θ) ,

1



2 Computational Physics 330

where v is its initial speed and θ is the initial angle above the horizon-
tal. Write a Matlab script that asks the user to enter a value for v in m/s
and θ in degrees, and then calculates and prints the range formatted
with one decimal place, like this: “Range: 45.2 meters”. Remember
that the standard trig functions are permanently set to use radians,
but degree versions also exist. Use your program to find the proper
angle to hit a target exactly 10 km away if the initial velocity is 750 m/s.
A battleship’s guns can’t elevate above 45 degrees.

(b) A planet’s velocity with respect to its star is v1 = 30000 x̂ m/s when it is
hit by an asteroid with velocity v2 = (−5000 x̂+8000 ŷ+1000 ẑ) m/s.
The planet has mass m1 = 6×1024 kg and the asteroid has mass m2 =
1×1019 kg. Write a script that defines the masses and velocities of
the planet and asteroid using the variables m1, m2, v1, and v2. Then
calculate and display the final velocity of the planet after the collision:

v f =
m1v1 +m2v2

m1 +m2

Your variables and your answer should be vectors. If it bothers you
that the planet’s velocity didn’t change, think about the precision you
are using to display it.

Loops, Logic, and Debugging

P1.3 Read and work through Introduction to Matlab, Chapters 3-4. Type and
execute all of the material written in this kind of font, and run the
code in the listings.

(a) Write a script that uses a for loop to find the factors of 24 by testing
every number from 1 to 12 using the mod function. Once you are sure
your code correctly finds all of the factors of 24, use it to find all of
the factors of 18648. To pass this exercise off, you must have at least 4
comment lines in your code.

(b) Use a while loop to automate the process of finding the answer to the
battleship range problem in P1.2(a). Start the elevation at zero degrees
and increase it in steps of 0.1 degrees until your range exceeds 5 km,
and then break out of the while loop.

(c) Your roommate has borrowed $100,000 in student loans. The loan
charges a 6% annual interest rate, and interest charges are applied
each month. In other words, every month the loan charges a 0.5%
interest fee on the remaining balance. This means that the amount
by which you reduce your balance each month is not the amount you
pay, but your payment minus the monthly interest. Your roommate
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plans to pay your loan off by paying $1,000 per month. Write a pro-
gram using loops and logic to calculate how long it will take to finish
paying off the loan. Don’t get fancy and derive an analytic formula for
compound interest payoff time. Just write a loop to track the balance
over time, and break out when the balance gets to zero.





Lab 2

Visualizations and Qualitative Analysis

Let’s start with some review of loops, logic, and matrices.

P2.1 Write a Matlab script that defines the following array

A=[14,42,91,79,95,65,3,84,93,67,75,74,39,65,17]

and then performs a “bubble sort” to order the array elements in A from
smallest to largest. A bubble sort is a simple sorting algorithm that works

T The bubble sort is not an ef-
ficient way to sort. Matlab’s
sort command is much bet-
ter, but we are learning how
to program here.

by repeatedly looping through an array using a for loop, comparing each
pair of adjacent items and swapping them if they are in the wrong order.
The for is nested inside a while that repeats until no swaps are needed in
the for loop. The algorithm gets its name from the way smaller elements
“bubble” to the top of the list. Step through your code using the debugging
commands while watching the values in A to make sure it is doing what you
think it should. To pass this exercise off, you must have at least 6 comment
lines in your code.

Line Plots

Matlab has a wealth of visualization tools available to help you view your data.
Let’s look at some of the 1-dimensional plotting tools.

P2.2 Read and work through Introduction to Matlab, Chapters 5. Type and
execute all of the material written in this kind of font and execute the
examples. Then complete the following exercises.

(a) Make a graph of f (x) = x sin(x) from x = 0 to x = 4π. Label the axes
and give the plot a title. Then overlay on the same frame a plot of
cos(x) and add a legend to the plot that identifies each curve. Use
Matlab help for the legend command to learn how to do this.

(b) Write a script with a for loop that calculates the first 20 terms of the
recursion relation

a1 = 1 ; an+1 =
(

n

(n −1/2)(n +1/2)

)
an .

and stores each value in an array a. Use Matlab’s debugging com-
mands to step through your code while you watch the values change
in the workspace window. (HINT: a20 ≈ 1.3×10−17)

5



6 Computational Physics 330

When you are sure your program is working correctly, add some code
to plot the values of an versus n using semilogy. Then overlay plots
of e−n and 1/n! and label each line with a legend. Which function best
matches the way the an terms fall off with n? You must have at least
four comment lines in your code to pass it off.

(c) Define an array x that contains the values from x = 0 to x = 5 with a
step size ∆x = 0.01. Make an empty array f the same size as x using
the zeros command. Then use a for loop and logic commands to
load f with the values:

f (x) =
{

ex , 0 ≤ x < 1
e ×cos(x −1) , 1 ≤ x ≤ 5

, (2.1)

Finally, plot f (x) vs. x and label your axes. You must have at least four
comment lines in your script to pass it off.

HINT: For this problem do not use a command like

if x < 1

because x is an array, not a single number. You will need to address
individual elements of the arrays when you do your logic tests and
assignment statements.

How does a differential equation make a curve?

Our purpose in this course is to analyze problems with differential equations.
Before becoming reliant on numerical ODE solvers, you need to develop an
intuition for how differential equations behave. You will need this intuition to
propose and refine mathematical models for physical processes and have a sense
of whether the solutions that a computer spits out are reasonable. If you don’t
develop good intuitive skills, the many differential equations you’ll encounter in
your physics courses will appear mysterious to you.

Let’s look at a simple differential equation and try to translate it into words:

d

d t
y = y (2.2)

Since d
d t y is the slope of the function y(t ) this differential equation says that the

bigger y gets the bigger its slope gets. Let’s consider the two possible cases for
initial conditions.

Case 1: y(0) > 0

The differential equation then says that the slope is positive, so y is increas-
ing. But if y increases its slope increases, making y increase more, making
its slope increase more, etc. So the solution of this equation is a function
like e t that gets huge as t increases.
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Case 2: y(0) < 0

Now the differential equation says that the slope is negative, so y will have
to decrease, i.e., become more negative than it was at t = 0. But if y is more
negative then the slope is more negative, making y even more negative, etc.
Now the solution is a strongly decreasing function like −e t .

Now consider another example. Suppose that you have discovered some
process in which the rate of growth of the quantity y is not proportional to y itself,
as in exponential growth, but is instead proportional to some power of y ,

d

d t
y = y p (2.3)

This idea is referred to as “explosive growth.” Keeping in mind that with p = 1
we get the exponential function, this equation says that if y starts out positive,
y should increase even more than it did before, i.e., get bigger faster than the
exponential function. That would have to be pretty impressive, and it is—y goes
to infinity before t gets to infinity. Figure 2.1 shows a plot of the explosive growth
function for the cases of P = 2 and P = 3.

Figure 2.1 The explosive growth
function defined by Eq. 2.3 for two
values of P .

You can play this qualitative analysis game with second-order differential
equations too. Let’s translate the simple harmonic oscillator equation

d 2

d t 2 y =−y (2.4)

into words. We need to remember that the second derivative means the curvature
of the function: a positive second derivative means that the function curves
like the smiley face of someone who is always positive, while negative curvature
means that it curves like a frowny face. And if the second derivative is large in
magnitude then the smile or frown is very narrow, like a piece of string suspended
between its two ends from fingers held close together. If the second derivative is
small in magnitude it is like taking the same piece of string and stretching your
arms apart to make a wide smile or frown.

So what does Eq. (2.4) say if y = 1 and y ′ = 0 to start? The first derivative is
zero, so y(t ) comes out flat, and the second derivative is negative, so the function
curves downward, making y smaller, which makes the frowniness smaller, but
still negative, so y keeps curving downward until it crosses y = 0. Then with y
negative the differential equation says that the curvature is positive, making y
start to smile and curve upward. It doesn’t curve much at first because y is pretty
small in magnitude, but eventually y will have a large enough negative value
that y(t) turns into a full-fledged smile, stops going negative, and heads back
up toward y = 0 again. When it gets there y becomes positive, the function gets
frowny and turns back around toward y = 0, etc. So the solution of this equation
is an oscillation, cos(t ) or sin(t ).

P2.3 For each of the following cases, use qualitative analysis to sketch the solu-
tion of the equation on paper.
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(a)
d

d t
y = y2 with y(0) =−1

(b)
d 2

d t 2 y = y with y(0) = 1 and
d

d t
y(0) = 0

P2.4 Don’t start this problem until after making all of your sketches in P2.3.

(a) Verify, on paper, that the analytic solution to P2.3(a) is y(t ) =−1/(1+ t ) .
Use Matlab to plot this function and compare it to your sketch.

(b) Verify that the analytic solution to P2.3(b) is y(t ) = (e−t +e t )
/

2. Use
Matlab to plot this function and compare it to your sketch.



Lab 3

Phase Space and Matlab Functions

Surface and Flow Plots

P3.1 Read and work through Introduction to Matlab, Chapter 6. Type and ex-
ecute all of the material written in this kind of font and execute the
examples. Then do the following exercises:

Figure 3.1 The “mountain” func-
tion.

(a) Write a script that makes a Matlab surface plot of the “mountain”
function Fig. 3.1:

f (x, y) = e−|x−sin y |
(
1+ 1

5
cos(x/2)

)(
1+ 4

3+10y2

)
. (3.1)

Plot it from -5 to 5 in x and from -6 to 6 in y and add labels for the
x and y axes. Make sure the labels correspond to the correct axes. If
your plot is solid black, don’t use such a fine grid in x and y .

(b) In a certain region of the atmosphere, the wind is blowing with velocity
that is constant in time, but varies spatially according to

d x

d t
= vx = 0.2x2 +0.5y2 +20

d y

d t
= vy =−0.1y3 +0.5x2 −10

(3.2)

Write a script that makes a quiver plot of the wind velocity over the
region -10 to 10 for x and y . Now add some stream lines beginning on
the left edge of your plot using the streamline command as shown in
Fig. 3.2.

Figure 3.2 Streamlines and wind
velocity for the a wind velocity
field.

The plot you created in P3.2(b) is referred to as a flow plot. The arrows that
you produced with the quiver command show the magnitude and the direction
of the velocity at each point, and the streamlines show the path that a particle
would follow in this velocity field. You can also use this type of plot to understand
the behavior of differential equations.

Phase Space

You can often visualize the solution of a second-order differential equation with-
out actually solving it using phase space1 techniques. In classical mechanics you

1R. Baierlein, Newtonian Dynamics (McGraw Hill, New York, 1983), p. 51-54, 140-144, and G.
Fowles and G. Cassiday, Analytical Mechanics (Saunders, Fort Worth, 1999), p. 93-98.

9
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will learn to call the two-dimensional plane defined by the variables q and p = ∂L
∂q̇

phase space (L is the Lagrangian). But for simplicity, in this lab we will use the
position x and velocity v as the phase space variables.

A second order differential equation can always be separated into a set of
first-order equations by defining an intermediate variable. For instance, a one-
dimensional projectile with the constant acceleration is described by the differen-
tial equation

d 2x

d t 2 =−g (3.3)

By defining an intermediate variable v , this second-order differential equation
can be written as a system of first-order differential equations like this:

d x

d t
= v and

d v

d t
=−g (3.4)

Notice that the position and velocity coordinates in Eq. (3.4) have the same form
as the flow velocities in Eq. (3.2), i.e. the first derivatives on the left equal expres-
sions on the right with no derivatives. If you think of d x/d t and d v/d t in Eq. (3.4)
as flow velocities in the x-v plane, the right-hand sides of these equations tell
you what the “flow” velocity is at each point in space. At any point in time t , the
coordinate [x(t ), v(t )] gives the phase-space point that represents the “state” of
the system. Given an initial starting point, you can then trace out a curve called a
phase space trajectory analogous to the streamlines we plotted in the flow plot.

Part of the power of phase space flow plots is that you don’t have to solve the
differential equation to make the flow plot. You just evaluate the right-hand sides
of Eq. (3.4), for example, and draw arrows at each point in the (x, v) space that
indicate which way the solution at that point will move if we take a small step in
time. To draw the phase space trajectories, we just connect up the arrows over
short time intervals (or let Matlab do it for with with streamline). In this way
you can explore the behavior of the system for a wide range of initial conditions
without ever actually solving the ODE for any of these conditions.

P3.2 Sketch a phase space diagram for the one-dimensional projectile in Eq. (3.4)
by hand on paper. Then draw some phase-space trajectories for a ball being
thrown up with various velocities. After you have done your work by hand,
check it by using Matlab with the quiver and streamline tools.

P3.3 Make a phase space diagram for a simple harmonic oscillator given by:

d 2x

d t 2 =−x (3.5)

First sketch on trajectory by hand on a paper, then use Matlab to plot
the phase space diagram with many trajectories using the quiver and
streamline tools. Verbally describe the motion represented by each curve.
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P3.4 Use Matlab to plot a phase space diagram for the angle of a rigid pendulum,
given by

d 2θ

d t 2 =−sin(θ) (3.6)

Play with the range of the plot until you can clearly see motions that wig-
gle back and forth, and others that just spin around like a propeller on a
plane. Identify curves that are clockwise spinning, curves that are counter-
clockwise spinning, and curves that wiggle back and forth.

P3.5 Use qualitative analysis to sketch the solution of the equation

d 2

d t 2 y =−y2 with y(0) = 1 and
d

d t
y(0) = 0

on paper like we did in the last lab. This ODE doesn’t have an analytic
solution. Make a phase-space quiver plot and use streamline to overlay
a phase-space trajectory corresponding to the correct initial conditions and
compare this trajectory with your sketched solution and make sure they are
consistent.

Functions in Matlab

To this point, we’ve mostly relied on Matlab’s built-in functions tied together with
some code to perform our work. As our numerical techniques advance, we’ll need
to be able to write our own functions. Pay close attention to this material, because
it will be important throughout the remainder of the course.

P3.6 Read and work through Introduction to Matlab, Chapter 7. Type and execute
all of the material written in this kind of font. Then do the following
exercises:

(a) Write an m-file function called EulerSum.m that computes the quan-
tity

Se (N ) =
(

N∑
n=1

1

n

)
− ln(N )

You can either use a loop or the sum command to compute the sum.
Write a separate script that loads a variable Se with Se (N ) from N = 1
to N = 1,000. Show that as N becomes large Se approaches a limit.
This limit is called Euler’s constant, often represented by the Greek
letter γ. To 15 digits, Euler’s constant is

γ= 0.577215664901532

Add a second output to EulerSum.m that returns the error |Se (N )−γ|.
Use semilogy to plot this error as a function of N .
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(b) A square wave can be approximated by a sum of sine waves according
to

f (x) =
N∑

n=1,3,5,...
an(x) (3.7)

where

an = 4

nπ
sin

(nπx

L

)
(3.8)

Make an anonymous function that evaluates an(x) and then write a
loop that evaluates f (x) for a given value of N . Use L = 1 and plot
f (x) from -5 to 5. Notice that your function will need to accept two
arguments: n and x. Use your code to explore how big N needs to be
to get a good approximation to a square wave. If you get a nice clean
picture of a square wave, make your x grid finer and finer until you
see the Gibbs phenomenon spikes at the points of discontinuity that
you learned about in Physics 318.



Lab 4

Calculus and a Bouncing Ball

For the past couple of labs we’ve focused on ways to visualize the solutions to
differential equations using phase-space plots and qualitative analysis. In this lab
we’ll begin to learn how to solve differential equations numerically. To do this, we
represent functions of space and time using discrete grids rather than continuous
variables. Then we approximate derivatives as finite differences on this discrete
grid rather than the infinitesimally small differences in analytic calculus. We
begin by exploring how to do calculus on grids. Then we’ll use these ideas to
develop a crude technique for numerically solving the differential equations for a
bouncing ball.

Calculus on a Discrete Grid

P4.1 Read and work through Introduction to Matlab, Chapter 8. Type and execute
all of the material written in this kind of font. Then complete the
following exercises.

(a) Use the simple mid-point rule to numerically do the integral∫ 2

0
x2e−x cos xd x . (4.1)

Experiment with different values of N until you are confident that you
have the answer correct to 6 decimal places. Then verify that you did
it right by doing the same integral using Matlab’s integral command
with an anonymous function.

(b) Consider the function f (x) = ex . The derivative of this function is ob-
viously f ′(x) = ex , but imagine you didn’t know that, and numerically
evaluate f ′(x) at x = 1 using both the forward and centered difference
approximation to the first derivative with a step size h = 0.5. Then
compare the approximations with the analytic answer (i.e. f ′(1) = e).

When you are sure you have the numerical derivatives coded correctly,
switch h to be an array with values[

1

2
,

1

4
,

1

8
, · · · ,

1

265

]
Then write a for loop that calculates the error of the two derivative for-
mulas as err=abs(fp/exp(1)-1) (where fp is the numerical deriva-
tive) for each value of h, and stores the error in another array that

13
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is the same size as h. Finally, make overlaid loglog plots of the two
errors vs. h. Show that the centered difference formula works better,
but that both formulas are bad for very small values of h.

Explain why very small values of h make the approximate derivative
be wrong, giving zero instead of a good approximation to f ′. The
section below on roundoff will be helpful.

Roundoff

The effect illustrated in exercise 4.1(b) is called roundoff and it rears its ugly head
every time you subtract two numbers on a computer. To understand round-
off, consider the following two 15-digit numbers: a = 1.2345678912345 and
b = 1.2345678918977. These are impressively accurate numbers, but their differ-
ence is not so impressive: b−a = .0000000006632. Where did all of the significant
digits go; we started with 15 and now we only have 4? The problem is that the
numbers were so close together that subtraction made most of the significant
figures go away. When you work with numerical data on a computer you only
have a finite number of significant digits (15 in Matlab), so you have to be careful
when you subtract. And because subtraction is the key idea in differentiating, we
have to be careful about how we choose our step size h. As you can see in this
exercise, making it very small makes things worse, not better.

Numerical Solutions to Differential Equations

Now that we understand the basics of taking derivatives on a grid, let’s look at how
to numerically solve differential equations. Consider the motion of a projectile
near the surface of the earth with no air resistance. The differential equations
that describe the projectile are

d x

d t
= vx

d y

d t
= vy

d vx

d t
= 0

d vy

d t
=−g

(4.2)

along with some initial conditions, x(0), y(0), vx (0), and vy (0). This set of equa-
tions is easily solved analytically, but imagine that we didn’t have an analytic
solution. How could we numerically model the motion of the projectile?

The basic idea behind a numerical solution is to think of your independent
variable (time in this case) as being a discrete grid rather than a continuous
quantity. It is easiest to represent time with an evenly spaced grid [t0, t1, t2, ...]
with t0 = 0, t1 = τ, t2 = 2τ, etc. Then we label the dependent variables (space in
this case) using the same indexing as the time grid, like this: x0 ≡ x(0), x1 ≡ x(τ),
x2 ≡ x(2τ), etc. With this notation, we can write the equations in (4.2) using the
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(inaccurate) forward difference approximation of the derivative that you learned
about in the reading:

xn+1 −xn

τ
= vx,n

yn+1 − yn

τ
= vy,n

vx,n+1 − vx,n

τ
= 0

vy,n+1 − vy,n

τ
=−g

(4.3)

Notice that the left sides of these equations are centered on the time tn+1/2, but
the right sides are centered at time tn . This makes this approach inaccurate, but
if we make τ small enough it can work well enough to see the principles involved.

By solving the equations in (4.3) we can obtain a simple algorithm for stepping
our solution forward in time:

xn+1 = xn + vx,nτ yn+1 = yn + vy,nτ

vx,n+1 = vx,n vy,n+1 = vy,n − gτ
(4.4)

This method of approximating solutions is called Euler’s method. In general, it’s
T The name Euler does not

rhyme with “cooler”; it
rhymes with “boiler”. You
will impress your fellow stu-
dents and your professors
if you give this important
name from the history of
mathematics its proper pro-
nunciation.

not very good, especially over many time steps. However, it provides a foundation
for learning other better methods.

P4.2 Make a program in Matlab to model the motion of a ball bouncing on the
floor using Euler’s method. In your script, define the initial position of the
ball with x=0 and y=1, and the initial velocity with vx=1 and vy=0. Then
write a while loop to step the position and velocity forward in time using
Eq. (4.4). Have your while loop exit when x > 10. Use new variable names
for the quantities at time level n +1, like this:

xnew = x + vx*tau;

vynew= vy - g*tau;

etc.

Then when you have advanced all four quantities, update the current values
to get ready for the next step, like this:

x=xnew;

y=ynew;

etc.

(a) To simulate bouncing, put an if statement in your loop that checks if
y is less than zero. When it is, make vy positive like this

vy=abs(vy)

Make a movie by plotting the position of the ball as a dot each time
the loop iterates, like this:

plot(x,y,'.')

axis([0 10 0 1.5])

pause(0.001)
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(b) Our bouncing condition in part (a) is lousy. Make it better by adding
some more logic that does the following:

(i) Test to see if y will go less than zero on this time step, but don’t
actually change y yet.

(ii) If y won’t go less than zero this step, just do a regular Euler step.

(iii) If it will go negative this time step, determine a smaller time step
τ1 such that an Euler step will take the ball to y = 0. Then take an
Euler step with τ1. After taking this small step, make the y-velocity
positive as before

vy=abs(vy)

and then take an Euler step of τ2 = τ−τ1 to finish off the time interval.

Play with different values of τ and notice that even with this improved
bouncing condition, Euler’s method is always unstable (i.e. the ampli-
tude of the bounce continues to grow). This is a limitation of Euler’s
method, and we’ll develop better methods to overcome this shortcom-
ing next time.

(c) Make your model look more realistic by adding some energy loss
during the bounce process by changing your bounce code to look like
this

vy=0.95*abs(vy)

This damping will mask the growth of Euler’s method for a suitably
small τ.



Lab 5

Playing Baseball with ODEs

In the previous lab, we learned a crude method for numerically solving dif-
ferential equations called Euler’s method. In this lab we learn how to take the
next step in refining that rudimentary technique into a more accurate ODE solver.
After we have a good idea how ODE solvers are built and refined, we will introduce
you to some powerful differential equation solvers built into Matlab.

Numerically Solving Differential Equations

P5.1 Read and work through Introduction to Matlab, Sections 9.1-9.2. Type and
execute all of the material written in this kind of font. Then work the
following problems.

(a) Let’s start simple by modeling an object dropped from rest 10 m above
the ground. Neglect air resistance, so that the gravitational force is
simply F = mg . On a piece of paper, write down Newton’s second
law for this system and then convert it to a first-order set of coupled
equations. Write the derivatives as finite differences on a grid in time
like we did in the last lab, and solve the resulting algebra equations
to derive the equations for Euler’s method. (Don’t peek at the answer,
derive Euler’s method again from scratch.)

(b) Implement your equations from part (a) in a Matlab script to solve the
differential equation. Keep track of all the values, and plot y(t ) until
your object hits the ground. Overlay a plot of the analytic solution and
compare these plots for various values of τ.

(c) Modify your code from part (b) to use second-order Runge-Kutta.
Evaluate how your accuracy changes as you vary τ, and overlay plots
of the Euler’s method solution, the Runge-Kutta solution, and the
analytic solution. Compare the answer for various values of τ.

P5.2 Read and work through Introduction to Matlab, Sections 9.3.

Important: As you work through this material in Introduction to Matlab,
you will learn how to use an M-file named rhs.m to solve differential equa-
tions. As you do this problem and in later labs, please don’t keep using
the name rhs.m over and over. Invent a unique name, like rhs5_2.m, and
change the call to ode45 to correspond: ode45(@rhs5_2,...). This will
make it possible for you to come back later and see how you did each of the
problems.

17
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(a) Use Matlab’s numerical differential equation solver ode45 to solve the
motion of the particle dropped from rest at a height of 10 m (no air
friction) by writing a rhs function and using Matlab’s ode45.

(b) Make another version of your code from part (a) that uses an anony-
mous function instead of an external m-file rhs function. In subse-
quent problems and labs, you are free to use either syntax, but when
the functions get complicated its usually easier to use the external rhs
function.

P5.3 Use Matlab’s ode45 to numerically solve the following equation.

d y

d t
= y sin t ; y(0) = 1 (5.1)

Plot the numerical solutions from t = 0 to t = 100 and overlay a plot of the
analytic solution

y(t ) = e1−cos(t )

Fiddle RelTol and get a feel for how the accuracy changes with this param-
eter. Note: this differential equation is only first order, so you won’t have
u(1) and u(2) this time. Think carefully about how to change your code
from P5.2 to do this first-order problem.

Baseball

In Physics 121 you did the problem of a hard-hit baseball, but because you did
it without air friction you were playing baseball on the moon. Let’s play ball in a
real atmosphere now. The air-friction drag1 on a baseball is approximately given
by the following formula

Fdrag =−1

2
Cdρairπa2|v|v (5.2)

where Cd is the drag coefficient, ρair is the density of air, a is the radius of the ball,
and v is the vector velocity of the ball. The absolute value in Eq. (5.2) pretty much
guarantees that we won’t find a formula for the solution of this problem, but that’s
fine since we know how to numerically solve differential equations now.

Figure 5.1 The trajectory for a
home run hit, including the ef-
fect of air friction. Note that the
path is not a parabola.

There are two forces acting on a baseball: air drag and gravity. Using Newton’s
second law mr̈ =∑

F, we see that equation of motion for the ball is

mr̈ = Fdrag −mg ŷ (5.3)

where r is the vector position of the ball, m is the mass of the baseball, g is the
acceleration of gravity, and we have chosen the ŷ direction to be up. Since this is

1For more information about the subject of air drag see R. Baierlein, Newtonian Dynamics
(McGraw Hill, New York, 1983), p. 1-7, and G. Fowles and G. Cassiday, Analytical Mechanics
(Saunders, Fort Worth, 1999), p. 55-65.



Lab 5 Playing Baseball with ODEs 19

a vector equation, it represents a system of equations—one for each dimension.
To simplify our life, let’s consider the motion to be just in the x-y plane with x̂ as
the horizontal direction. Using the definition of velocity, we can convert Eq. (5.3)
into the following set of four coupled first-order equations

d x

d t
= vx

d vx

d t
=−

Cdρairπa2vx

√
v2

x + v2
y

2m

d y

d t
= vy

d vy

d t
=−

Cdρairπa2vy

√
v2

x + v2
y

2m
− g

(5.4)

P5.4 (a) Use Matlab’s ODE solver to solve the set of equations (5.4) for a base-
ball with the following parameters:

Cd = 0.35 ρair = 1.2 kg/m3

a = 0.037 m m = 0.145 kg

g = 9.8 m/s2

Put the point of contact between bat and ball at the origin (x(0) = 0,
y(0) = 0). Write your initial conditions in terms of the initial angle θ
and velocity v0 of the baseball (i.e. v0x = v0 cosθ, v0y = v0 sinθ) so we
can play with the angle and initial speed.

Plot y(t ) and x(t ) for the initial conditions of θ = 45◦ and v0 = 60 m/s.
Then plot the trajectory y(t ) vs. x(t ).

(b) Once you have your plot for the trajectory in air, overlay the trajectory
that the ball would have experienced without air drag on the same
plot. Estimate the difference in range caused by air friction.

(c) Power hitters say they would rather play in Coors Field in Denver than
in sea-level stadiums because it is so much easier to hit home runs.
Do they know what they are talking about? To find out, repeat part (a),
but instead of overlaying the no air friction plot, overlay the trajectory
of a ball hit in Denver and see if the ball goes significantly farther. The
density of air in Denver is about 15% lower than it is at sea level.





Lab 6

The Harmonic Oscillator and Resonance

The harmonic oscillator is probably the most studied system in dynamics. In
this lab we use the numerical tools that we have developed to explore some of
the behavior of this system.1 Before we dive into the computational details, let’s
remind ourselves of the basic physics of a harmonic oscillator.

The Basic Oscillator

The basic oscillator equation is given by

d 2

d t 2 x(t ) =−ω2
0 x(t ). (6.1)

The solutions to this equation are just sines and cosines that wiggle forever in
time with angular frequency ω0:

x(t ) = A sin(ω0t )+B cos(ω0t ) (6.2)

or equivalently,
x(t ) = A sin(ω0t +φ) (6.3)

P6.1 (a) Sketch a phase space diagram for the harmonic oscillator by hand
on paper. Draw at least two phase-space curves for initial conditions
x(0) = 1, v(0) = 0 and another for x(0) = 0 and v(0) = 1.

(b) Use Matlab to make a phase-space plot of x(t) and v(t) for a simple
harmonic oscillator with ω0 = 2.

(c) Solve Eq. (6.1) numerically using Matlab’s ODE solver with initial val-
ues x0 = 1 and v0 = 0, v0 = 1.4, and v0 =−1 and run them from t = 0
to t = 1. Overlay the three trajectory plots on your flow plot. Identify
each of the three initial conditions on your plot, and explain what the
harmonic oscillator does along each trajectory.

Of course, no real oscillator wiggles forever. To model a real system we need to
add damping.

1You can read more about the simple harmonic oscillator in the following references: R. Baierlein,
Newtonian Dynamics (McGraw Hill, New York, 1983), Chap. 2, and G. Fowles and G. Cassiday,
Analytical Mechanics (Saunders, Fort Worth, 1999), Chap. 3.
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The Damped Oscillator

If we add some linear damping to the system, the harmonic oscillator equation
becomes

d 2

d t 2 x(t ) =−ω2
0 x(t )−2γ

d

d t
x(t ), (6.4)

where the damping factor γ describes the amount of damping—a large γ means
that there is a lot of damping. If you ask Mathematica to solve Eq. (6.4), it will tell
you that the solution is

x(t ) = Ae
−t

(
γ+
p
γ2−ω2

0

)
+Be

−t
(
γ−
p
γ2−ω2

0

)
(6.5)

Equation (6.5) looks impressive, but if it’s supposed to be an oscillator that damps,
where are the sines and cosines? The problem is that we haven’t specified how
big ω0 and γ are yet. Let’s think physically for a minute.

Suppose that you put a pendulum in motor oil at 50 degrees below zero. This
is an oscillator with a big γ. If you pull the pendulum back and release it, you
are not going to see any swinging; the pendulum will just slowly ooze back to
the vertical position and stay there. We refer to this system as being overdamped.
Look at Eq. (6.5) and convince your lab partner that this solution is made up of
decaying exponentials when γ is big (specifically γ>ω0).

Now imagine what would happen if we decrease the damping, say by warming
the oil up, or using WD-40 instead, or maybe even just air. In this case, the
pendulum will swing back and forth, but the amplitude will decrease over time.
But by what miracle did the exponential functions in the original solution become
sines and cosines? Recall Euler’s formula

e iθ = cos(θ)+ i sin(θ)

which relates exponentials to wiggles through an imaginary argument. Note that
when γ<ω0, the square-root in Eq. (6.5) has a negative argument, and the square
root is imaginary. In this situation, we can rewrite Eq. (6.5) as

x(t ) = e−tγ
[

Ae−iωd t +Be iωd t
]

(when γ<ω0) (6.6)

where the frequency at which the damped oscillator “wants” to wiggle is given by

ωd =ω0

√
1−γ2/ω2

0 (6.7)

If the argument of this square root is positive (γ>ω0), then both of the fundamen-
tal solutions in Eq. (6.5) are decaying exponentials and we only have damping
(no wiggles). The transition between the two is when the argument of the square
roots is zero, i.e., when γ=ω0. This special case is called critical damping.

P6.2 (a) Use Matlab to make a phase-space plot for a damped harmonic oscil-
lator with ω0 = 2 and γ= 0.5.
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(b) Solve Eq. (6.4) numerically using Matlab’s ODE solver with initial val-
ues x0 = 1 and v0 = 0, v0 = 1.4, and v0 = −1, and run from t = 0 to
t = 20. Overlay the three trajectory plots on your flow plot. Identify
each of the three initial conditions on your plot, and explain what the
harmonic oscillator does along each trajectory.

(c) Change the damping coefficient to γ= 4 and repeat (a) and (b). Ex-
plain how the flow plot describes the overdamped system.

(d) An air-damped oscillator has damping more closely proportional to
the square of velocity rather than proportional to velocity. In equation
form, we write this as

d x

d t
= v ;

d v

d t
=−ω2

0x −2γv |v | . (6.8)

Repeat (a) and (b), but change your model to use the quadratic air-
damping in Eq. (6.8) with γ= 0.5 instead of linear damping. Explain
how this picture looks different from the ones in (a) and (b), and why.

The Driven, Damped Oscillator and Resonance

If we add a sinusoidal driving2 force at a frequency ω to the harmonic oscillator,
the equation of motion becomes

d 2

d t 2 x(t ) =−ω2
0 x(t )−2γ

d

d t
x(t )+ F0

m
cos(ωt ) (6.9)

Now we have two frequencies in play—the driving frequency ω and the damped-
oscillator frequency ωd given by Eq. (6.7). The typical behavior of the driven-
damped harmonic oscillator starting from rest is as follows: an initial period of
start-up with some beating between the two frequencies (ω and ωd ), then the
oscillations at ωd damp out and the system transitions to a state of oscillation at
the driving frequency ω.

It is possible to solve Eq. (6.9) symbolically, but let’s study its behavior numer-
ically for practice.

P6.3 Use Matlab to numerically solve Eq. (6.9) and plot x(t ) from t = 0 to t = 300
with ω0 = 1, F0 = 1, m = 1, ω = 1.1, and γ = 0.01. Start from rest, with
x(0) = 0 and ẋ(0) = 0. Note the initial beating between frequencies and
verify graphically that the final oscillation frequency of x(t ) is ω.

2For more information about the driven, damped harmonic oscillator, see: R. Baierlein, Newto-
nian Dynamics (McGraw Hill, New York, 1983), p. 55-62, and G. Fowles and G. Cassiday, Analytical
Mechanics (Saunders, Fort Worth, 1999), p. 99-106.
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Resonance Curves

When you push someone in a swing, you find that if you drive the system at the
right frequency, you can get large amplitude oscillations. This phenomenon is an
example of resonance, and the frequency at which the system has the maximum
response is called the resonance frequency ωr . If you drive a system at a frequency
far from ωr you only get small oscillations.

P6.4 (a) Make a new script by modifying your script from P6.3 so it makes a
plot of x(t) starting from rest and running for a long time so all the
beating has stopped. Use F0 = 1, m = 1, γ = 0.1 ω0 = 1. Drive the
system at ω= 1.1. Then write some code that measures the amplitude
of the steady-state oscillations using the colon command to select
a few cycles of oscillation at the end of the time period and the max

command to find the maximum value within these oscillations.

(b) Add a for loop to your code in (a) that varies the driving frequency
fromω= 0.5 toω= 1.5 in steps of∆ω= 0.2. For each driving frequency,
use your code to measure the steady-state oscillation amplitude A
(i.e. the amplitude of oscillation after all the beating has died out)
and make a plot of the steady-state amplitude A versus the driving
frequency ω. Note the region where this curve has a maximum value
somewhere in the vicinity of ωd , but our resolution is too coarse to
see exactly where the maximum is.

(c) To better locate the maximum, modify your loop to look at the region
ω= 0.98 toω= 1.02 with steps of∆ω= .001. Find the frequency where
this curve has a maximum, and compare its location to ωd for this
system. Are they the same?

In this problem you should note that the resonance frequency ωr (i.e. the peak of
the resonance curve) is not the same as the same as the damped frequency ωd .
When damping is small, ωr and ωd are close, but they are not the same.

The plot you made in P6.3 is called a resonance curve. A resonance curve
plots the steady state oscillation amplitude (after the beating has died away)
vs. the driving frequency. You did this by brute force, but for the simple driven-
damped equation we can find an analytic solution for the resonance curve. The
steady-state oscillation has the form

x(t ) = A cos(ωt −φ) (6.10)

where A is the steady state amplitude, ω is the driving frequency, and φ is the
phase difference between the driving force and the oscillator’s response. By
substituting Eq. (6.10) into Eq. (6.9) and analyzing the result, we find that the
steady-state amplitude A is given by

A(ω) = F0
/

m√
(ω2

0 −ω2)2 +4γ2ω2
(6.11)
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while the phase shift φ is given by

tanφ= 2γω

ω2
0 −ω2

. (6.12)

P6.5 (a) Write a matlab script that plots Eq. (6.11) for the parameters in P6.4
and compare the plot with your numerical results. Also plot φ(ω) and
describe to your lab partner what φ represents.

(b) Now make plots of A(ω) for several values of γ and verify that a smaller
damping coefficient γ leads to larger and sharper resonance.

(c) Show analytically that the peak of the resonance curve A(ω) is not at
the damped frequency ωd , but occurs at

ωr =
√
ω2

d −γ2 =
√
ω2

0 −2γ2 (6.13)

HINT: Remember that to find the peak of a curve, you take its deriva-
tive and set it equal to zero.





Lab 7

The Pendulum

The harmonic oscillator is an incredibly useful system to understand because
it is a reasonably good approximation to essentially every system that exhibits
oscillations, as long as the amplitude remains small. The classic example of a
oscillating system is a simple pendulum. In this lab we’ll study how the pendulum
resembles a harmonic oscillator and also how it differs.

The Simple Pendulum

The equation of motion of a simple pendulum is

θ̈ =−ω2
0 sinθ , (7.1)

where θ is the angle (in radians) between the pendulum and the vertical direction
and ω0 is the small-amplitude oscillation frequency. This is a nonlinear equation,
so we often use the small angle approximation sinθ ≈ θ to simplify Eq. (7.1) into a
simple harmonic oscillator. But it doesn’t take a very large amplitude before the
small angle approximation falls apart. In this lab, we study the large amplitude
behavior of the pendulum, which can be quite different from the simple harmonic
oscillator.

Figure 7.1 A phase space flow plot
for a pendulum.

P7.1 Show that Eq (7.1) is, in fact, nonlinear by showing that if you have two of
its solutions θ1(t ) and θ2(t ), then their sum θ1(t )+θ2(t ) is not a solution of
the differential equation. When this happens, we say that the differential
equation is nonlinear. Use pencil and paper; Mathematica will just slow
you down.

P7.2 Use Eq. (7.1) with Matlab to make a phase space diagram with Matlab’s
quiver and streamline commands. Use this diagram to describe the pen-
dulum behavior for small oscillations, large oscillations, and motion where
the pendulum is rotating completely around rather than oscillating back
and forth. Identify trajectories for both clockwise and counter-clockwise
rotations.

Period and Frequency of the Pendulum

A pendulum is an extended object that is free to rotate with moment of inertia I
about a pivot point. The distance from the pivot point to the center of mass of the
object is `, and the small-amplitude oscillation frequency is ω0 =

√
mg`/I . If the
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pendulum is a simple massless stick of length ` with all of the mass at the end of
the stick, the small-amplitude oscillation frequency simplifies to ω0 =

√
g /`.

Figure 7.2 A simple pendulum
comprised of a massless stick of
length ` with a mass m at the end.

We can find the large-amplitude oscillation frequency of the pendulum by
using an energy method.1 The kinetic energy of the pendulum is I θ̇2/2 and the
potential energy is mg`(1−cosθ) (see Fig. 7.2). The total energy of a pendulum
can be found when the pendulum is at the maximum displacement, which we
will denote by θ0. At this point, the center of mass is at a height of `(1−cosθ0)
above the equilibrium position and the kinetic energy is zero, so the total energy
is mg`(1− cosθ0). As the pendulum oscillates, energy shuttles back and forth
between kinetic and potential according to

1

2
I θ̇2 +mg`(1−cosθ) = mg`(1−cosθ0) (7.2)

The first term on the left is the kinetic energy, the second term is the potential
energy, and the right side is the total energy of the system.

P7.3 Using paper and pencil, separate the variables θ and t in Eq. (7.2) and show
that it can be written as

ω0d t = dθ√
2cosθ−2cosθ0

(7.3)

Figure 7.3 The frequency of a pen-
dulum depends on the amplitude
of oscillation. The variation of fre-
quency with amplitude is smallest
for low-amplitude oscillations, so
its easier to get good accuracy with
long pendulum and small angle
oscillations as in a grandfather
clock.

To find the period of oscillation, we integrate both sides of Eq. (7.3) over a
quarter period of the motion (from θ = 0 to θ = θ0 on the angle side and from
t = 0 to t = T /4 on the time side), like this

ω0

∫ T /4

0
d t = 1p

2

∫ θ0

0

dθ√
cosθ−cosθ0

(7.4)

The time integral on the left is simply ω0T /4, but the θ integral on the right is
difficult. After carrying out the time integral and performing some judicious
variable substitutions and a little algebraic massaging, we can rewrite Eq. (7.4) as

T = 4

ω0

∫ π/2

0

dφ√
1− sin2(θ0/2)sin2φ

(7.5)

The φ integral in Eq. (7.5) is not any easier than the θ integral in Eq. (7.4), but it
has come up in enough problems that it has been given a name: the complete
elliptic integral of the first kind, called K (m):

K (m) ≡
∫ π/2

0

dφ√
1−m sin2φ

(7.6)

1G. Fowles and G. Cassiday, Analytical Mechanics (Saunders, Fort Worth, 1999), p. 318-320
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Matlab and Mathematica know how to evaluate K (m) functions for 0 ≤ m ≤ 1 just
like they can evaluate sines, cosines, and Bessel functions. Thus, we can write the
period T of the pendulum as

T = 4

ω0
K

(
sin2(θ0/2)

)
(7.7)

Now we can use the relation ω = 2π/T to obtain an expression for the angular
frequency of the pendulum as a function of amplitude θ0.

ω(θ0) = πω0

2K
(
sin2(θ0/2)

) (7.8)

0
0

Figure 7.4 Oscillation frequency
as a function of the maximum
amplitude θ0.

Note that the natural oscillation frequency ω(θ0) of the pendulum depends
on amplitude θ0, as shown in Fig. 7.4. This gives the pendulum some interesting
characteristics.

P7.4 Use Matlab to plot ω(θ0) from θ0 = 0 to θ0 = π with ω0 = 1 and explain
physically why it looks like it does. In particular, explain why the frequency
goes to zero at θ0 =π. You’ll need to use the online help to see the syntax
for evaluating the elliptic integral function.

Now let’s solve the pendulum equation numerically using Matlab.

P7.5 Use Matlab’s numerical differential equation solver ode45 to solve the pen-
dulum, again with ω0 = 1 and initial conditions θ(0) = θ0 and ω(0) = 0. Plot
the solution θ(t ) for the following values of θ0: 0.1, 0.5, 1.0, π/2, 0.9π, and
0.98π. For each case overlay a plot of a cosine function of matching ampli-
tude and with a frequency ω(θ0) from Eq. (7.8). Verify that Eq. (7.8) gives
the correct frequency, but that for large amplitudes the pendulum motion
is not sinusoidal.

P7.6 Now let’s study what happens when we add driving and damping.

(a) First we’ll review what happens when we drive an undamped har-
monic oscillator. Write a Matlab script that solves the driven oscillator
equation

ÿ +ω2
0 y(t ) = F0 sin(ωt ) (7.9)

and plot the solution y(t) with ω0 = ω = 1. Start from rest and run
for a long enough time that you can see the amplitude heading off to
infinity, even with small values of F0.

(b) Now drive an undamped pendulum with an external torque, like this

θ̈+ω2
0 sinθ =αsinωτt . (7.10)

Drive the pendulum at resonance for small amplitudes, with ω0 = 1,
ωτ = 1, and α= 0.1. Start at rest and run for a long enough time that
you can see that the pendulum amplitude doesn’t simply go to infinity
like the harmonic oscillator. Explain why not.
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(c) Finally, add some linear damping, to the pendulum equation like this:

θ̈+ω2
0 sinθ =αsinωτt −γθ̇ . (7.11)

Use γ = 0.1 and the same conditions as in (b) and watch how the
motion changes. Explain the damped behavior and explore how
it depends on α. Also vary the driving frequency ω in the range
0.90ω0 → 1.05ω0 and explain why ω = ω0 doesn’t give the largest
amplitude.

Differential Equations in Mathematica

While the focus of this course is on learning numerical techniques in Matlab,
Mathematica also has some excellent differential equation solving abilities that
you should be aware of. Let’s take a break from Matlab and learn some of the
basics in Mathematica.

P7.7 Read the section titled “Symbolic solutions to ordinary differential equa-
tions” in the Mathematica tutorial Differential equations with Mathematica
(available on the Physics 330 course web page).

P7.8 Use Mathematica to solve the following differential equations in general
form (no initial conditions).

(a) Bessel’s Equation

x2
(

d 2

d x2 f (x)

)
+x

(
d

d x
f (x)

)
+ (x2 −n2) f (x) = 0

(b) Legendre’s Equation

(1−x2)

(
d 2

d x2 f (x)

)
−2x

(
d

d x
f (x)

)
+n(n +1) f (x) = 0

P7.9 Read the section titled “Numerical solutions to ordinary differential equa-
tions” in the Mathematica tutorial Differential equations with Mathematica.

(a) Ask Mathematica to solve the following differential equation symboli-
cally and see what happens.

d 2

d x2 y(x) = 10sin
(
y (x)

)
cos(x) (7.12)

Now write the equation as a first order set, and solve it numerically
with y(0) = 0 and v(0) ≡ y ′(0) = 0.1. Plot y(x) from x = 0 to x = 100.



Lab 8

Two Gravitating Bodies

Let’s continue our study of differential equations by considering two masses
interacting through Newton’s law of gravity.1 The Newton’s second-law equations
describing this situation are

m1r̈1 =− Gm1m2

|r1 − r2|3
(r1 − r2) (8.1)

m2r̈2 =− Gm1m2

|r1 − r2|3
(r2 − r1) (8.2)

where
r1 = x1x̂+ y1ŷ+ z1ẑ

r2 = x2x̂+ y2ŷ+ z2ẑ

There are twelve components of the motion described by these equations:

x1(t ), y1(t ), z1(t ) ẋ1(t ), ẏ1(t ), ż1(t )

x2(t ), y2(t ), z2(t ) ẋ2(t ), ẏ2(t ), ż2(t )
(8.3)

so you’ll need to be careful when writing out the solution.
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Figure 8.1 Two masses interacting
via the inverse-square law.

P8.1 (a) Use Eqs. (8.1) and (8.2), plus ẋ1 = vx1, etc., to obtain the 12 first order
differential equations for this system. Write them down on paper in
terms of the individual components of the motion listed in Eq. (8.3).

(b) Now use your information from (a) to code up a right-hand-side func-
tion for this system. Have Matlab solve this system of equations using
G = 1, m1 = 1, m2 = 2 and initial conditions

x1(0) = 1, x2(0) =−1
y1(0) = 0.5, y2(0) =−0.3
z1(0) =−0.3, z2(0) = 0.6
vx1(0) = 0.65, vx2(0) =−0.45
vy1(0) = 0.2, vy2(0) = 0.3
vz1(0) = 0.1, vz2(0) =−0.3.

Run the solution from t = 0 to t = 50, and then plot the two trajectories
overlaid on the same plot using plot3.

1R. Baierlein, Newtonian Dynamics (McGraw Hill, New York, 1983), Chap. 5, and G. Fowles and
G. Cassiday, Analytical Mechanics (Saunders, Fort Worth, 1999), Chap. 6.
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A plot like Fig. 8.1 gives us some sense of how these two objects interact, but
it doesn’t show what the dynamics of this system are like. For that, it would be
better to make a movie of the interaction by plotting the positions as dots, and
then making a movie by showing successive plots at equal time intervals.

The problem with making movies directly from the data returned by Matlab’s
ODE solvers is that the data that Matlab’s ODE solver returns is not equally spaced
in time. You can force the Matlab functions to return equally-spaced data by
giving it a list of specific times for which you want the solution evaluated, but this
is computationally expensive if you need a lot of closely spaced time intervals.
A better approach is to get the uneven data back from the solver and then use
interpolation to resample it out over a much finer grid.

Interpolation and Extrapolation

P8.2 Read and work through Introduction to Matlab, Chapter 10. Type and
execute all of the material written in this kind of font. Then write a
Matlab script that creates coarse and fine grids for sin x like this

x=0:2*pi;

y=sin(x);

xfine=-2*pi:0.1:2*pi;

yfine=sin(xfine);

Use linear interpolation to plot a line using the fine grid that passes through
y(1) and y(2). Then use the pchip method (cubic interpolation) and
the spline method to plot a curve on the fine grid that passes through
y(1), y(2), and y(3). Overlay all of the curves: the coarse plotted as
stars, the fine and the interpolated curves as lines. Use these curves to
explain the benefits and hazards of using linear and cubic interpolation
and extrapolation.

P8.3 Now let’s go back to your code from P8.1. After obtaining the solution
arrays interpolate them onto new arrays equally spaced in time (x1e, y1e,

z1e, x2e, y2e,... with N=5*length(t)). The point here is to make an
evenly-spaced array of time points with 5 times as many time values as
ode45 returned, but covering the same amount of time. This can be done by
defining the evenly-spaced time interval dt=t(end)/N and then building
the evenly spaced time array like this:

te=0:dt:t(end)

Then use interp1 to build evenly-spaced position data like this:

x1e=interp1(t,x1,te,'spline')

Now animate the motion of the two masses by using the plot3 command.
A nice way to do this animation is to use the arrays that are equally spaced
in time, so that you can see the masses speed up as they approach each
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other, and to plot the orbits in segments of 5, or so, data points. Using just
one point makes the orbits appear as sequences of dots, and using more
points makes the plots be “jerky.” A loop that will do this kind of animation
is shown below:

for n=5:4:N

plot3(x1e(n-4:n),y1e(n-4:n),z1e(n-4:n),'b-');

hold on

plot3(x2e(n-4:n),y2e(n-4:n),z2e(n-4:n),'r-');

axis equal;

pause(.1)

end

hold off

As your script runs you should see your masses doing an intricate gravita-
tional dance, and the final picture should look just like the one in Fig. 8.1
(after the appropriate rotation of your figure).

Linear Algebra

P8.4 Read and execute the examples in Introduction to Matlab, Chapter 11. Then
complete the following exercises.

(a) Use Matlab’s dot command to find the angle between the vectors
A = [1,2,3] and B = [−3,2,1].

HINT: You will need to calculate the magnitude of a vector to do this
problem.

(b) Use Matlab’s cross command to find the angular momentum L =
mr×v of a particle at r = [1,2,3] with velocity v = [6,3,1] and mass
m = 2.3.

Center of Mass Coordinates

In physics we always seek the simplest description of the motion, which is why in
classical mechanics we trade in r1 and r2 for the center of mass position and the
relative position of m1 with respect to m2:

R = m1r1 +m2r2

m1 +m2
; r = r1 − r2 (8.4)

P8.5 (a) Use plot3 to graph R and V = Ṙ for the initial conditions in P8.1
and show that their motion is very simple. To do the calculations
in Eq. (8.4) it will be easier to transform the separate x, y , and z arrays
into vectors. For instance, the r1 vector would be a matrix with 3
columns and as many rows as there were time steps. For example to
make the matrix representing r1(t ), you would use code like this:
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r1=[x1,y1,z1];

Also define versions of these vectors with the data equally spaced in
time so we can animate some plots. Once you have the R matrices,
you can access the various components using the colon syntax. For
example R(:,1) gives the x-component of R etc.

(b) Make a 3d plot of the difference vector r and use the frame rotation
tool on the figure frame to see that this vector seems to sweep out a
curve that lies in one plane and looks like an ellipse. Then animate
your plot to show the orbit as a function of time.

(c) To see why the difference motion r(t) lies in a plane, compute the
angular momentum in the center of mass frame

L = m1(r1 −R)× (v1 −V)+m2(r2 −R)× (v2 −V) (8.5)

and show numerically that this vector is constant in time. Since you
have the vectors that appear on the right-hand side of this expression
for L you can evaluate the angular momentum as a matrix (rows are
time, columns are x, y, z components):

L=m1*cross(r1-R,v1-V)+m2*cross(r2-R,v2-V);

And then plot each component of the angular momentum vs. time.

(d) Show graphically that L is perpendicular to both r1−R and r2−R (and
hence to r1 − r2). To evaluate these two dot products using Matlab’s
dot command you will need to make a slight change to the syntax
we used above with the cross command. The dot command when
used with matrices needs to know whether we want to do the dot
product along the row direction or the column direction. In this lab
the rows label time, and the columns label x, y, z components. Since
we want to do the dot product with the x, y, z components, we tell the
dot product command to use the second, or column, index like this:

dot1=dot(r1-R,L,2)

dot2=dot(r2-R,L,2)

Do not panic when your plots of these two dot products look surpris-
ing; check the scale on the left side of the plot. Note that this means
that the planar motion you observed in the plot of r is simply a conse-
quence of conservation of angular momentum (think about this and
discuss it with your lab partner until you are convinced that it is true).
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Non−inverse Square Law

Figure 8.2 Precession of the orbit,
non-inverse-square.

P8.6 Play around with initial condition and plot r(t ) for a bunch of cases to see
what orbital shapes you can observe. Then choose some initial conditions
that make a nice ellipse. Once you have an ellipse, change the power in the
denominator of the force law from 3 to 3.1 to see what kinds of orbits power
laws other than inverse square make. You should find that the orbit is still
sort of elliptical, but that the semi-major and semi-minor axes rotate; we
call this kind of motion “precession” and it looks like Fig. 8.2.
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In general relativity the gravitational force law is not precisely inverse-
square, so this kind of precession is expected to occur. Mercury’s orbit
has a small precession of this kind (the famous “precession of the equinox
of Mercury”) which has been measured for centuries. When Einstein’s
equations correctly predicted this precession it was a major triumph for his
theory of general relativity.





Lab 9

Fourier Transforms

Fourier Transforms

Suppose that you went to a Junior High band concert with a digital recorder and
made a recording of Mary Had a Little Lamb. Your ear told you that there were a
whole lot of different frequencies all piled on top of each other, but perhaps you
would like to know exactly what they were. You could display the signal on an
oscilloscope, but all you would see is a bunch of wiggles. What you really want is
the spectrum: a plot of sound amplitude vs. frequency.

The mathematical method for finding the spectrum of a signal f (t) is the
Fourier transform

g (ω) = 1p
2π

∫ ∞

−∞
f (t )e iωt d t (9.1)

If you remember Euler’s relation e iωt = cos(ωt)+ i sin(ωt), you can see that the
real part of g (ω) is the overlap of your signal with cos(ωt) and the imaginary
part of g (ω) is the overlap with sin(ωt ).1 Often, we aren’t interested in the phase
information provided by the complex nature of g (ω), so we just look at the power
spectrum P (ω)

P (ω) = |g (ω)|2 (9.2)

P (ω) gives the signal intensity as a function of frequency without any phase
information. In this lab, we will learn how to make these types of plots.

FFTs and Fourier Transforms

Power Spectrum (linear scale)

Power Spectrum (log scale)

Figure 9.1 The power spectrum of
the first four notes of Beethoven’s
5th symphony.

P9.1 Read and work through Introduction to Matlab, Chapter 13. Type and
execute all of the material written in this kind of font.

P9.2 On the class web site is a file called “Beethoven.wav” that has the first four
notes of Beethoven’s 5th symphony. Save it to your computer and listen to
it. Load the sound waveform into the matrix f using

f = audioread('beethoven.wav');

Then construct the corresponding t time series by noting that the recording
was sampled at 44100 points/second. Plot the signal versus time and plot
its power spectrum versus ν (not ω) over the range 0-1000 Hz with both a
linear scale and with semilogy. (You should get in the habit of looking at

1People often work with complex signals, in which case this separation is less clear.
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spectra with a log scale to see structure that may not be evident on a linear
scale.)

Now we need to make sense of the spectrum. The short notes at the begin-
ning of the music are the note “G” (repeated three times) played in octaves
by the violins/violas (394 Hz), cellos (197 Hz), and basses (99 Hz). The last
note is an “E-flat,” again played in octaves by the various stringed instru-
ments (312 Hz, 156 Hz, and 78 Hz). Identify each of these peaks on the
spectrum, and explain what their relative amplitudes mean.

Figure 9.2 A string’s fundamen-
tal mode of vibration has nodes
at the ends and an antinode in
the middle. However, the string
can also vibrate in harmonic
modes with nodes between the
ends. When a musician drags
her bow across a string, she
excites mostly the fundamen-
tal, but the harmonics are also
present. The frequencies of these
modes are: ν0 = fundamental,
2ν0 = second harmonic, 3ν0 =
third harmonic, etc.

Note that there are also smaller peaks at 234 Hz, 468 Hz, 624 Hz, 788 Hz,
and 936 Hz. Explain where these extra peaks come from, and how each of
the smaller peaks are connected to the notes in the four-note theme (see
Fig. 9.2).

To convince yourself that you know what you are doing, split the time series
into two pieces: one that contains the first three short notes, and a second
that only contains the one last long note. Then repeat the analysis above
and compare your two new spectra to the original one. Show the TA all
three spectra and explain the origin of all of the peaks.

The Uncertainty Principle

The uncertainty principle connects the duration of a signal in time with the
spread of its spectrum. It was made famous in quantum mechanics by Werner
Heisenberg, but it is really an idea from classical wave physics2 which we can
understand by using the fft.

Suppose that we have a time signal which has a frequency ω0, but which only
lasts for a finite time ∆t . For example, consider the Gaussian function

f (t ) = cos(ω0t )e−(t−t0)2/W 2
(9.3)

which has a “bump” centered at t0 with a width controlled by W . Because the
signal oscillates at ω0 we would expect to see a peak in the spectrum at ω=ω0.
This frequency peak also has a well-defined width, and this width is related to the
width of the signal in time through the uncertainty principle.

P9.3 Write a Matlab script to build f (t) from Eq. (9.3), with t0 chosen so that
the bump is in the center of your time window. Plot f (t) and its power
spectrum for ω0 = 200 s−1 and W = 10, 1, and 0.1.

Choose appropriate values for your number of points N and your time step
τ so that

(i) fft will run fast

2The weirdness of quantum comes not from the fact that waves obey the uncertainty principle,
but from the idea that things like electrons behave like waves.
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(ii) you can see frequencies up to ω= 400 s−1 without aliasing trouble

(iii) your spectral resolution will be at least dω= 0.2 s−1.
W ∆t ∆ωplot ∆t∆ωplot

10
1

0.1

Table 9.1 Enter your data here

To see where the uncertainty principle is lurking in these plots, visually
measure and write down the full width at half maximum (FWHM) of the
time signal (∆t) and FWHM of the frequency peak (∆ωplot). Write these
measurements in Table 9.1 for each value of W . Then deduce a rough
product relation ∆ω∆t ≈ const between the width of the time signal and
the width of the frequency peak from this data.3

You have probably experienced the uncertainty principle when listening to
music. For a musical instrument to play a nice-sounding note the width of its
spectrum must be narrow relative to the location of the peak. So for a flute playing
a high note at ω= 6000 s−1 to produce a spectrum with, say, a 1% width requires
∆ω= (0.01)(6000 s−1) = 60 s−1. Then the uncertainty principle tells us that this
note can be produced by only holding it for the relatively short time of

∆t ≈ 1

60
= 0.017 s

where we have arbitrarily chosen ∆ω∆t = 1 to make the calculation. But when
a tuba plays a low note around ω = 200 s−1, the same calculation using ∆ω =
(200)(.01) = 2 gives a note-duration of only

∆t ≈ 1π

∆ω
≈ 1

2
= 0.5 s

Now tubas can play faster than this, but if you listen carefully, when they do
their sound becomes “muddy”, which simply means that the note isn’t a very pure
frequency, corresponding to a wide frequency peak.4 Your ear/brain system also
helps you out here. It is pretty talented at turning lousy signals into music, so you
can still enjoy “Flight of the Bumblebee” even when played by a tuba.5

You can also hear this effect simply by clapping your hands. If you cup your
hands when you clap, you trap a lot of air, which responds rather slowly to your
clap. This makes a larger value of ∆t , which in turn means that ∆ω is smaller,
corresponding to the low frequencies that make up the low, hollow boom of a
cupped clap. But if you slap your third and fourth fingers quickly on your palm
you trap almost no air, resulting in a very small ∆t , and hence, via the uncertainty
principle, a larger ∆ω. And a larger ∆ω means a higher set of frequencies in the
sound of your clap, which you can clearly hear as a higher-pitched burst of sound.

3This is not a mathematically rigorous uncertainty relation, but it illustrates the idea.
4The length of the tuba also contributes to the “muddyness” of the sound, since it takes a while

for sound to propagate back and forth between the mouthpiece and the bell and set up the standing
wave. This causes a messy “attack” transient at the beginning of each note, which means you have
less of the sustained pitch to listen to.

5At tuba frequencies, your ear/brain system can perceive pitch for pulses containing only a few
cycles.
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Windowing

Review the material on windowing in Introduction to Matlab, then work through
the following problem.

P9.4 Modify Listing 13.1 in Introduction to Matlab so that it uses the following
time signal

f=sin(t)+.5*sin(3*t)+.4*sin(3.01*t)+.7*sin(4*t)+.2*sin(6*t);

Plot the power spectrum versusω and verify the relative amplitude problem
discussed in the windowing section in Introduction to Matlab. To make the
ratio issue clear, normalize the spectrum so the biggest peak has height 1
(i.e. plot P/max(P) instead of P).

Multiply the time signal by a Gaussian window function like this

win = window(@gausswin,length(f),alpha)';

f = f .* win;

The transpose operator (') at the end of the first line switches the window
from a column vector to a row vector so that the multiplication works. The
parameter alpha is specific to a Gaussian window, and is related to Eq. (9.3)
via α∝ 1/W —i.e. a bigger α creates a narrower signal in time. Try several
values of alpha and look at plots of win and f.*win to see what the window
function does.

Make the window really narrow with alpha=25 and plot the power spec-
trum of f.*win. Look at the peaks at ω= 1,4,6, and verify that the relative
amplitudes are now right on. (Remember that power is proportional to
amplitude squared.) But what happened to the peaks atω= 3 andω= 3.01?
We’ve made the peaks so broad that they’ve smooshed into each other due
to leakage. Find an alpha that is a good compromise between getting the
right peak amplitude and maintaining good resolution. Explain the con-
cepts of windowing and leakage, and tell how they relate to resolving the
height and width of closely spaced peaks.

P9.5 Use Matlab to numerically verify the trig identity cos4(t ) = 3/8+(1/2)cos(2t )+
(1/8)cos(4t ) by plotting the Fourier transform of the function. You will need
to choose an appropriate time series and window function to see the rela-
tionships accurately.



Lab 10

Pumping a Swing

A playground swing is basically a driven and damped pendulum. But there
are two ways to pump a swing: angular momentum pumping and parametric
oscillation. In this lab we’ll study and numerically model both methods.

Pumping With Angular Momentum

You are probably most familiar with angular momentum pumping. In this tech-
nique, you sit on the seat and lean back, then lean forward, and lean back, etc. You
enhance angular momentum pumping when you stretch your legs out in front as
you swing forward and lean back, then tuck your legs back under as you swing
backward and lean forward. You can see why this works by imagining yourself
suspended in outer space with your arms extended to the side. If you were to
move your right arm up and your left arm down, your body would twist sideways
in the opposite direction to conserve angular momentum. Now imagine doing
the same thing with your arms while sitting on a swing. When your body twists
opposite to your arms to try to conserve angular momentum, friction between
your jeans and the swing seat will drag the swing with your body and you will
start the swing moving to the side.

Usually you want to pump a swing forward and backward rather, rather than
side to side. Since your torso and legs have more mass than your arms, you can
do a better job of pumping the swing by leaning your body and moving your legs
than you can by waving your arms. When you twist your body backward, you
exert a torque on the swing in the forward direction, and when you sit up again
you create a torque in the other direction. When you repeat these motions at the
resonant frequency ω0 of the swing, you will be resonantly driving the pendulum,
as we discussed in lab 7. This seems to be something that kids on a playground
just do without knowing any physics at all.

Figure 10.1 A simple model of a
swing being pumped from the
seated position.

To see how this works analytically, consider a the model of a swinger shown in
Fig. 10.1.1 The overall position of the swing is described by θ. The swinger is rep-
resented by the masses m1, m2, and m3 and the possibility for the swinger to twist
is represented by φ. If we make the assumption m2`2 = m3`3, the Lagrangian for
this system simplifies to

L = 1

2
I1θ̇

2 + 1

2
I2(θ̇+ φ̇)2 +M g`1 cosθ (10.1)

where M = m1 +m2 +m3, I1 = M`2
1, and I2 = m2`

2
2 +m3`

2
3.

1This model is taken from W. B. Case and M. A. Swanson, “The pumping of a swing from the
seated position”, American Journal of Physics 58, 463-467 (1990).
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P10.1 On paper, use the Lagrangian equation of motion for θ, i.e.

∂L

∂θ
− d

d t

(
∂L

∂θ̇

)
= 0

to generate the equation of motion for θ. Then assume that the swinger
twists harmonically, with

φ(t ) = A+ A cos(ωφt ) (10.2)

and show that the equation of motion becomes

θ̈+ω2
0 sinθ =αcos(ωφt ) (10.3)

where

ω2
0 =

M g`1

I1 + I2
α=

I2 Aω2
φ

I1 + I2
(10.4)

Compare with Eq. (7.10) and confirm that this is the equation for a driven
pendulum.

P10.2 Add some friction to Eq. (10.3) by appending a linear damping term −γθ̇ on
the right-hand side, and then solve the modified equation numerically us-
ing Matlab. Use the following ballpark numbers for a child on a playground
swing: `1 = 2 m, m1 = m2 = m3 = 10 kg, `2 = `3 = 0.5 m, and A = 0.5 rad
(about 30◦). By experiment with a backyard swing, we find that γ= 0.1 s−1

is reasonable. Start from at-rest conditions and pump with ωp =ωφ =ω0.
Plot the solution from t = 0 to t = 800 s and note that it comes to a steady
state amplitude as driving and damping balance. Then use the following
code to animate the pumping process.

Listing 10.1 (pumpanimate.m)

% Put the code solving the equation above. The code below assumes

% that you have evenly spaced time steps with the following variables

% te -> time array

% xe -> angle theta

% wp -> the pumping frequency

% A -> the pumping amplitude

% l1 -> the main swing length

% l2 -> the head-to-middle and middle-to-foot length

tau=te(2)-te(1); L = l1+l2;

for istep=1:length(te)

% Position of swing relative to the pivot

theta = xe(istep);

xswing=l1*sin(theta);

yswing=-l1*cos(theta);

% position of head/legs with respect to swing

phi=A + A*cos(wp*te(istep));
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xpers=l2*sin(phi + theta);

ypers=l2*cos(phi + theta);

% Plot the swing and the swinger

plot([0, xswing],[L,L+yswing],...

[xswing+xpers,xswing-xpers],[L+yswing-ypers,L+yswing+ypers])

% Make the x and y dimensions scale equally

axis([-L/2 L/2 0 L])

axis square

% We'd like the plots frames to show at intervals of tau so the movie

% matches the physical time scale. However, the calculations

% and plotting take some time, so we decrease the pause a bit.

% Depending on the speed of your computer, you may need to adjust

% this offset some.

pause(tau-0.01)

end

Pumping With Parametric Oscillations

You can also pump a swing by standing on the seat and doing deep knee bends.
As you start to swing forward you bend your knees and then stand up hard as
you go through the bottom of the motion. When you start back you repeat this
motion by bending your knees and then standing up hard as you go backward
through the bottom of your motion.2 This was easy to do on the solid wooden
seats that swings used to have. However, after a couple of generations of kids
getting their teeth knocked out by these wicked flying planks, playgrounds put
in soft flexible seats. These seats are safer, but they are hard to stand on while
moving your body up and down, so you may not have pumped a swing this way.
Nevertheless, it is a very good way to pump a swing, although it seems a bit
mysterious since no rotation is taking place. All you do is move your center of
mass up and down vertically and rotation of the swing magically appears. The
name of this mysterious technique is parametric oscillation.

The so-called parametric oscillator equation is 3

ẍ +γẋ +ω2
0(1+εcos(ωp t ))x = 0 . (10.5)

Notice that this is different from a driven oscillator because the oscillating term
cos(ωp t ) is multiplied by x(t). What is happening here is that the natural fre-
quency (one of the system parameters) is wiggling in time, which is why this is

2There are some nice videos of pumping a swing this way at http://retro.grinnell.edu/academic/
physics/faculty/case/swing.

3L. D. Landau and E. M. Lifshitz Mechanics (Pergamon Press, New York, 1976), p. 80-83, and M.
Abramowitz and I. A. Stegun Handbook of Mathematical Functions (Dover, New York, 1971), Chap.
20.

http://retro.grinnell.edu/academic/physics/faculty/case/swing
http://retro.grinnell.edu/academic/physics/faculty/case/swing
http://retro.grinnell.edu/academic/physics/faculty/case/swing
http://retro.grinnell.edu/academic/physics/faculty/case/swing
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called a parametric oscillator. In the case of a swing (which is really just a pen-
dulum) you are changing the distance ` from the top of the chain to your center
of mass. Since the natural frequency of a pendulum is given by ω2

0 = g /`, as you
wiggle your center of mass you are wiggling the natural frequency. Equation (10.5)
is simpler than the real equation for a pendulum. We will do the pendulum cor-
rectly later in this lab, but for small oscillation angles of the swing Eq. (10.5) gives
a reasonable approximation to the the motion of a swing.

P10.3 (a) Use Matlab to solve Eq. (10.5) with initial conditions x(0) = 0 and
v(0) = 1, and parameters ω0 = 1, γ= 0, ε= 0.1, and ωp = 1.1. Plot the
solution x(t) for a long enough time that you can see that nothing
much happens except wiggles with some beating between the natural
motion at ω0 and the parametric drive at ωp .

Figure 10.2 Pumped swing insta-
bility.

Then run your code again with ω0 = 1, ωp = 1, γ = 0, and ε = 0.1.
This matches the pumping frequency with the natural frequency of
the swing, something you might expect would resonantly drive the
oscillator. Verify that the system is only weakly unstable (meaning that
the motion slowly grows exponentially with time.) You might have to
run for a long time to see this instability.

(b) Now run your Matlab code again withωp = 2 and watch what happens.
You should reproduce Fig. 10.2. Verify that ωp = 2ω0 is more unstable
(i.e. the amplitude grows faster) than ωp = ω0. Once you see the
2ω0 instability on your screen, come observe it with the physical
pendulum at the front of the class.

(c) Show by numerical experimentation that the oscillator is unstable
at ωp = 2ω0 for all choices of ε, but that the instability growth rate is
small for small ε.

(d) Show that when ωp is not quite 2ω0 the oscillator is stable for small ε,
but that when ε exceeds some threshold, it becomes unstable again.
Find this threshold value for ωp = 2.05ω0 and for ωp = 1.95ω0.

(e) Now add damping by setting γ= 0.03 and show that there is a thresh-
old value of ε even at ωp = 2ω0. Find it by numerical experimentation.

You should have discovered by now that the best way to parametrically drive
an oscillator is to use ωp = 2ω0. Is this what you do when you pump a swing by
standing on the seat? Think about how often you move your center of mass up
and down in one period of the swing and explain to your TA how ωp and ω0 are
related as you do this.

Interpreting the Spectrum of the Parametric Oscillator

To gain some insight into whyωp = 2ω0 is more unstable thanωp =ω0 it is helpful
to look at the power spectrum of x(t ) for the parametric oscillator. In doing this
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analysis we will use a form of perturbation theory which all physicists love, but
which you may not have seen. So before we look at the spectrum of x(t), let’s do a
perturbation theory problem as a warm-up.

Suppose that you wanted to solve the equation

x3 = 1+0.1ex (10.6)

for a real solution near x = 1. This equation is horrible, but if it weren’t for the ex

term, it wouldn’t be so bad: x3 = 1 so x = 1. But look; the exponential term is not
so important since it is multiplied by 0.1, which is small. Shouldn’t we be able to
exploit this smallness somehow? The answer is yes, and here is how to do it, step
by step.

Step 0: Ignore the small ex term altogether and just solve the easy equation:

x3 = 1 ⇒ x0 = 1 (10.7)

We call this beginning, and easiest, solution x0 to keep track of which step
we are in.

Step 1: We will now get a better approximation to the solution by writing the
equation down again, but with a twist in the small exponential term. We
will guess that since it is small, it might be OK to replace the horrible ex by
an approximate version of it, namely ex0 :

x3 = 1+0.1ex0 ⇒ x3 = 1+0.1e1 ⇒ x1 = (1+0.1e1)1/3 (10.8)

The replacing of ex by ex0 again made the equation easy to solve, which is
good, but we still haven’t found the correct solution.

Step 2: To further improve our solution we repeat step 1, writing

x3 = 1+0.1ex1 ⇒ x3 = 1+0.1exp[(1+0.1e1)1/3] (10.9)

⇒ x2 = (1+0.1exp[(1+0.1e1)1/3] )1/3

P10.4 This procedure starts to look ugly analytically, but if we just want a numer-
ical answer there is no point in writing all of this out. Solve Eq. 10.6 by
continuing this step by step approach all the way to 15 significant figures in
the Matlab command window by typing

format long e

x=1

and then

x=(1+0.1*exp(x))^(1/3)
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and then using the ↑ key to repeat the last step over and over again. Just
watch the result for x and quit when the digits in the answer quit changing.
You should find that the procedure converges to x = 1.090733645657879;
verify that this is the solution to the equation

x3 = 1+0.1ex

This is a very powerful trick and we will now use it to understand the paramet-
ric instability at ωp = 2ω0.

P10.5 Using x(0) = 0, v(0) = 1, ω0 = 1, ωp = 1.3, γ= 0, and ε= 0.3, run your model
from t = 0 to t = 500 with 214 equally spaced time steps. Take the Fourier
transform and display its power spectrum using a semilogy plot. Our
upcoming analysis will be easier if we consider negative frequencies, so
use ft.m from Chapter 14 of Introduction to Matlab and construct your
frequency array appropriately.

You should immediately notice the big peaks at ±ω0. This is not a surprise
because what we have is an oscillator at frequency ω0 = 1 plus a small
perturbation of size ε at frequency ωp = 1.3. But if you look for a peak at
ω= 1.3, you won’t find it, even though there are plenty of other peaks. Our
job now is to explain why these other peaks are where they are.

Since ε is small and the damping is weak, let’s begin by ignoring them both
(ε= 0 and γ= 0). (This is step 0 in our perturbation analysis.) Then note that with
these simplifications Eq. (10.5) is solved by

x0(t ) = A cos(ω0t ) (10.10)

Now we will proceed by perturbation theory as we did in the previous problem,
like this. Make a more precise guess at the solution by writing Eq. (10.5) down
again, but with x0 in place of x in the small term ω2

0εcos(ωp t )x:

ẍ +γẋ +ω2
0(1+εcos(ωp t ))x0 = 0 ⇒ (10.11)

ẍ +γẋ +ω2
0x ≈−εω2

0 cos(ωp t ))x0

With x0 = A cos(ω0t ) this is just a complicated version of the driven harmonic
oscillator.

P10.6 Use Mathematica to solve this equation with γ= 0. You may need to recall
that inhomogeneous linear differential equations like this have solutions
of the form x = xh + xp , where xh is the homogeneous solution (without
the parametric driving term) and where xp is the particular solution with
the driving term included. Mathematica will give you a pretty complicated
answer, but if you look at it closely you will see that the homogeneous
solution is just our friend x0 = A cos(w0t ) and that the particular solution
(the messy part) can be written as a sum of terms that involve sines and
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cosines at new frequencies. It’s as if the driving force had a split personality
involving more than one driving frequency. This is exactly right, as you can
see by using the identity

cosαcosβ= 1

2

(
cos(α+β)+cos(α−β)

)
to rewrite the driving term on the right side of the differential equation
above. Do the math and see what frequencies turn up. Can you see
these“sideband” frequencies in your spectrum from P10.5 and in your
Mathematica solution?

In this first-order perturbation theory we see that in addition to the peak atω0,
there are two other, smaller, sideband contributions at (ω0 +ωp ) and at (ω0 −ωp ).
If we now take the second step in perturbation theory the driving term will be

−εω0 cos(ωp t ))x1 . (10.12)

If you use the trig identity above for this second step in the perturbation theory,
you will find that each of the frequency components from the first-order step is
multiplied by cosωp t and that they then produce new sidebands shifted again
from the first-order frequencies ±ωp . These second-order sidebands are smaller
in magnitude than the first-order sidebands because in each step the new driving
term is multipled by another factor of ε. But they are clearly there in the spectrum.
This procedure, of course, never ends, so it is easy to see that this equation can
produce a very rich spectrum.

Now, what does this have to do with the observed instability atωp = 2ω0? Well,
as we saw in first-order perturbation theory, when we parametrically oscillate at
ωp the system looks like a driven oscillator with driving frequencies at ω0 ±ωp .
When ωp = 2ω0, the sum and difference frequencies fall at 3ω0 and −ω0. Since
one of the apparent driving frequencies is at ω0 (note that −ω0 is just as resonant
as ω0), the system feeds back on itself and is unstable.

This effect also allows us to see why ωp =ω0 is not the most unstable choice.
The reason is that with this choice the sideband frequencies are 0 and 2ω0, neither
one of which is resonant. But the second-order sidebands are −ω0, ω0, ω0, and
3ω0. Three out of four come back to ω0 in second order, so there is a possibility of
instability due to this nonlinear resonance. But because it takes two perturbation
steps to get to this resonance, and since each step involves another power of ε,
this choice for ωp is less unstable.

P10.7 Explain all of the frequency peaks in your spectrum from P10.5 using the
concepts explained above. Explain what the amplitudes of the various
peaks mean and how the ωp = 2ω0 instability arises.

Parametrically unstable pendulum

When you pump a real swing, your oscillation amplitude doesn’t become infinite
because the swing is a pendulum, not a harmonic oscillator. Using the Lagrangian
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formulation of mechanics to obtain the equation of motion of a pendulum whose
length `(t) is changing with time, and adding some damping because of air
friction, gives us the equation

θ̈+2
˙̀

`
θ̇+γθ̇+ g

`
sinθ = 0 . (10.13)

If we let the length change sinusoidally at frequency ωp by only the small amount
∆L about the constant length L0, then

`(t ) = L0 +∆L cosωp t . (10.14)

P10.8 Use Matlab to solve Eqs. (10.13) with (10.14) using the following realistic
parameter values. A typical backyard swing has a length of about L0 = 2 m.
As you do deep knee bends you move most of your mass up and down, so
the ∆L of your parametric oscillation is about half the distance you drop
your body during the bend. Use γ = 0.1 s−1 again for the decay. In your
numerical solution gradually increase∆L from zero up to around 0.3 m with
ωp = 2ω0 and find the threshhold value of ∆L at which the swing becomes
unstable. (Explain to your TA why the pendulum amplitude doesn’t just
keep getting bigger forever.)
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The Pendulum with a High Frequency Driving Force

Consider1 an un-driven equation of motion of the form

ẍ =−∂V

∂x
. (11.1)

For instance, a harmonic oscillator has V (x) = kx2/2m and pendulum has V (x) =
−(g /L)cos x. Let the characteristic time over which this system changes appre-
ciably be the period T , e.g. T = 2π/

√
g /L for the pendulum. We now drive this

system with a very high frequency force that depends on both the particle position
x and time t so that the equation of motion becomes

ẍ =−∂V

∂x
+ A(x)sinωt , (11.2)

with
ωÀ 2π/T (11.3)

defining what we mean by high frequency. If we use our intuition (perhaps
thinking about what it feels like to drive at high speed over a back-country dirt
road that has developed wash boards) we might guess that the motion described
by this differential equation would consist of some sort of slowly varying motion
on the time scale T plus a high frequency low amplitude vibration at frequency ω.
We make this guess precise by writing

x(t ) = X (t )+ξ(t ) , (11.4)

where X (t ) describes the slow motion (think about the car winding its way around
curves and over hills) and ξ(t ) describes the small amplitude high frequency oscil-
lations (think about stuff in the glove compartment rattling, your teeth chattering,
etc.). An example of this kind of motion is shown in Fig. 11.1. The smooth curve is
X (t ) while the bumpy curve is x(t ) = X (t )+ξ(t ). The function ξ(t ) is the difference
between the two curves.

Perturbation Theory

Because ξ(t) is caused by the sinusoidal driving force, we will see that its time
average is zero, and the wide separation of time scales allows us to assume that

1This analysis is borrowed from Mechanics by Landau and Lifshitz: L. D. Landau and E. M.
Lifshitz Mechanics (Pergamon Press, New York, 1976), p. 93-95.
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X (t ) changes only slightly during one period of the high frequency motion. Sub-
stituting Eq. (11.4) into Eq. (11.2) and expanding in small ξ through first order
gives

Ẍ + ξ̈=− ∂V

∂x

∣∣∣∣
x=X

−ξ ∂
2V

∂x2

∣∣∣∣
x=X

+ A(X )sinωt +ξ ∂A

∂x

∣∣∣∣
x=X

sinωt . (11.5)

We first attack this equation by looking at the high frequency terms. The term
A sinωt is a big term, as is ξ̈ because of its rapid variation in time (ξ̈≈−ω2ξ with
ω large). All of the other high frequency terms are small compared to these two
because ξ is small, so we have (approximately)

ξ̈= A(X )sinωt , (11.6)

with X approximately constant because it varies so slowly. A simple integration
yields the rapidly varying position and velocity

ξ(t ) =− A(X )

ω2 sinωt ; ξ̇(t ) =− A(X )

ω
cosωt . (11.7)

We now substitute this result into Eq. (11.5) and time average every term in
the equation over one period of the high frequency motion. Terms that contain
single powers of ξ, cosωt , or sinωt average to zero while in the last term, which
contains sin2ωt , we may replace sin2ωt by its time average of 1/2 to obtain

Ẍ =−V ′(X )− A(X )

2ω2

d A

d X
(11.8)

As you can see, the low frequency motion of the oscillator is altered by the pres-
ence of this rapidly oscillating force, provided that the force depends on X . This
means that a simple high-frequency external force of the form A sinωt with A
constant has no effect on the slow motion.

We are not quite finished because we haven’t discussed the initial conditions.
Suppose that we have initial conditions

x(0) = x0 ; ẋ(0) = v0 ,

Using Eq. (11.4) we have

X (0)+ξ(0) = x0 ; Ẋ (0)+ ξ̇(0) = v0

which can be combined with Eq. (11.7) at t = 0 to obtain the proper initial condi-
tions for the slow-motion variable X :

X (0) = x0 ; Ẋ (0) = v0 + A(x0)/ω . (11.9)

With this choice of initial conditions a combined plot of x(t ) and X (t ) shows that
x(t) wiggles and slowly varies, while X (t) tracks right with it, but with all of the
wiggles smoothed out.
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Driven Pendulum

An interesting example of this kind of system is a pendulum whose support point
vibrates rapidly up and down like this:

ysupport = b sinωt . (11.10)

A simple way to find the new equation of motion of the pendulum is to use Ein-
stein’s principle of equivalence between acceleration and gravity: If the support
point is accelerating upward with acceleration asupport, then the pendulum will
experience a downward gravitational force −masupport. Hence we may write for
the effective acceleration of gravity acting on the pendulum asupport = ÿsupport =
−ω2b sinωt so that the total acceleration, including ordinary gravity is

geff = g −asupport = g − ÿsupport = g +bω2 sinωt , (11.11)

which then leads to the equation of motion

θ̈ =−ω2
0 sinθ− bω2

L
sinθ sinωt , (11.12)

where ω2
0 = g /L. This equation of motion matches Eq. (11.2) if we write

A(θ) =−bω2

L
sinθ , (11.13)

which then leads to the following slow time-averaged equation of motion [see
Eq. (11.8)]:

Θ̈=−ω2
0 sinΘ− b2ω2

2L2 sinΘcosΘ . (11.14)
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Figure 11.1

P11.1 (a) Use Matlab’s ode45 to solve for the motion of a rapidly driven pen-
dulum by solving both Eq. (11.12) and Eq. (11.14) with ω0 = 1, L = 1,
b = .02, and ω= 30 with initial conditions θ(0) = 1, θ̇(0) = 0 and run
for a total time of 30 seconds. Overlay the plots of θ(t ) from both equa-
tions to see that the averaged solution approximates the un-averaged
solution.

Now run it again with initial conditions θ(0) = 3.1, θ̇(0) = 0 and check
the agreement again.

Note: The averaged solution won’t go through the middle of the wig-
gles of the full solution unless you adjust the averaged initial condi-
tions as shown in Eq. (11.9). When you do it right your plot should
look like Fig. 11.1.

(b) Now redo part (a) with everything the same except use b = .05 this time.
You should be surprised, astounded, and amazed at what happens
with θ(0) = 3.1. This case is a nearly straight up pendulum, which
should fall over, but as you can clearly see, the pendulum is now stable
in the straight-up position. This is not a mistake, as you can discover
by examining the electric saber-saw demonstration at the front of the
room.
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(c) Analyze this situation more carefully by finding the effective potential
that produces the right-hand side of the slow equation of motion,
Eq. (11.14), i.e., find V (Θ) such that

−∂V /∂Θ=−ω2
0 sinΘ− b2ω2

2L2 sinΘcosΘ (11.15)

(integrate both sides of this equation to obtain V (θ)). Then plot this
potential from Θ = 0 to Θ = 2π for various values of b in the range
b = 0 to b = .1 and notice what happens atΘ=π as b increases. Then
use calculus to find the critical value of b at which the straight-up
pendulum first becomes stable and use your code from part (b) to
verify that this threshold value is correct.

These low frequency effective forces that arise from high-frequency non-linear
effects are called ponderomotive forces and they show up all the time in physical
problems. This problem is just a small taste of a very large field.
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Chaos

The van der Pol Oscillator

Consider the following non-linear oscillator equation, called the van der Pol
oscillator:1

ẍ −ε(`2 −x2)ẋ +ω2
0x = 0 . (12.1)

This is a simple model differential equation for systems that have an external
source of energy which causes the resting state (x = 0, v = 0) to be unstable,
but which also have sufficient damping that the instability cannot grow to an
arbitrarily large amplitude.

Begin by studying Eq. (12.1) and convincing yourself that the resting state is
indeed unstable, but that large amplitude motion is damped (on average). You
can’t see that x = 0, v = 0 is unstable by starting the system there and waiting for
something to happen, because nothing will happen. This is an equilibrium point
and if you start it there it will remain there forever. To test for stability, start the
system in a point very close to equilibrium and watch to see if it stays near the
equilibrium point, or runs away from it. Appropriate initial conditions to test
for stability might be x = 0.0001, v = 0. The phase-space flow plot, made with
quiver, in Fig. 12.1 illustrates these two features. Notice the arrows leading away
from the origin and the general inward flow at the outer edges of the picture. The
flow is not uniformly inward, however, and later in this lab you will see the effect
of the squeezed inward flow patterns visible in the figure.
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Figure 12.1 Flow in phase space
for the Van der Pol oscillator with
ω0 = 1, `= 1, and ε= 1.P12.1 (a) Use Matlab’s ode45 to solve Eq. (12.1) numerically for ε = 0.3, ω0 =

1.3, and ` = 1. Use options=odeset('RelTol',1e-5) to set the
accuracy of ode45 at a level that will make it possible to do long runs
in a reasonable time. (We would normally use a smaller tolerance
than this, but we only have 3 hours together). Make both a plot of x vs.
t as well as a phase space plot of v vs. x for a bunch of different initial
conditions. Notice that the phase space plot eventually settles on the
same curve for any initial conditions you pick. The phase space curve
on which the solutions settle is called a limit cycle

(b) Repeat part (a) for ε = 1 and ε = 20 and note how the limit cycle
changes shape. Also plot the power spectrum of x(t ) with semilogy

using an axis command to display the spectrum from ω= 0 to ω= 20
and note where the major peaks are. Remember to interpolate x(t)
onto an even time grid before computing the Fourier transform.

1R. Baierlein, Newtonian Dynamics (McGraw Hill, New York, 1983), p. 88-93.
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Limit Cycles and Attractors

The limit cycle you observed in this problem is a simple example of an attractor
in phase space. An attractor is a curve in the phase-space of the differential
equation to which many different solutions (having different initial conditions)
tend. For instance, for the damped un-driven harmonic oscillator the attractor is
just the state of no motion: x = 0, v = 0, because all solutions end up here. For the
driven damped harmonic oscillator the attractor is more interesting: it is the final
driven steady state of the oscillator, which looks like an ellipse in phase space.
Since this attractor is not a single point, we also call it a limit-cycle. For the van
Der Pol equation the attractor is the oddly-shaped curve (or limit-cycle) in the
(x, v) phase space to which all solutions tend.

Sometimes an attractor is not a single curve, but rather a very complex struc-
ture, like the famous Lorenz attractor (which you can explore a little bit by typing
lorenz at the command prompt in Matlab). These kind of attractors are called
strange attractors, and are examples of chaotic systems. We’ll study chaos later in
this lab and you will see other examples of attractors, but none of the attractors
encountered in this lab are strange attractors (except the Lorenz attractor).

P12.2 Now let’s add a driving force to the van der Pol oscillator, like this:

ẍ −ε(`2 −x2)ẋ +ω2
0x = A cosωt . (12.2)

Using `= 1, ε= 2, ω0 = 1.3, and ω= 1.4, gradually increase A from 0 to 1.5
and watch what happens to the power spectrum of x(t ). Change A by steps
large enough to see qualitative changes, i.e., don’t do A = 0.01, A = 0.02,
A = 0.03, etc.

You should find that as A is increased the limit cycle becomes fuzzy and that
the power spectrum becomes increasingly filled with spikes. Finally, around
A = 1.25 → 1.27 the power spectrum becomes so complicated that it is fuzzy
too (use the zoom feature on the spectrum to see that the spectrum is made
up of many tiny peaks). And then, quite abruptly, at about A = 1.28 the
oscillator becomes slaved to the drive, meaning that the oscillator vibrates
at the driving frequency ω= 1.4 and its harmonics, making the spectrum
simple again. (Look carefully at the power spectrum to see that this is true).

Entrainment

The kind of behavior illustrated in P12.2 is called entrainment, in which an oscil-
lator becomes synchronized to another periodic signal. An important example of
a system like this is the human heart. The heart has an external source of power,
has an unstable resting state (it wants to beat rather than sit still), and, normally, a
stable limit cycle (thump-Thump, thump-Thump,...). Sometimes this stable limit
cycle becomes irregular, in which case it is desirable to supply a periodic driving
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signal via a pacemaker which, if strong enough, can force the heart to become
entrained with it, restoring a stable limit cycle, albeit at a frequency determined
by the pacemaker rather than by the physical needs of the patient.

Dynamical Chaos

Now let’s switch gears a bit and take a brief tour through one of the most exciting
areas in the study of differential equations: dynamical chaos. A chaotic system is
one where dynamical variables (e.g. position and velocity) behave in seemingly
erratic ways and exhibit extreme sensitivity to initial conditions. Chaotic systems
are deterministic, since a given set of parameters and initial conditions repro-
duce the same motion, but it is usually difficult to predict how tiny variations in
parameters or initial conditions will affect the motion.

Chaotic systems have been known and studied for a long time. For instance,
it comes as no surprise that when you have 1023 atoms bouncing around inside a
container, hitting the walls and hitting each other, that the motion of any given
atom is pretty chaotic. But in the middle of the twentieth century it was discovered
that even simple systems can be chaotic. For instance, here is the apparently
nice, smooth, and well-behaved differential equation for the driven damped
pendulum:

d 2θ

d t 2 +γθ̇+ω2
0 sinθ = A cosωt . (12.3)

This system has only two degrees of freedom (way less than 1023) and all of the
functions that appear in it are nice and smooth. But for certain choices of A, ω,
ω0, and γ the solutions of this differential equation are almost as unpredictable
as the motion of an atom in a gas.

Chaos is hard to study because that old standby of physical theory, the for-
mula, is not of much help. If we had a formula for the solution of this differential
equation its behavior would be perfectly predictable and un-chaotic. Since the
dynamics in chaotic systems are not represented by analytic formulas, their so-
lution had to wait for computers to be invented and to become powerful. The
computers we will use in this laboratory are more powerful than the computers
we used to send men to the moon and to design nuclear weapons in the 1960s
and 1970s, so we have all the computing power we need to at least be introduced
to this fascinating field.

P12.3 A simple system in which chaos can be observed is a particle moving in a
potential well with two low spots:

U (x) =−x2

2
+ x4

4
. (12.4)

(a) Plot this potential vs. x and locate the two stable equilibrium points
(the one in the middle is unstable).
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(b) Let a particle have mass m = 1 and use the force relation

Fx =−∂U

∂x
(12.5)

to derive the equation of motion of the particle. Then write a Matlab
script and a function that employs ode45 to solve for the motion of the
particle. Use options=odeset('RelTol',1e-6) to set the accuracy
of ode45. Try several different initial conditions and watch how the
particle behaves in this double well. Look at the motion in phase space
for enough different initial conditions that you can see the transition
from motion in one well or the other to motion that travels back and
forth between the wells.

(c) Now add a driving force of the form F = A cos2t and also include a
linear damping force Fd amp =−mγẋ with γ= 0.4. Use initial condi-
tions x(0) = 1, v(0) = 0, and make a series of runs with A gradually
increasing until you observe chaotic behavior. (The transition from
regular motion to chaos occurs between A = 0.7 and A = 0.8). Run
from t = 0 to t = 1000. A plot of x(t) should show random jumping
between the left and right sides of the double well, as illustrated in
Fig. 12.2. For each run make a plot of the power spectrum of x(t).
Show the TA how your plots illustrate intermittency and 1/ f noise
(described below).
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Intermittent Chaos

Figure 12.2 Intermittent random
bouncing between the two wells.

(d) With A = 0.9 do two runs, one with initial conditions x(0) = 1, v(0) = 0,
and the other with x(0) = 1.000001 and v(0) = 0. Plot x(t) for each
of these cases, and explain to the TA how these plots illustrate the
butterfly effect (described below).

Intermittency, 1/ f Noise, and the Butterfly Effect

The random switching back and forth between equilibrium positions observed in
P12.3(c) is called intermittency and is one of standard ways that regular systems
become chaotic. As the motion becomes chaotic you should also see an increase
in the spectrum near ω= 0. This low frequency peak in the spectrum is one of the
symptoms of chaos (called “1/ f noise”) and is a direct consequence of the slow
random switching of intermittency.

Another hallmark of chaotic systems is the so-called “butterfly effect” (il-
lustrated in P12.3(d)), where very small changes in the initial conditions cause
large differences in the motion. This effect was discovered by Edward Lorenz
(for whom the Lorenz attractor is named), who was a meteorologist that studied
numerical models for weather prediction in the early 1960s. He noticed that very
tiny differences in initial conditions (too small to even be measured) led to vastly
different outcomes in his model. The effect gets its name from a talk that he gave
in 1972 titled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a
Tornado in Texas?”.
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P12.4 (a) Make a phase space plot for the system in P12.3(c) with A = 0.96. You
should find that the chaotic behavior quiets down and is replaced by
a limit cycle in phase space. It will be difficult to see the limit cycle on
the phase space plot because of the messy transients at the beginning.
To eliminate the transients make the phase space plot like this (We
chose to skip the first 60%–you can try your own value):

N=length(x);

n1=ceil(.6*N); % n1 starts 60% into the array

plot(x(n1:N),v(n1:N));

(b) Make another phase space plot at A = 1.30. The single limit cycle
should be replaced by a 2-cycle (two loops in phase space before
repeating);

Note: to really see the multiple character of these cycles, use the zoom
feature in the plot window to look carefully at them, especially near
the tight loops. This is shown in Fig. 12.3 for the 4-cycle state. In
the upper window the full time history is shown from the beginning
while in the lower window the late-time final state in the window
from the upper frame is shown. There are clearly 4 repeated loops
in phase space, so this is called a 4-cycle. This is an example of the
famous “period-doubling route” to chaos, as well as an example of
regular behavior in a region of parameter space where you might have
expected chaos.
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Figure 12.3 Full time history, then
final 4-cycle state from the small
window. There are fewer loops in
the lower trace because it is the
final state; the extra loops in the
box in the upper trace are from
early times.

(c) Make phase space plots of the limit cycle at A = 1.36 (a 4-cycle state),
which is then replaced by an 8-cycle at A = 1.371, and then chaos
takes over again.

If you run with A = 1.97, 1.99, and 2.0, you will see chaos disappear to
be replaced by a 2-cycle, a 4-cycle, and an 8-cycle. Beyond 2 there is
chaos again.

At A = 3 the amplitude is large enough that the oscillator becomes
slaved to the drive and we have entrainment. You might think that
large A would always cause entrainment, but A = 50 is chaotic, and
there are probably lots of 2,4,8,... cycles and chaotic regions as A is
varied. We ran out of patience; let us know what you find.

Note: when you run with A = 1.36 your phase-space picture may look
like an upside-down left-right flipped version of Fig. 12.3. This is OK–
the differential equation is almost unchanged if (x, v) is replaced with
(−x,−v). The only difference is that the driving term is replaced by
its negative, which is equivalent to a phase shift of π. Such a phase
shift could occur by having the oscillator start up in a different way,
which might easily happen if your initial conditions were not exactly
the same as ours. This flipped-over state is to be expected on physical
grounds. Our picture has tight loops on the left and big loops on the
right, but the potential is left-right symmetric; there should be another
state with tight loops on the right and big ones on the right as well.



58 Computational Physics 330

Fractals

P12.5 (a) The Fibonacci sequence Fn is defined by

F1 = 1 ; F2 = 1 ; Fn = Fn−1 +Fn−2 for n ≥ 3 (12.6)

(The first few numbers in the sequence are 1,1,2,3,5,8,13, ...). Write
a loop that fills the array Fn with the first 100 values of the Fibonacci
sequence.

Figure 12.4 The function plotted
in P12.5

(b) Now define an array x that goes from −2π to 2π with 50,001 equally
spaced values, like this:

h=4*pi/50000;

x=-2*pi:h:2*pi;

Then write a loop that evaluates the Fourier-like series

G(x) =
100∑
n=1

cos(Fn x)

Fn
. (12.7)

Plot this function vs. x and carefully observe its shape (this function
is shown in Fig. 12.4). Then use the zoom feature to more closely
examine some of the smaller mountain peaks to discover that each
mountain peak contains smaller versions of itself.

If you zoom in too much you will run out of points, so now plot the
function again using 50,001 points between x = 3.1 and x = 3.2, and
zoom in again. This kind of curve is called a fractal, or fractal curve 2

and such curves are important in chaos theory.

2S. N. Rasband, Chaotic Dynamics of Nonlinear Systems (John Wiley and Sons, New York, 1990),
Chap. 4, and http://sprott.physics.wisc.edu/fractals.htm
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Coupled Nonlinear Oscillators

When two or more oscillators are hooked together, we say that they are cou-
pled. 1 Our final model for driving a swing was an example of coupled pendula.
In that case the rotation of the swinger was coupled to the rotation of the overall
swing, which allows you to drive the swing.

In this lab we consider a different method for coupling pendula. Consider two
pendula hanging from the same piece of horizontally-stretched rubber tubing.
If one pendulum is held fixed and the second is displaced from equilibrium, the
second one experiences a restoring torque from two separate sources: (a) gravity
and (b) the rubber tubing. If both pendulums are displaced together each one
experiences gravity and restoring torque from the tubing, but the tubing between
the two plays no role because they both twist it in the same direction. But if the
pendulums are displaced in opposite directions then the tubing between them
is flexed, causing an extra restoring torque. This difference in restoring force
between the “together” and “opposite” motions is the cause of the two slightly
different frequencies that produce the beating you will see throughout this lab.

Coupled Equations of Motion via Lagrangian Dynamics

For small displacements, the effect of gravity (plus a small contribution from the
tubing) can be modeled as restoring torsional springs with spring constants κ1

and κ2 for pendulum 1 and pendulum 2, respectively. This leads to a potential
energy

U = 1

2
κ1θ

2
1 +

1

2
κ2θ

2
2 . (13.1)

The tubing also adds a coupling term to the potential energy of the form

Uc = 1

2
κc (θ1 −θ2)2 (13.2)

Note that this extra restoring potential energy is zero if the angular displacements
are equal. The total potential energy is

U = 1

2
κ1θ

2
1 +

1

2
κ2θ

2
2 +

1

2
κc (θ1 −θ2)2 . (13.3)

P13.1 Combine this potential energy function with the kinetic energy

T = 1

2
I1θ̇1

2 + 1

2
I2θ̇2

2
(13.4)

1G. Fowles and G. Cassiday, Analytical Mechanics (Saunders, Fort Worth, 1999), p. 443-460.
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to build the Lagrangian (L = T −U ). Use the Lagrangian equation of motion

∂L

∂qi
− d

d t

(
∂L

∂q̇i

)
= 0 (13.5)

to derive equations of motion for θ1(t) and θ2(t). Then simplify these
equations by assuming that the two pendula are identical so thatκ1 = κ2 = κ
and I1 = I2 = I . Also eliminate the spring constants and moments of inertia
in favor of frequencies according to the definitions

ω2
0 =

κ

I
; ω2

c =
κc

I
. (13.6)

Finally, put these two second-order differential equations in coupled first
order form.

If you did P13.1 correctly, you should have arrived at the following four first-
order differential equations for describing the motion of the coupled-pendulum
system:

θ̇1 = ω1 (13.7)

θ̇2 = ω2 (13.8)

ω̇1 = −ω2
0θ1 −ω2

c (θ1 −θ2) (13.9)

ω̇2 = −ω2
0θ2 −ω2

c (θ2 −θ1). (13.10)

The four variables are: the angular positions of the two pendulums θ1(t) and
θ2(t ) (remember that θ = 0 corresponds to the pendulum hanging straight down)
and, the angular velocities of the two pendulums ω1(t ) and ω2(t ). The parameter
ω0 is associated with the natural frequency of a single pendulum without any
coupling, and the parameter ωc is associated with the natural frequency of the
middle section of tubing when attached to the two pendula.

P13.2 (a) Use Mathematica to solve Eqs. (13.7)-(13.10) symbolically without
initial conditions to see if you can find the two separate frequencies
that cause the beating you will see when you solve them in Matlab.

(b) Now numerically solve this system in Matlab with ω0 = 1.3 and ωc =
0.3; for initial conditions let everything be zero except θ1(0) = 0.3.
Make plots of θ1(t ) and θ2(t ), one above the other using subplot2 like
this:

subplot(2,1,1)

plot(te,th1e)

subplot(2,1,2)

plot(te,th2e)

0 50 100 150 200 250
−1

0

1

t

θ 1

Beats

0 50 100 150 200 250
−1

0

1

t

θ 2

Figure 13.1 Energy passes back
and forth between θ1 and θ2 due
to beating.

Run long enough that something interesting happens, i.e., run at least
long enough that θ2(t) becomes large, then small again. You should

2For more information about subplots, look it up via help subplot using online help in Matlab.
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be looking at the beat plot in Fig. 13.1. This pattern of increasing and
decreasing amplitude in the plots of θ1(t ) and θ2(t ) is an example of
interference beats caused by the presence of two different frequencies
in the dynamics.

(c) Run the solution out for long enough that when you take the FFT of
θ1(t ) you can see the two peaks in the power spectrum corresponding
to the two frequencies whose mixing causes the beats. Verify that
the beat frequency ωb = 2π/Tb , (where Tb is the time for one of the
oscillators to be at maximum amplitude, go to zero amplitude, then
come back to maximum amplitude again) is related to the two peaks
in the spectrum ω+ and ω− by

ωb =ω+−ω− . (13.11)

Also verify that the two frequencies you observe in the FFT are the two
frequencies predicted by your Mathematica calculation.

Note: the figure at the beginning of this lab does not have enough
oscillations in it for the FFT to work well. As a general rule, your time
plots should look solid if you want to use the FFT. A maximum time
around 2000 works fine.

(d) Now add a linear damping term to the equation of motion for pendu-
lum number 2, start the system with these initial conditions: θ1(0) =
0.3, θ̇1(0) = 0, θ2(0) = 0, θ̇2(0) = 0. and study the motion of the two
oscillators. Use

θ̈2 =−γθ̇2 +·· · (13.12)

with γ= 0.07. Look at the plots for θ1(t) and θ2(t) and discuss what
happens to the energy that was initially put into pendulum number 1.

(e) Now drive pendulum number 1 by applying a small negative torque
N1 =−0.3 whenever θ1 is positive and θ̇1 is negative. You will need

T This driving force is essen-
tially the same as the inter-
mittent torque you apply to
someone when you push
them in a swing.

to use an if statement in the M-file that defines the right-hand side
of your set of differential equations to make this work. This driving
force is similar to the escapement in a pendulum clock in which a
mechanical linkage allows the weights to push on the pendulum when
it is at the proper place in its motion. Think about this drive and verify
that it always puts energy into pendulum number 1.

As in part (b), don’t damp pendulum number 1; just keep the damping
in pendulum number 2. Run the code long enough that the system
comes to a steady state in which both pendulums have constant am-
plitude. Discuss the flow of energy in this system.

Coupled Wall Clocks

Now we are ready to study a very famous problem in dynamics. In the 1600s
Christian Huygens observed that when two clocks are hung next to each other
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on a wall, they tend to synchronize with each other. Let’s see if we can make our
equations of motion do this.

P13.3 (a) Begin by making both pendulums be damped and driven as described
in P13.2(d) and (e), but remove the coupling by setting ωc = 0. Run
the code and make sure that each clock comes to its own independent
steady state.

Now add weak coupling between the two by setting ωc = 0.3 again
(the slight pushes and pulls that each clock exerts on the wall is the
source of this coupling) and see if the clocks ever synchronize with
each other. (Synchronization means that the two pendulums have the
same period with some definite phase shift between them. This effect
is called entrainment in the nonlinear dynamics literature).

When you do these runs, start pendulum 1 with θ1 = 1 and θ̇1 = 0 and
try various choices for the initial conditions of pendulum number 2.
When they become entrained, check the phase difference between
the two clocks. (A visual inspection is probably sufficient). In your
numerical experiments, how many different phase relationships do
you observe? (Try overlaid plots of θ1 and θ2 to see the phase relation-
ships). Do your in-phase and out-of-phase entrained states have the
same frequencies?

(b) According to the nonlinear dynamics literature, entrainment is an
effect that depends on the oscillators being damped, driven, and
nonlinear. Where is the nonlinearity in our equations of motion?

(c) Finally, let’s make these clocks a little more realistic by (i) replacing
−ω2θ by −ω2 sinθ in each equation of motion and by (ii) having their
natural frequencies be slightly different. Do this by changingω2 in the
equation of motion for pendulum 2 to 1.03ω2, 1.1ω2, and 1.25ω2 (do
all three cases). You should find that entrainment is relatively robust,
meaning that the clocks don’t have to have exactly the same period to
synchronize, but that if they are too different the effect is lost. Does
this robustness depend on the strength of the coupling parameter ωc ?
Comment on what your answer to this last question has to do with
real clocks on a wall.

Solving Nonlinear Equations

P13.4 Read and execute the examples in Introduction to Matlab, Chapter 14. Then
complete the following exercises.

(a) Write a loop that makes an array containing the first 40 zeros of the
Bessel Function J0(x). Find these zeros by writing a loop to load them
using Matlab’s fzero command. You will have to give fzero a search
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range instead of just an initial guess, and this will be easier if you
remember that the zeroes of J0(x) are separated by about π.

Look through your list of zeros and make sure that there are no re-
peated values. Then plot J0(x) and put a red x at every zero.

(b) Solve the following set of equations using Matlab’s fsolve command

x2 + y2 + z2 = 139
x

x + y − z
= 3

x
p

z = (10− y)2
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