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This is a laboratory course about using computers to solve partial differential
equations that occur in the study of electromagnetism, heat transfer, acoustics,
and quantum mechanics. The course objectives are

• Solve physics problems involving partial differential equations numerically
using a symbolic mathematics program and Matlab.

• Better be able to do general programming using loops, logic, etc.

• Have an increased conceptual understanding of the physical implications
of important partial differential equations

You will need to read through each lab before class to complete the exercises
during the class period. The labs are designed so that the exercises can be done in
class (where you have access to someone who can help you) if you come prepared.
Please work with a lab partner. It will take a lot longer to do these exercises if you
are on your own. When you have completed a problem, call a TA over and explain
to them what you have done.

To be successful in this class, you should already know how to program in
Matlab and be able to use a symbolic mathematical program such as Mathematica.
We also assume that you have studied upper division mathematical physics (e.g.
mathematical methods for solving partial differential equations with Fourier
analysis). You should consider buying the student version of Matlab while you
still have a student ID and it is cheap. You will become quite skilled in its use and
it would be very helpful to have it on your own computer.

Suggestions for improving this manual are welcome. Please direct them to
Michael Ware (ware@byu.edu).

mailto:ware@byu.edu
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Review

If you are like most students, loops and logic gave you trouble in 330. We will
be using these programming tools extensively this semester, so you may want to
review and brush up your skills a bit. Here are some optional problems designed
to help you remember your loops and logic skills. You will probably need to use
online help (and you can ask a TA to explain things in class too).

(a) Write a for loop that counts by threes starting at 2 and ending at 101. Along
the way, every time you encounter a multiple of 5 print a line that looks like
this (in the printed line below it encountered the number 20.)

fiver: 20

You will need to use the commands for, mod, and fprintf, so first look
them up in online help.

(b) Write a loop that sums the integers from 1 to N , where N is an integer value
that the program receives via the input command. Verify by numerical
experimentation that the formula

N∑
n=1

n = N (N +1)

2

is correct

(c) For various values of x perform the sum

1000∑
n=1

nxn

with a for loop and verify by numerical experimentation that it only con-
verges for |x| < 1 and that when it does converge, it converges to x/(1−x)2.

(d) Redo (c) using a while loop (look it up in online help.) Make your own
counter for n by using n = 0 outside the loop and n = n +1 inside the loop.
Have the loop execute until the current term in the sum, nxn has dropped
below 10−8. Verify that this way of doing it agrees with what you found in
(c).

v



(e) Verify by numerical experimentation with a while loop that

∞∑
n=1

1

n2 = π2

6

Set the while loop to quit when the next term added to the sum is below
10−6.

(f) Verify, by numerically experimenting with a for loop that uses the break
command (see online help) to jump out of the loop at the appropriate time,
that the following infinite-product relation is true:

∞∏
n=1

(
1+ 1

n2

)
= sinhπ

π

(g) Use a while loop to verify that the following three iteration processes con-
verge. (Note that this kind of iteration is often called successive substitu-
tion.) Execute the loops until convergence at the 10−8 level is achieved.

xn+1 = e−xn ; xn+1 = cos xn ; xn+1 = sin2xn

Note: iteration loops are easy to write. Just give x an initial value and then
inside the loop replace x by the formula on the right-hand side of each
of the equations above. To watch the process converge you will need to
call the new value of x something like xnew so you can compare it to the
previous x.

Finally, try iteration again on this problem:

xn+1 = sin3xn

Convince yourself that this process isn’t converging to anything. We will
see in Lab 10 what makes the difference between an iteration process that
converges and one that doesn’t.



Lab 1

Grids and Numerical Derivatives

When we solved differential equations in Physics 330 we were usually moving
something forward in time, so you may have the impression that differential
equations always “flow.” This is not true. If we solve a spatial differential equation,
for instance, like the one that gives the shape of a chain draped between two
posts, the solution just sits in space; nothing flows. Instead, we choose a small
spatial step size (think of each individual link in the chain) and we seek to find
the correct shape by somehow finding the height of the chain at each link.

In this course we will be solving partial differential equations, which usually
means that the desired solution is a function of both space x, which just sits, and
time t , which flows. And when we solve problems like this we will be using spatial
grids, to represent the x-part that doesn’t flow. You have already used grids in
Matlab to do simple jobs like plotting functions and doing integrals numerically.
Before we proceed to solving partial differential equations, let’s spend some time
getting comfortable working with spatial grids.

0 L

0 L

Cell-Edge Grid

Cell-Center Grid

Cell-Center Grid with Ghost Points

0 L

Figure 1.1 Three common spatial
grids

Spatial grids

Figure 1.1 shows a graphical representation of three types of spatial grids for the
region 0 ≤ x ≤ L. We divide this region into spatial cells (the spaces between
vertical lines) and functions are evaluated at N discrete grid points (the dots). In
a cell-edge grid, the grid points are located at the edge of the cell. In a cell-center
grid, the points are located in the middle of the cell. Another useful grid is a
cell-center grid with ghost points. The ghost points (unfilled dots) are extra grid
points on either side of the interval of interest and are useful when we need to
consider the derivatives at the edge of a grid.

P1.1 (a) Make a Matlab script that creates a cell-edge spatial grid in the variable
x as follows:

0 1 2 3
0

1

2

3

4

y(x)

x

Figure 1.2 Plot from 1.1(a)

N=100; % the number of grid points

a=0;b=pi; % the left and right bounds

h=(b-a)/(N-1); % calculate the step size

x=a:h:b; % build the grid

Plot the function y(x) = sin(x)sinh(x) on this grid. Explain the rela-
tionship between the number of cells and the number of grid points
in a cell-edge grid and why you divide by (N-1) when calculating
h. Then verify that the number of points in this x-grid is N (using
Matlab’s whos command).

(b) Explain the relationship between the number of cells and the number
of grid points in a cell-center grid and decide how you should modify

1
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the line that calculates h in (a) to get the correct spacing for a cell-
center grid.

0 0.5 1 1.5 2
−0.5

0

0.5

1

f(x)

x

Figure 1.3 Plot from 1.1(b)

Now write a script like the one in part (a) that uses Matlab’s colon
command to build a cell-center grid over the interval 0 ≤ x ≤ 2 with
N = 5000. Evaluate the function f (x) = cos x on this grid and plot this
function. Then estimate the area under the curve by summing the
products of the centered function values f j with the widths of the cells
h like this (midpoint integration rule):

sum(f)*h;

Verify that this result is quite close to the exact answer obtained by
integration:

A =
∫ 2

0
cos x d x.

(c) Build a cell-center grid with ghost points over the interval 0 ≤ x ≤π/2
with 500 cells (502 grid points), and evaluate the function f (x) = sin x
on this grid. Now look carefully at the function values at the first
two grid points and at the last two grid points. The function sin x
has the property that f (0) = 0 and f ′(π/2) = 0. The cell-center grid
doesn’t have points at the ends of the interval, so these boundary
conditions on the function need to be enforced using more than one
point. Explain how the ghost points can be used in connection with
interior points to specify both function-value boundary conditions
and derivative-value boundary conditions.

Interpolation and extrapolation

Grids only represent functions at discrete points, and there will be times when
we want to find good values of a function between grid points (interpolation) or
beyond the last grid point (extrapolation). We will use interpolation and extrapo-
lation techniques fairly often during this course, so let’s review these ideas.

(x1, y1)

(x2, y2)

Figure 1.4 The line defined by two
points can be used to interpolate
between the points and extrapo-
late beyond the points.

The simplest way to estimate these values is to use the fact that two points
define a straight line. For example, suppose that we have function values (x1, y1)
and (x2, y2). The formula for a straight line that passes through these two points
is

y − y1 = (y2 − y1)

(x2 −x1)
(x −x1) (1.1)

Once this line has been established it provides an approximation to the true
function y(x) that is pretty good in the neighborhood of the two data points. To
linearly interpolate or extrapolate we simply evaluate Eq. (1.1) at x values between
or beyond x1 and x2.

P1.2 Use Eq. (1.1) to do the following special cases:
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(a) Find an approximate value for y(x) halfway between the two points
x1 and x2. Does your answer make sense?

(b) Find an approximate value for y(x) 3/4 of the way from x1 to x2. Do
you see a pattern?

(c) If the spacing between grid points is h (i.e. x2 −x1 = h), show that the
linear extrapolation formula for y(x2 +h) is

y(x2 +h) = 2y2 − y1 (1.2)

This provides a convenient way to estimate the function value one
grid step beyond the last grid point. Also show that

y(x2 +h/2) = 3y2/2− y1/2. (1.3)

We will use both of these formulas during the course.

(x1, y1)

(x2, y2)

(x3, y3)

Figure 1.5 Three points define a
parabola that can be used to in-
terpolate between the points and
extrapolate beyond the points.

A fancier technique for finding values between and beyond grid points is to
use a parabola instead of a line. It takes three data points to define a parabola, so
we need to start with the function values (x1, y1), (x2, y2), and (x3, y3). The general
formula for a parabola is

y = a +bx + cx2 (1.4)

where the coefficients a, b, and c need to be chosen so that the parabola passes
through our three data points. To determine these constants, you set up three
equations that force the parabola to match the data points, like this:

y j = a +bx j + cx2
j (1.5)

with j = 1,2,3, and then solve for a, b, and c.

P1.3 Use Eq. (1.5) to create a set of three equations in Mathematica. For simplic-
ity, assume that the points are on an evenly-spaced grid and set x2 = x1 +h
and x3 = x1+2h. Solve this set of equations to obtain some messy formulas
for a, b, and c that involve x1 and h. Then use these formulas to solve the
following problems:

(a) Estimate y(x) half way between x1 and x2, and then again halfway
between x2 and x3. Do you see a pattern? (You will need to simplify
the answer that Mathematica spits out to see the pattern.)

(b) Show that the quadratic extrapolation formula for y(x3 +h) (i.e. the
value one grid point beyond x3) is

y(x3 +h) = y1 −3y2 +3y3 (1.6)

Also find the formula for y(x3 +h/2).
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Derivatives on grids

This is a course on partial differential equations, so we will frequently need
to calculate derivatives on our grids. In your introductory calculus book, the
derivative was probably introduced using the forward difference formula

f ′(x) ≈ f (x +h)− f (x)

h
. (1.7)

The word “forward” refers to the way this formula reaches forward from x to x +h
to calculate the slope. The exact derivative represented by Eq. (1.7) in the limit that
h approaches zero. However, we can’t make h arbitrarily small when we represent
a function on a grid because (i) the number of cells needed to represent a region
of space becomes infinite as h goes to zero; and (ii) computers represent numbers
with a finite number of significant digits so the subtraction in the numerator of
Eq. (1.7) loses accuracy when the two function values are very close. But given
these limitation we want to be as accurate as possible, so we want to use the best
derivative formulas available. The forward difference formula isn’t one of them.

Figure 1.6 The forward and cen-
tered difference formulas both
approximate the derivative as the
slope of a line connecting two
points. The centered difference
formula gives a more accurate ap-
proximation because it uses points
before and after the point where
the derivative is being estimated.
(The true derivative is the slope of
the dotted tangent line).

The best first derivative formula that uses only two function values is usually
the centered difference formula:

f ′(x) ≈ f (x +h)− f (x −h)

2h
. (1.8)

It is called “centered” because the point x at which we want the slope is centered
between the places where the function is evaluated. The corresponding centered
second derivative formula is

f ′′(x) ≈ f (x +h)−2 f (x)+ f (x −h)

h2 (1.9)

You will derive both of these formulas a little later, but for now we just want you
to understand how to use them.

Matlab’s colon operator provides a compact way to evaluate Eqs. (1.8) and
(1.9) on a grid. If the function we want to take the derivative of is stored in an
array f, we can calculate the centered first derivative like this:

fp(2:N-1)=(f(3:N)-f(1:N-2))/(2*h);

and the centered second derivative at each interior grid point like this:

fpp(2:N-1)=(f(3:N)-2*f(2:N-1)+f(1:N-2))/h^2;

The variable h is the spacing between grid points and N is the number of grid
points. (Both variables need to be set before the derivative code above will work.)
Study this code until you are convinced that it represents Eqs. (1.8) and (1.9)
correctly. If this code looks mysterious to you, you may need to review how the
colon operator works in the 330 manual Introduction to Matlab.

The derivative at the first and last points on the grid can’t be calculated using
Eqs. (1.8) and (1.9) since there are not grid points on both sides of the endpoints.
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About the best we can do is to extrapolate the interior values of the two derivatives
to the end points. If we use linear extrapolation then we just need two nearby
points, and the formulas for the derivatives at the end points are found using
Eq. (1.2):

fp(1)=2*fp(2)-fp(3);

fp(N)=2*fp(N-1)-fp(N-2);

fpp(1)=2*fpp(2)-fpp(3);

fpp(N)=2*fpp(N-1)-fpp(N-2);

If we extrapolate using parabolas (quadratic extrapolation), we need to use three
nearby points as specified by Eq. (1.6):

fp(1)=3*fp(2)-3*fp(3)+fp(4);

fp(N)=3*fp(N-1)-3*fp(N-2)+fp(N-3);

fpp(1)=3*fpp(2)-3*fpp(3)+fpp(4);

fpp(N)=3*fpp(N-1)-3*fpp(N-2)+fpp(N-3);

0 1 2 3 4 5
−1

−0.5

0

0.5

1

f′(x)

f(x)
f′′(x)

x

Figure 1.7 Plots from 1.4

P1.4 Create a cell-edge grid with N = 20 on the interval 0 ≤ x ≤ 5. Load f (x)
with the Bessel function J0(x) and numerically differentiate it to obtain
f ′(x) and f ′′(x). Use both linear and quadratic extrapolation to calculate
the derivative at the endpoints. Compare both extrapolation methods
to the exact derivatives and check to see how much better the quadratic
extrapolation works. Then make overlaid plots of the numerical derivatives
with the exact derivatives:

f ′(x) =−J1(x)

f ′′(x) = 1

2
(−J0(x)+ J2(x))

Errors in the approximate derivative formulas

We’ll conclude this lab with a look at where the approximate derivative formulas
come from and at the types of the errors that pop up when using them. The
starting point is Taylor’s expansion of the function f a small distance h away from
the point x

f (x +h) = f (x)+ f ′(x)h + 1

2
f ′′(x)h2 + ·· · + f (n)(x)

hn

n!
+ ·· · (1.10)

Let’s use this series to understand the forward difference approximation to f ′(x).
If we apply the Taylor expansion to the f (x +h) term in Eq. (1.7), we get

f (x +h)− f (x)

h
=

[
f (x)+ f ′(x)h + 1

2 f ′′(x)h2 +·· ·]− f (x)

h
(1.11)

The higher order terms in the expansion (represented by the dots) are smaller
than the f ′′ term because they are all multiplied by higher powers of h (which
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we assume to be small). If we neglect these higher order terms, we can solve
Eq. (1.11) for the exact derivative f ′(x) to find

f ′(x) ≈ f (x +h)− f (x)

h
− h

2
f ′′(x) (1.12)

From Eq. (1.12) we see that the forward difference does indeed give the first
derivative back, but it carries an error term which is proportional to h. But, of
course, if h is small enough then the contribution from the term containing f ′′(x)
will be too small to matter and we will have a good approximation to f ′(x).

Now let’s perform the same analysis on the centered difference formula to
see why it is better. Using the Taylor expansion for both f (x +h) and f (x −h) in
Eq. (1.8) yields

f (x +h)− f (x −h)

2h
=

[
f (x)+ f ′(x)h + f ′′(x) h2

2 + f ′′′(x) h3

6 +·· ·
]

2h
(1.13)

−
[

f (x)− f ′(x)h + f ′′(x) h2

2 − f ′′′(x) h3

6 +·· ·
]

2h

If we again neglect the higher-order terms, we can solve Eq. (1.13) for the exact
derivative f ′(x). This time, the f ′′ terms exactly cancel to give

f ′(x) ≈ f (x +h)− f (x −h)

2h
− h2

6
f ′′′(x) (1.14)

Notice that for this approximate formula the error term is much smaller, only
of order h2. To get a feel why this is so much better, imagine decreasing h in
both the forward and centered difference formulas by a factor of 10. The forward
difference error will decrease by a factor of 10, but the centered difference error
will decrease by a factor of 100. This is the reason we try to use centered formulas
whenever possible in this course.

P1.5 (a) Let’s find the second derivative formula using an approach similar
to what we did for the first derivative. In Mathematica, write out
the Taylor’s expansion for f (x +h) using Eq. (1.10), but change the
derivatives to variables that Mathematica can do algebra with, like
this:

fplus=f + fp*h + fp2*h^2/2 + fp3*h^3/6 + fp4*h^4/24

where fp stands for f ′, fp2 stands for f ′′, etc. Make a similar equation
called eqminus for f (x−h) that contains the same derivative variables
fp, fpp, etc. Now solve these two equations for the first derivative fp
and the second derivative fpp. Verify that the first derivative formula
matches Eq. (1.14), including the error term, and that the second
derivative formula matches Eq. (1.9), but now with the appropriate
error term. What order is the error in terms of the step size h?
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(b) Extra Credit: (Finish the rest of the lab before doing this problem.)

Now let’s look for a reasonable approximation for the third derivative.
Suppose you have function values f (x −3h/2), f (x −h/2), f (x +h/2),
and f (x +3h/2). Using Mathematica and the procedure in (a), write
down four “algebraic Taylor’s” series up to the fifth derivative for the
function at these four points. Then solve this system of four equations
to find expressions for f (x), f ′(x), f ′′(x), and f ′′′(x) (i.e. solve the sys-
tem for the variables f, fp, fp2, and fp3 if you use the same notation
as (a)). Focus on the expression for the third derivative. You should
find the approximate formula

f ′′′(x) ≈ f (x +3h/2)−3 f (x +h/2)+3 f (x −h/2)− f (x −3h/2)

h3

(1.15)
along with an error term on the order of h2. This expression will be
useful when we need to approximate a third derivative on a grid in
Lab 14.

Figure 1.8 Error in the forward
and centered difference approxi-
mations to the first derivative and
the centered difference formula
for the second derivative as a func-
tion of h. The function is ex and
the approximations are evaluated
for x = 0.

P1.6 Use Matlab (or a calculator) to compute the forward and centered difference
formulas for the first derivative of the function f (x) = ex at x = 0 with
h = 0.1, 0.01, 0.001. Also calculate the centered second derivative formula
for these values of h. Verify that the error estimates in Eqs. (1.12) and (1.14)
agree with the numerical testing.

Note that at x = 0 the exact values of both f ′ and f ′′ are equal to 1, so just
subtract 1 from your numerical result to find the error.

In problem 1.6, you should have found that h = 0.001 in the centered-difference
formula gives a better approximation than h = 0.01. These errors are due to the
finite grid spacing h, which might entice you to try to keep making h smaller and
smaller to achieve any accuracy you want. This doesn’t work. Figure 1.8 shows a
plot of the error you calculated in problem 1.6 as h continues to decrease (note
the log scales). For the larger values of h, the errors track well with the predictions
made by the Taylor’s series analysis. However, when h becomes too small, the
error starts to increase. Finally (at about h = 10−16, and sooner for the second
derivative) the finite difference formulas have no accuracy at all—the error is the
same order as the derivative.

The reason for this behavior is that numbers in computers are represented
with a finite number of significant digits. Most computational languages (in-
cluding Matlab) use a representation that has 15-digit accuracy. This is normally
plenty of precision, but look what happens in a subtraction problem where the
two numbers are nearly the same:

7.38905699669556
− 7.38905699191745

0.00000000477811
(1.16)
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Notice that our nice 15-digit accuracy has disappeared, leaving behind only 6
significant figures. This problem occurs in calculations with real numbers on all
digital computers, and is called roundoff. You can see this effect by experimenting
with the Matlab command

h=1e-17; (1+h); ans-1

for different values of h and noting that you don’t always get h back. Also notice
in Fig. 1.8 that this problem is worse for the second derivative formula than it is
for the first derivative formula. The lesson here is that it is impossible to achieve
arbitrarily high accuracy by using arbitrarily tiny values of h. In a problem with a
size of about L it doesn’t do any good to use values of h any smaller than about
0.0001L.

Finally, let’s learn some wisdom about using finite difference formulas on
experimental data. Suppose you had acquired some data that you needed to nu-
merically differentiate. Since it’s real data there are random errors in the numbers.
Let’s see how those errors affect your ability to take numerical derivatives.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

f′(x)

f(x)

x

Figure 1.9 Plots of f (x) and f ′(x)
from 1.7 with 1000 points. f ′′(x)
has too much error to make a
meaningful plot for this number of
points.

P1.7 Make a cell-edge grid for 0 ≤ x ≤ 5 with 1000 grid points. Then model
some data with experimental errors in it by using Matlab’s random number
function rand like this:

f=cos(x)+.001*rand(1,length(x));

So now f contains the cosine function, plus experimental error at the 0.1%
level. Calculate the first and second derivatives of this data and compare
them to the “real” derivatives (calculated without noise). Reduce the num-
ber of points to 100 and see what happens.

Differentiating your data is a bad idea in general, and differentiating it twice is
even worse. If you can’t avoid differentiating experimental data, you had better
work pretty hard at reducing the error, or perhaps fit your data to a smooth
function, then differentiate the function.



Lab 2

Differential Equations with Boundary Conditions

In Physics 330, we studied the behavior of systems where the initial conditions
were specified and we calculated how the system evolved forward in time (e.g.
the flight of a baseball given its initial position and velocity). In these cases we
were able to use Matlab’s convenient built-in differential equation solvers (like
ode45) to model the system. The situation becomes somewhat more complicated
if instead of having initial conditions, a differential equation has boundary con-
ditions specified at both ends of the interval (rather than just at the beginning).
This seemingly simple change in the boundary conditions makes it hard to use
Matlab’s differential equation solvers. Fortunately, there are better ways to solve
these systems. In this section we develop a method for using a grid and the finite
difference formulas we developed in Lab 1 to solve ordinary differential equations
with linear algebra techniques.

Solving differential equations with linear algebra

Consider the differential equation

y ′′(x)+9y(x) = sin(x) ; y(0) = 0, y(2) = 1 (2.1)

Notice that this differential equation has boundary conditions at both ends of the

y(x)

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

Figure 2.1 A function y(x) repre-
sented on a cell-edge x-grid with
N = 9.

interval instead of having initial conditions at x = 0. If we represent this equation
on a grid, we can turn this differential equation into a set of algebraic equations
that we can solve using linear algebra techniques. Before we see how this works,
let’s first specify the notation that we’ll use. We assume that we have set up a
cell-edge spatial grid with N grid points, and we refer to the x values at the grid
points using the notation x j , with j = 1..N . We represent the (as yet unknown)
function values y(x j ) on our grid using the notation y j = y(x j ).

Now we can write the differential equation in finite difference form as it
would appear on the grid. The second derivative in Eq. (2.1) is rewritten using the
centered difference formula (see Eq. (1.8)), so that the finite difference version of
Eq. (2.1) becomes:

y j+1 −2y j + y j−1

h2 +9y j = sin(x j ) (2.2)

Now let’s think about Eq. (2.2) for a bit. First notice that it is not an equation, but
a system of many equations. We have one of these equations at every grid point
j , except at j = 1 and at j = N where this formula reaches beyond the ends of
the grid and cannot, therefore, be used. Because this equation involves y j−1, y j ,
and y j+1 for the interior grid points j = 2. . . N −1, Eq. (2.2) is really a system of
N −2 coupled equations in the N unknowns y1 . . . yN . If we had just two more

9
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equations we could find the y j ’s by solving a linear system of equations. But we
do have two more equations; they are the boundary conditions:

y1 = 0 ; yN = 1 (2.3)

which completes our system of N equations in N unknowns.
Before Matlab can solve this system we have to put it in a matrix equation of

the form
Ay = b, (2.4)

where A is a matrix of coefficients, y the column vector of unknown y-values,
and b the column vector of known values on the right-hand side of Eq. (2.2). For
the particular case of the system represented by Eqs. (2.2) and (2.3), the matrix
equation is given by

1 0 0 0 ... 0 0 0
1

h2 − 2
h2 +9 1

h2 0 ... 0 0 0
0 1

h2 − 2
h2 +9 1

h2 ... 0 0 0
. . . . ... . . .
. . . . ... . . .
. . . . ... . . .
0 0 0 0 ... 1

h2 − 2
h2 +9 1

h2

0 0 0 0 ... 0 0 1





y1

y2

y3

.

.

.
yN−1

yN


=



0
sin(x2)
sin(x3)

.

.

.
sin(xN−1)

1


.

(2.5)

Convince yourself that Eq. (2.5) is equivalent to Eqs. (2.2) and (2.3) by mentally
doing each row of the matrix multiply by tipping one row of the matrix up on
end, dotting it into the column of unknown y-values, and setting it equal to the
corresponding element in the column vector on the right.

Once we have the finite-difference approximation to the differential equation
in this matrix form (Ay = b), a simple linear solve is all that is required to find the
solution array y j . Matlab does this solve with this command: y=A\b.

P2.1 (a) Set up a cell-edge grid with N = 30 grid points, like this:

N=30;

xmin=0;

xmax=2;

h=(xmax-xmin)/(N-1);

x=xmin:h:xmax;

x=x';

Look over this code and make sure you understand what it does. You
may be wondering about the command x=x'. This turns the row
vector x into a column vector x. This is not strictly necessary, but it is
convenient because the y vector that we will get when we solve will
be a column vector and Matlab needs the two vectors to be the same
dimensions for plotting.

(b) Solve Eq. (2.1) symbolically using Mathematica’s DSolve command.
Then type the solution formula into the Matlab script that defines the
grid above and plot the exact solution as a blue curve on a cell-edge
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grid with N points. (You can also use a convenient Mathematica pack-
age found at http://library.wolfram.com/infocenter/MathSource/577/
to transform a Mathematica solution into something that can easily
be pasted into Matlab.)

Figure 2.2 The solution to 2.1(c)
with N = 30

(c) Now load the matrix in Eq. (2.5) and do the linear solve to obtain y j

and plot it on top of the exact solution with red dots ('r.') to see how
closely the two agree. Experiment with larger values of N and plot the
difference between the exact and approximate solutions to see how
the error changes with N . We think you’ll be impressed at how well
the numerical method works, if you use enough grid points.

Let’s pause and take a minute to review how to apply the technique to solve
a problem. First, write out the differential equation as a set of finite difference
equations on a grid, similar to what we did in Eq. (2.2). Then translate this set
of finite difference equations (plus the boundary conditions) into a matrix form
analogous to Eq. (2.5). Finally, build the matrix A and the column vector y in
Matlab and solve for the vector y using y=A\b. Our example, Eq. (2.1), had only
a second derivative, but first derivatives can be handled using the centered first
derivative approximation, Eq. (1.8).

Now let’s practice this procedure for a couple more differential equations:

0 1 2 3 4 5
−2

0

2

4

6

8

10

x

y(x)

Figure 2.3 Solution to 2.2(a) with
N = 30 (dots) compared to the
exact solution (line)

P2.2 (a) Write out the finite difference equations on paper for the differential
equation

y ′′+ 1

x
y ′+ (1− 1

x2 )y = x ; y(0) = 0, y(5) = 1 (2.6)

Then write down the matrix A and the vector b for this equation.
Finally, build these matrices in a Matlab script and solve the equation
using the matrix method. Compare the solution found using the
matrix method with the exact solution

y(x) = −4

J1(5)
J1(x)+x

(J1(x) is the first order Bessel function.)

0 1 2 3 4 5
−30

−20

−10

0

10

x

y(x)

Figure 2.4 Solution to 2.2(b) with
N = 200

(b) Solve the differential equation

y ′′+ sin(x)y ′+ex y = x2 ; y(0) = 0, y(5) = 3 (2.7)

in Matlab using the matrix method. Also solve this equation numeri-
cally using Mathematica’s NDSolve command and plot the numeric
solution. Compare the Mathematica plot with the Matlab plot. Do
they agree? Check both solutions at x = 4.5; is the agreement reason-
able? How many points do you have to use in your numerical method
to get agreement with Mathematica to 3 decimal places?

http://library.wolfram.com/infocenter/MathSource/577/
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Derivative boundary conditions

Now let’s see how to modify the linear algebra approach to differential equations
so that we can handle boundary conditions where derivatives are specified instead
of values. Consider the differential equation

y ′′(x)+9y(x) = x ; y(0) = 0 ; y ′(2) = 0 (2.8)

We can satisfy the boundary condition y(0) = 0 as before (just use y1 = 0), but
what do we do with the derivative condition at the other boundary?

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

x

y(x)

Figure 2.5 The solution to 2.3(a)
with N = 30. The RMS difference
from the exact solution is 8.8×10−4

P2.3 (a) A crude way to implement the derivative boundary condition is to use
a forward difference formula

yN − yN−1

h
= y ′|x=2 . (2.9)

In the present case, where y ′(2) = 0, this simply means that we set
yN = yN−1. Solve Eq. (2.8) in Matlab using the matrix method with this
boundary condition. (Think about what the new boundary conditions
will do to the final row of matrix A and the final element of vector
b). Compare the resulting numerical solution to the exact solution
obtained from Mathematica:

y(x) = x

9
− sin(3x)

27cos(6)
(2.10)

(b) Let’s improve the boundary condition formula using quadratic extrap-
olation. Use Mathematica to fit a parabola of the form

y(x) = a +bx + cx2 (2.11)

to the last three points on your grid. To do this, use (2.11) to write down
three equations for the last three points on your grid and then solve
these three equations for a, b, and c . Write the x-values in terms of the
last grid point and the grid spacing (xN−2 = xN −2h and xN−1 = xN −h)
but keep separate variables for yN−2, yN−1, and yN . (You can probably
use your code from Problem 1.3 with a little modification.)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

x

y(x)

Figure 2.6 The solution to 2.3(b)
with N = 30. The RMS difference
from the exact solution is 5.4×10−4

Now take the derivative of Eq. (2.11), evaluate it at x = xN , and plug in
your expressions for b and c. This gives you an approximation for the
y ′(x) at the end of the grid. You should find that the new condition is

1

2h
yN−2 − 2

h
yN−1 + 3

2h
yN = y ′(xN ) (2.12)

Modify your script from part (a) to include this new condition and
show that it gives a more accurate solution than the the crude tech-
nique of part (a). When you check the accuracy, don’t just look at
the end of the interval. All of the points are coupled by the matrix A,
so you should use a full-interval accuracy check like the RMS (root-
mean-square) error:

sqrt(mean((y-yexact).^2))
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Nonlinear differential equations

Finally, we must confess that we have been giving you easy problems to solve,
which probably leaves the impression that you can use this linear algebra trick
to solve all second-order differential equations with boundary conditions at the
ends. The problems we have given you so far are easy because they are linear
differential equations, so they can be translated into linear algebra problems.
Linear problems are not the whole story in physics, of course, but most of the
problems we will do in this course are linear, so these finite-difference and matrix
methods will serve us well in the labs to come.

P2.4 (a) Here is a simple example of a differential equation that isn’t linear:

y ′′(x)+ sin
[

y(x)
]= 1 ; y(0) = 0, y(3) = 0 (2.13)

Work at turning this problem into a linear algebra problem to see why
it can’t be done, and explain the reasons to the TA.

0 1 2 3

−2

−1.5
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−0.5

0

x

y(x)

Figure 2.7 The solution to 2.4(b).

(b) Find a way to use a combination of linear algebra and iteration (ini-
tial guess, refinement, etc.) to solve Eq. (2.13) in Matlab on a grid.
Check your answer by using Mathematica’s built-in solver to plot the
solution.

HINT: Write the equation as

y ′′(x) = 1− sin
[

y(x)
]

(2.14)

Make a guess for y(x). (It doesn’t have to be a very good guess. In this
case, the guess y(x) = 0 works just fine.) Then treat the whole right
side of Eq. (2.14) as known so it goes in the b vector. Then you can
solve the equation to find an improved guess for y(x). Use this better
guess to rebuild b (again treating the right side of Eq. (2.14) as known),
and then re-solve to get and even better guess. Keep iterating until
your y(x) converges to the desired level of accuracy. This happens
when your y(x) satisfies (2.13) to a specified criterion, not when the
change in y(x) from one iteration to the next falls below a certain
level. An appropriate error vector would be Ay-(1-sin(y) evaluated
at interior points only, n=2:N-1. This is necessary because the end
points don’t satisfy the differential equation.





Lab 3

The Wave Equation: Steady State and Resonance

To see why we did so much work in Lab 2 on ordinary differential equations
when this is a course on partial differential equations, let’s look at the wave
equation in one dimension. For a string of length L fixed at both ends with a force
applied to it that varies sinusoidally in time, the wave equation can be written as

µ
∂2 y

∂t 2 = T
∂2 y

∂x2 + f (x)cosωt ; y(0, t ) = 0, y(L, t ) = 0 (3.1)

where y(x, t) is the (small) sideways displacement of the string as a function of
position and time, assuming that y(x, t) ¿ L. 1 This equation may look a little
unfamiliar to you, so let’s discuss each term. We have written it in the form of
Newton’s second law, F = ma. The “ma” part is on the left of Eq. (3.1), except that
µ is not the mass, but rather the linear mass density (mass/length). This means
that the right side should have units of force/length, and it does because T is the
tension (force) in the string and ∂2 y/∂x2 has units of 1/length. (Take a minute
and verify that this is true.) Finally, f (x) is the amplitude of the driving force (in
units of force/length) applied to the string as a function of position (so we are
not necessarily just wiggling the end of the string) and ω is the frequency of the
driving force.

Before we start calculating, let’s train our intuition to guess how the solutions
of this equation behave. If we suddenly started to push and pull on a string under
tension with force density f (x)cos(ωt), we would launch waves, which would
reflect back and forth on the string as the driving force continued to launch more
waves. The string motion would rapidly become very messy. Now suppose that
there was a little bit of damping in the system (not included in the equation above,
but in Lab 5 we will add it). Then what would happen is that all of the transient
waves due to the initial launch and subsequent reflections would die away and we
would be left with a steady-state oscillation of the string at the driving frequency
ω. (This behavior is the wave equation analog of damped transients and the
steady final state of a driven harmonic oscillator.)

Steady state solution

Let’s look for this steady-state solution by guessing that the solution has the form

y(x, t ) = g (x)cos(ωt ) (3.2)

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 87-110.

15
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This function has the expected form of a spatially dependent amplitude which
oscillates at the frequency of the driving force. Substituting this “guess” into the
wave equation to see if it works yields (after some rearrangement)

T g ′′(x)+µω2g (x) =− f (x) ; g (0) = 0, g (L) = 0 (3.3)

This is just a two-point boundary value problem of the kind we studied in Lab 2,
so we can solve it using our matrix technique.

0 0.2 0.4 0.6 0.8 1
0
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2

3

4

x 10
−4

x

g(x)

Figure 3.1 Solution to 3.1(a)

P3.1 (a) Modify one of your Matlab scripts from Lab 2 to solve Eq. (3.3) with
µ = 0.003, T = 127, L = 1.2, and ω = 400. (All quantities are in SI
units.) Find the steady-state amplitude associated with the driving
force density:

f (x) =


0.73 if 0.8 ≤ x ≤ 1

0 if x < 0.8 or x > 1
(3.4)

(b) Repeat the calculation in part (a) for 100 different frequencies between
ω = 400 and ω = 1200 by putting a loop around your calculation in
(a) that varies ω. Use this loop to load the maximum amplitude as a
function of ω and plot it to see the resonance behavior of this system.
Can you account qualitatively for the changes you see in g (x) as ω
varies? (Use a pause command after the plots of g (x) and watch what
happens as ω changes. Using pause(.3) will make an animation
and using ylim([0 0.03]) will prevent Matlab’s autoscaling of plots
from making all of the string responses from looking like they have
the same amplitude.)

400 600 800 1000 1200
0

0.01

0.02

ω

Max. Amplitude

Figure 3.2 Solution to prob-
lem 3.1(b).

In problem 3.1(b) you should have noticed an apparent resonance behavior,
with resonant frequencies near ω= 550 and ω= 1100 (see Fig. 3.2). Now we will
learn how to use Matlab to find these resonant frequencies directly (i.e. without
solving the differential equation over and over again).

Resonance and the eigenvalue problem

The essence of resonance is that at certain frequencies a large steady-state ampli-
tude is obtained with a very small driving force. To find these resonant frequencies
we seek solutions of Eq. (3.3) for which the driving force is zero. With f (x) = 0,
Eq. (3.3) takes on the form

−µω2g (x) = T g ′′(x) ; g (0) = 0, g (L) = 0 (3.5)

If we rewrite this equation in the form

g ′′(x) =−
(
µω2

T

)
g (x) (3.6)
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then we see that it is in the form of a classic eigenvalue problem:

Ag =λg (3.7)

where A is a linear operator (the second derivative on the left side of Eq. (3.6))
and λ is the eigenvalue (−µω2/T in Eq. (3.6).)

Equation (3.6) is easily solved analytically, and its solutions are just the familiar
sine and cosine functions. The condition g (0) = 0 tells us to try a sine function
form, g (x) = g0 sin(kx). To see if this form works we substitute it into Eq. (3.6 and
find that it does indeed work, provided that the constant k is k = ω

√
µ/T . We

have, then,

Figure 3.3 Photographs of the first
three resonant modes for a string
fixed at both ends.

g (x) = g0 sin

(
ω

√
µ

T
x

)
(3.8)

where g0 is the arbitrary amplitude. But we still have one more condition to satisfy:
g (L) = 0. This boundary condition tells us the values that resonance frequency ω
can take on. When we apply the boundary condition, we find that the resonant
frequencies of the string are given by

ω= n
π

L

√
T

µ
(3.9)

where n is an integer. Each value of n gives a specific resonance frequency from
Eq. (3.9) and a corresponding spatial amplitude g (x) given by Eq. (3.8). Figure 3.3
shows photographs of a string vibrating for n = 1,2,3.

For this simple example we were able to do the eigenvalue problem analyt-
ically without much trouble. However, when the differential equation is not so
simple we will need to do the eigenvalue calculation numerically, so let’s see how
it works in this simple case. Rewriting Eq. (3.5) in matrix form, as we learned to
do by finite differencing the second derivative, yields

Ag =λg (3.10)

which is written out as

? ? ? ? ... ? ? ?
1

h2 − 2
h2

1
h2 0 ... 0 0 0

0 1
h2 − 2

h2
1

h2 ... 0 0 0
. . . . ... . . .
. . . . ... . . .
. . . . ... . . .
0 0 0 0 ... 1

h2 − 2
h2

1
h2

? ? ? ? ... ? ? ?





g1

g2

g3

.

.

.
gN−1

gN


=λ



?
g2

g3

.

.

.
gN−1

?


(3.11)

where λ=−ω2 µ
T . The question marks in the first and last rows remind us that we

have to invent something to put in these rows that will implement the correct



18 Computational Physics 430

boundary conditions. Note that having question marks in the g -vector on the
right is a real problem because without g1 and gN in the top and bottom positions,
we don’t have an eigenvalue problem (i.e. the vector g on left side of Eq. (3.11) is
not the same as the vector g on the right side).

The simplest way to deal with this question-mark problem and to also handle
the boundary conditions is to change the form of Eq. (3.7) to the slightly more
complicated form of a generalized eigenvalue problem, like this:

Ag =λBg (3.12)

where B is another matrix, whose elements we will choose to make the boundary
conditions come out right. To see how this is done, here is the generalized modifi-
cation of Eq. (3.11) with B and the top and bottom rows of A chosen to apply the
boundary conditions g (0) = 0 and g (L) = 0.

A g =λ B g

1 0 0 ... 0 0
1

h2 − 2
h2

1
h2 ... 0 0

0 1
h2 − 2

h2 ... 0 0
. . . ... . .
. . . ... . .
. . . ... . .
0 0 0 ... − 2

h2
1

h2

0 0 0 ... 0 1





g1

g2

g3

.

.

.
gN−1

gN


=λ



0 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
. . . ... . .
. . . ... . .
. . . ... . .
0 0 0 ... 1 0
0 0 0 ... 0 0





g1

g2

g3

.

.

.
gN−1

gN


(3.13)

Notice that the matrix B is very simple: it is just the identity matrix (made in
Matlab with eye(N,N)) except that the first and last rows are completely filled
with zeros. Take a minute now and do the matrix multiplications corresponding
the first and last rows and verify that they correctly give g1 = 0 and gN = 0, no
matter what the eigenvalue λ turns out to be.

To numerically solve this eigenvalue problem you simply do the following in
Matlab:

(i) Load the matrix A with the matrix on the left side of Eq. (3.13) and the matrix
B with the matrix on the right side.

(ii) Use Matlab’s generalized eigenvalue and eigenvector command:

[V,D]=eig(A,B);

which returns the eigenvalues as the diagonal entries of the square matrix
D and the eigenvectors as the columns of the square matrix V (these col-
umn arrays are the amplitude functions g j = g (x j ) associated with each
eigenvalue on the grid x j .)

(iii) Convert eigenvalues to frequencies via ω2 = −T
µλ, sort the squared fre-

quencies in ascending order, and plot each eigenvector with its associated
frequency displayed in the plot title.
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This is such a common calculation that we will give you a section of a Matlab
script below that does steps (ii) and (iii). You can get this code snippet on the
Physics 430 web site so you don’t have to retype it.

Listing 3.1 (eigen.m)

[V,D]=eig(A,B); % find the eigenvectors and eigenvalues

w2raw=-(T/mu)*diag(D); % convert lambda to omega^2

[w2,k]=sort(w2raw); % sort omega^2 into ascending along with a

% sort key k(n) that remembers where each

% omega^2 came from so we can plot the proper

% eigenvector in V

for n=1:N % run through the sorted list and plot each eigenvector

% load the plot title into t

t=sprintf(' w^2 = %g w = %g ',w2(n),sqrt(abs(w2(n))) );

gn=V(:,k(n)); % extract the eigenvector

plot(x,gn,'b-'); % plot the eigenvector that goes with omega^2

title(t);xlabel('x');ylabel('g(n,x)'); % label the graph

pause

end
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Figure 3.4 The first three eigen-
functions found in 3.2. The points
are the numerical eigenfunctions
and the line is the exact solution.

P3.2 (a) Use Matlab to numerically find the eigenvalues and eigenvectors of
Eq. (3.5) using the procedure outlined above. Use µ= 0.003, T = 127,
and L = 1.2. Note that there is a pause command in the code, so
you’ll need to hit a key to step to the next eigenvector. When you
plot the eigenvectors, you will see that two infinite eigenvalues appear
together with odd-looking eigenvectors that don’t satisfy the boundary
conditions. These two show up because of the two rows of the B matrix
that are filled with zeros. They are numerical artifacts with no physical
meaning, so just ignore them. You will also see that the eigenvectors
of the higher modes start looking jagged. These must also be ignored
because they are poor approximations to the continuous differential
equation in Eq. (3.5).

(b) A few of the smooth eigenfunctions are very good approximations.
Plot the eigenfunctions corresponding to n = 1,2,3 and compare them
with the exact solutions in Eq. (3.8). Calculate the exact values for ω
using Eq. (3.9) and compare them with the numerical eigenvalues.
Now compare your numerical eigenvalues for the n = 20 mode with
the exact solution. What is the trend in the accuracy of the eigenvalue
method?

(c) The first two values forω should match the resonances that you found
in 3.1(b). Go back to your calculation in 3.1(b) and make two plots
of the steady state amplitude for driving frequencies near these two
resonant values of ω. (For each plot, choose a small range of frequen-
cies that brackets the resonance frequency above and below). You
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should find very large amplitudes, indicating that you are right on the
resonances.

Finally let’s explore what happens to the eigenmode shapes when we change
the boundary conditions.
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Figure 3.5 The first three eigen-
functions for 3.3(a).

P3.3 (a) Change your program from problem 3.2 to implement the boundary
condition

g ′(L) = 0

Use the approximation you derived in problem 2.3(b) for the derivative
g ′(L) to implement this boundary condition, i.e.

g ′(L) ≈ 1

2h
gN−2 − 2

h
gN−1 + 3

2h
gN

Explain physically why the resonant frequencies change as they do.

(b) In some problems mixed boundary conditions are encountered, for
example

g ′(L) = 2g (L)

Find the first few resonant frequencies and eigenfunctions for this
case. Look at your eigenfunctions and verify that the boundary condi-
tion is satisfied. Also notice that one of your eigenvalues corresponds
to ω2 being negative. This means that this nice smooth eigenfunc-
tion is actually unphysical in our wave resonance problem with this
boundary condition. The sqrt(abs(w2(n))) command in the code
snippet we gave you misleads you in this case–be careful.



Lab 4

The Hanging Chain and Quantum Bound States

The resonance modes that we studied in Lab 3 were simply sine functions.
We can also use these techniques to analyze more complicated systems. In this
lab we first study the problem of standing waves on a hanging chain. It was the
famous Swiss mathematician Johann Bernoulli who discovered in the 1700s that
a draped hanging chain has the shape of a “catenary”, or the hyperbolic cosine
function. The problem of the normal mode frequencies of a vertical hanging
chain was also solved in the 1700s by Johann’s son, Daniel Bernoulli, and is the
first time that the function that later became known as the J0 Bessel function
showed up in physics. Then we will jump forward several centuries in physics
history and study bound quantum states using the same techniques.

Resonance for a hanging chain

ceiling

x = 0

x = L

Figure 4.1 The first normal mode
for a hanging chain.

Consider the chain hanging from the ceiling in the classroom.1 We are going to
find its normal modes of vibration using the method of Problem 3.2. The wave
equation for transverse waves on a chain with varying tension T (x) and constant
linear mass density µ2 is given by

µ
∂2 y

∂t 2 − ∂

∂x

(
T (x)

∂y

∂x

)
= 0 (4.1)

Let’s use a coordinate system that starts at the bottom of the chain at x = 0 and
ends on the ceiling at x = L.

P4.1 Use the fact that the stationary chain is in vertical equilibrium to help you
draw a carefully chosen free-body diagram that shows that the tension in
the chain as a function of x is given by

T (x) =µg x (4.2)

where µ is the linear mass density of the chain and where g = 9.8 m/s2 is
the acceleration of gravity. Then show that Eq. (4.1) reduces to

∂2 y

∂t 2 − g
∂

∂x

(
x
∂y

∂x

)
= 0 (4.3)

for a freely hanging chain.

1For more analysis of the hanging chain, see N. Asmar, Partial Differential Equations and
Boundary Value Problems (Prentice Hall, New Jersey, 2000), p. 299-305.

2Equation (4.1) also works for systems with varying mass density if you replace µ with a function
µ(x), but the equations derived later in the lab are more complicated with a varying µ(x).
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As in Lab 3, we now look for normal modes by separating the variables:
y(x, t ) = f (x)cos(ωt ). We then substitute this form for y(x, t ) into (4.3) and sim-
plify to obtain

x
d 2 f

d x2 + d f

d x
=−ω

2

g
f (4.4)

which is in eigenvalue form with λ=−ω2/g . (This relationship is different than
in the preceding lab; consequently you will have to change a line in the eigen.m
code to reflect this difference.)

0 L

Figure 4.2 A cell-centered grid
with ghost points. (The open cir-
cles are the ghost points.)

The boundary condition at the ceiling is f (L) = 0 while the boundary condi-
tion at the bottom is obtained by taking the limit of Eq. (4.4) as x → 0 to find

f ′(0) =−ω
2

g
f (0) =λ f (0) (4.5)

In the past couple labs we have dealt with derivative boundary conditions by
fitting a parabola to the last three points on the grid and then taking the derivative
of the parabola (see Problems 2.3(b) and 3.3). This time we’ll handle the derivative
boundary condition by using a cell-centered grid with ghost points, as discussed
in Lab 1.

ceiling

x = 0

x = L

Figure 4.3 The shape of the sec-
ond mode of a hanging chain

Recall that a cell-center grid divides the computing region from 0 to L into
N cells with a grid point at the center of each cell. We then add two more grid
points outside of [0,L], one at x1 = −h/2 and the other at xN+2 = L +h/2. The
ghost points are used to apply the boundary conditions. Notice that by defining
N as the number of interior grid points (or cells), we have N +2 total grid points,
which may seem weird to you. We prefer it, however, because it reminds us that
we are using a cell-centered grid with N physical grid points and two ghost points.
You can do it any way you like, as long as your counting method works.

Notice that there isn’t a grid point at either endpoint, but rather that the
two grid points on each end straddle the endpoints. If the boundary condition
specifies a value, like f (L) = 0 in the problem at hand, we use a simple average
like this:

fN+2 + fN+1

2
= 0 , (4.6)

and if the condition were f ′(L) = 0 we would use

fN+2 − fN+1

h
= 0 . (4.7)

When we did boundary conditions in the eigenvalue calculation of Prob-
lem 3.2 we used a B matrix with zeros in the top and bottom rows and we loaded
the top and bottom rows of A with an appropriate boundary condition operator.
Because the chain is fixed at the ceiling (x = L) we use this technique again in the
bottom rows of A and B, like this (after first loading A with zeros and B with the
identity matrix):

A(N +2, N +1) = 1

2
A(N +2, N +2) = 1

2
B(N +2, N +2) = 0 (4.8)
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P4.2 (a) Verify that these choices for the bottom rows of A and B in the gener-
alized eigenvalue problem

A f =λB f (4.9)

give the boundary condition in Eq. (4.6) at the ceiling no matter what
λ turns out to be.

ceiling

x = 0

x = L

Figure 4.4 The shape of the third
mode of a hanging chain

(b) Now let’s do something similar with the derivative boundary condition
at the bottom, Eq. (4.5). Since this condition is already in eigenvalue
form we don’t need to load the top row of B with zeros. Instead we
load A with the operator on the left ( f ′(0)) and B with the operator on
the right ( f (0)), leaving the eigenvalue λ=−ω2/g out of the operators
so that we still have A f = λB f . Verify that the following choices for
the top rows of A and B correctly produce Eq. (4.5).

A(1,1) =− 1

h
A(1,2) = 1

h
B(1,1) = 1

2
B(1,2) = 1

2
(4.10)

(c) Write the finite difference form of Eq. (4.4) and use it to load the
matrices A and B for a chain with L = 2 m. (Notice that for the interior
points the matrix B is just the identity matrix with 1 on the main
diagonal and zeros everywhere else.) Use Matlab to solve for the
normal modes of vibration of a hanging chain. As in Lab 3, some of the
eigenvectors are unphysical because they don’t satisfy the boundary
conditions; ignore them.

Compare your numerical resonance frequencies to measurements
made on the chain hanging from the ceiling in the classroom.

(d) Solve Eq. (4.4) analytically using Mathematica without any boundary
conditions. You will encounter the Bessel functions J0 and Y0, but
because Y0 is singular at x = 0 this function is not allowed in the
problem. Apply the condition f (L) = 0 to find analytically the mode
frequencies ω and verify that they agree with the frequencies you
found in part (c).

Quantum bound states

Consider the problem of a particle in a one-dimensional harmonic oscillator well
in quantum mechanics.3 Schrödinger’s equation for the bound states in this well
is

− ħ2

2m

d 2ψ

d x2 + 1

2
kx2ψ= Eψ (4.11)

with boundary conditions ψ = 0 at ±∞. Note that k in this equation is not the
wave number; it is the spring constant, F =−kx, with units of Newtons/meter.

3N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 470-506.
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The numbers that go into Schrödinger’s equation are so small that it makes it
difficult to tell what size of grid to use. For instance, our usual trick of using lengths
like 2, 5, or 10 would be completely ridiculous for the bound states of an atom
where the typical size is on the order of 10−10 m. We could just set ħ, m, and k to
unity, but then we wouldn’t know what physical situation our numerical results
describe. When computational physicists encounter this problem a common
thing to do is to “rescale” the problem so that all of the small numbers go away.
And, as an added bonus, this procedure can also allow the numerical results
obtained to be used no matter what m and k our system has.

P4.3 This probably seems a little nebulous, so follow the recipe below to see how
to rescale in this problem (write it out on paper).
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Figure 4.5 The probability distri-
butions for the ground state and
the first three excited states of the
harmonic oscillator.

(i) In Schrödinger’s equation use the substitution x = aξ, where a has units
of length and ξ is dimensionless. After making this substitution put the left
side of Schrödinger’s equation in the form

C

(
−D

2

d 2ψ

dξ2 + 1

2
ξ2ψ

)
= Eψ (4.12)

where C and D involve the factors ħ, m, k, and a.

(ii) Make the differential operator inside the parentheses (...) on the left be
as simple as possible by choosing to make D = 1. This determines how the
characteristic length a depends on ħ, m, and k. Once you have determined
a in this way, check to see that it has units of length. You should find

a =
( ħ2

km

)1/4

=
√

ħ
mω

where ω=
√

k

m
(4.13)

(iii) Now rescale the energy by writing E = εĒ , where Ē has units of energy
and ε is dimensionless. Show that if you choose Ē = C in the form you
found above in (i) that Schrödinger’s equation for the bound states in this
new dimensionless form is

− 1

2

d 2ψ

dξ2 + 1

2
ξ2ψ= εψ (4.14)

You should find that

Ē =ħ
√

k

m
(4.15)

Verify that Ē has units of energy.

Now that Schrödinger’s equation is in dimensionless form it makes sense to
choose a grid that goes from -4 to 4, or some other similar pair of numbers. These
numbers are supposed to approximate infinity in this problem, so make sure (by
looking at the eigenfunctions) that they are large enough that the wave function
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goes to zero with zero slope at the edges of the grid. As a guide to what you should
find, Figure 4.5 displays the square of the wave function for the first few excited
states. (The amplitude has been appropriately normalized so that

∫ |ψ(x)|2 = 1
If you look in a quantum mechanics textbook you will find that the bound

state energies for the simple harmonic oscillator are given by the formula

En = (n + 1

2
)ħ

√
k

m
= (n + 1

2
)Ē (4.16)

so that the dimensionless energy eigenvalues εn are given by

εn = n + 1

2
(4.17)

P4.4 Use Matlab’s ability to do eigenvalue problems to verify that this formula
for the bound state energies is correct for n = 0,1,2,3,4.
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Figure 4.6 The probability distri-
butions for the ground state and
the first three excited states for the
potential in Problem 4.5.

P4.5 Now redo this entire problem, but with the harmonic oscillator potential
replaced by

V (x) =µx4 (4.18)

so that we have

− ħ2

2m

d 2ψ

d x2 +µx4ψ= Eψ (4.19)

With this new potential you will need to find new formulas for the char-
acteristic length a and energy Ē so that you can use dimensionless scaled
variables as you did with the harmonic oscillator. Choose a so that your
scaled equation is

− 1

2

d 2ψ

dξ2 +ξ4ψ= εψ (4.20)

with E = εĒ . Use Mathematica and/or algebra by hand to show that

a =
( ħ2

mµ

)1/6

Ē =
(ħ4µ

m2

)1/3

(4.21)

Find the first 5 bound state energies by finding the first 5 values of εn in the
formula En = εn Ē .





Lab 5

Animating the Wave Equation: Staggered Leapfrog

Labs 3 and 4 should have seemed pretty familiar, since they handled the wave
equation by Fourier analysis, turning the partial differential equation into a set
of ordinary differential equations, as you learned in Mathematical Physics.1 But
separating the variables and expanding in orthogonal functions is not the only
way to solve partial differential equations, and in fact in many situations this
technique is awkward, ineffective, or both. In this lab we will study another way of
solving partial differential equations using a spatial grid and stepping forward in
time. And as an added attraction, this method automatically supplies a beautiful
animation of the solution. We will only show you one of several algorithms of this
type that can be used on wave equations, so this is just an introduction to a larger
subject. The method we will show you here is called staggered leapfrog; it is the
simplest good method that we know.

The wave equation with staggered leapfrog

Consider again the classical wave equation with wave speed c. (For instance, for
waves on a string c =√

T /µ.)

∂2 y

∂t 2 − c2 ∂
2 y

∂x2 = 0 (5.1)

The boundary conditions to be applied are usually either of Dirichlet type (values
specified):

y(0, t ) = fleft(t ) ; y(L, t ) = fright(t ) (5.2)

or of Neumann type (derivatives specified):

∂y

∂x
(0) = g left(t ) ;

∂y

∂x
(L) = gright(t ) (5.3)

Some mixed boundary conditions specify a relation between the value and deriva-
tive (as at the bottom of the hanging chain). These conditions tell us what is
happening at the ends of the string. For example, maybe the ends are pinned
( fleft(t) = fright(t) = 0); perhaps the ends slide up and down on frictionless rings
attached to frictionless rods (g left(t ) = gright(t ) = 0); or perhaps the left end is fixed
and someone is wiggling the right end up and down sinusoidally ( fleft(t ) = 0 and
fright(t ) = A sinωt ). In any case, some set of conditions at the ends are required to
be able to solve the wave equation.

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 87-110.
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It is also necessary to specify the initial state of the string, giving its starting
position and velocity as a function of position:

y(x, t = 0) = y0(x) ;
∂y(x, t )

∂t
|t=0 = v0(x) (5.4)

Both of these initial conditions are necessary because the wave equation is second
order in time, just like Newton’s second law, so initial displacements and velocities
must be specified to find a unique solution.

To numerically solve the classical wave equation via staggered leapfrog we
approximate both the time and spatial derivatives with centered finite differences.
In the notation below spatial position is indicated by a subscript j , referring to
grid points x j , while position in time is indicated by superscripts n, referring
to time steps tn so that y(x j , tn) = yn

j . The time steps and the grid spacings are
assumed to be uniform with time step called τ and grid spacing called h.

∂2 y

∂t 2 ≈
yn+1

j −2yn
j + yn−1

j

τ2 (5.5)

∂2 y

∂x2 ≈
yn

j+1 −2yn
j + yn

j−1

h2 (5.6)

The staggered leapfrog algorithm is simply a way of finding yn+1
j (y j one time

step into the future) from the current and previous values of y j . To derive the
algorithm just put these two approximations into the classical wave equation and
solve for yn+1

j : 2

yn+1
j = 2yn

j − yn−1
j + c2τ2

h2

(
yn

j+1 −2yn
j + yn

j−1

)
(5.7)

P5.1 Derive Eq. (5.7) from the approximate second derivative formulas. (You
can use mathematica if you like, but this is really simple to do by hand.)

Equation (5.7) can only be used at interior spatial grid points because the j +1
or j −1 indices reach beyond the grid at the first and last grid points. The behavior
of the solution at these two end points is determined by the boundary conditions.
Since we will want to use both fixed value (Dirichlet) and derivative (Neumann)
boundary conditions, let’s use a cell-centered grid with ghost points (with N cells
and N +2 grid points) so we can easily handle both types without changing our
grid. If the values at the ends are specified (Dirichlet boundary conditions) we
have

yn+1
1 + yn+1

2

2
= fleft(tn+1) ⇒ yn+1

1 =−yn+1
2 +2 fleft(tn+1) (5.8)

yn+1
N+2 + yn+1

N+1

2
= fright(tn+1) ⇒ yn+1

N+2 =−yn+1
N+1 +2 fright(tn+1) (5.9)

2N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 421-429.
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If the derivatives are specified (Neumann boundary conditions) then we have

yn+1
2 − yn+1

1

h
= g left(tn+1) ⇒ yn+1

1 = yn+1
2 −hg left(tn+1) (5.10)

yn+1
N+2 − yn+1

N+1

h
= gright(tn+1) ⇒ yn+1

N+2 = yn+1
N+1 +hgright(tn+1) (5.11)

To use staggered leapfrog, we first advance the solution at all interior points to
the next time step using Eq. (5.7), then we apply the boundary conditions using
the appropriate equation from Eqs. (5.8)-(5.11) to find the values of y at the end
points, and then we are ready to take another time step.

The staggered leapfrog algorithm in Eq. (5.7) requires not just y at the current
time level yn

j but also y at the previous time level yn−1
j . This means that we’ll need

to keep track of three arrays: an array y for the current values yn
j , an array yold

for the values at the previous time step yn−1
j , and an array ynew for the values

at the next time step yn+1
j . At time t = 0 when the calculation starts, the initial

position condition gives us the current values yn
j , but we’ll have to make creative

use of the initial velocity condition to create an appropriate yold to get started.
To see how this works, let’s denote the initial values of y on the grid by y0

j , the

values after the first time step by y1
j , and the unknown previous values (yold) by

y−1
j . A centered time derivative at t = 0 turns the initial velocity condition from

Eq. (5.4) into
y1

j − y−1
j

2τ
= v0(x j ) (5.12)

This gives us an equation for the previous values y−1
j , but it is in terms of the

still unknown future values y1
j . However, we can use Eq. (5.7) to obtain another

relation between y1
j and y−1

j . Leapfrog at the first step (n = 0) says that

y1
j = 2y0

j − y−1
j + c2τ2

h2

(
y0

j+1 −2y0
j + y0

j−1

)
(5.13)

If we insert this expression for y1
j into Eq. (5.12), we can solve for y−1

j in terms of
known quantities:

y−1
j = y0

j − v0(x j )τ+ c2τ2

2h2

(
y0

j+1 −2y0
j + y0

j−1

)
(5.14)

P5.2 Derive Eq. (5.14) from Eqs. (5.12) and (5.13).

OK; we are now ready to code. We will give you a template below with some
code in it and also with some empty spaces you have to fill in using the formulas
above. The dots indicate where you are supposed to write your own code.
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Figure 5.1 Snapshots of the evo-
lution of a wave on a string with
fixed ends and an initial displace-
ment but no initial velocity. (See
Problem 5.3(a))

Listing 5.1 (stlf.m)

% Staggered Leapfrog Script Template

clear;close all;

% Set the values for parameters

c=2; % wave speed

% build a cell-centered grid with N=200 cells

% on the interval x=0 to x=L, with L=1

. . .

% define the initial displacement and velocity vs. x

y = exp(-(x-L/2).^2*160/L^2)-exp(-(0-L/2).^2*160/L^2); vy =

zeros(1,length(x));

% Choose a time step (Suggest that it is no larger than taulim)

taulim=h/c;

fprintf(' Courant time step limit %g \n',taulim)

tau=input(' Enter the time step - ')

% Get the initial value of yold from the initial y and vy

. . .

% Apply the boundary conditions for yold(1) and yold(N+2)

. . .

% plot the initial conditions and pause to look at them

subplot(2,1,1) plot(x,y) xlabel('x');ylabel('y(x,0)');title('Initial

Displacement') subplot(2,1,2) plot(x,vy)

xlabel('x');ylabel('v_y(x,0)');title('Initial Velocity') pause;

% Choose how long to run and when to plot

tfinal=input(' Enter tfinal - ') skip=input(' Enter # of steps to skip

between plots (faster) - ') nsteps=tfinal/tau;

% here is the loop that steps the solution along

figure % open a new frame for the animation

for n=1:nsteps

time=n*tau; % compute the time

% Use leapfrog and the boundary conditions to load ynew with y

% at the next time step using y and yold, i.e., ynew(2:N+1)=...

% Be sure to use colon commands so it will run fast.

. . .

%update yold and y

yold=y;y=ynew;

% make plots every skip time steps

if mod(n,skip)==0

plot(x,y,'b-')

xlabel('x');ylabel('y');
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title(['Staggered Leapfrog Wave: time=' num2str(time)])

axis([min(x) max(x) -2 2]);

pause(.1)

end

end
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Figure 5.2 Snapshots of the evo-
lution of a wave on a string with
free ends and an initial displace-
ment but no initial velocity. (See
Problem 5.3(b))

P5.3 (a) Fill in the missing code for the stlf.m template. You can make your
code read more cleanly by defining a variable j like this

j = 2:N+1;

Then you can write the array yn
j as y(j), the array yn

j−1 as y(j-1),
and the array yn

j+1 as y(j+1). Use fixed-end boundary conditions for
the guitar string:

y(0) = 0 ; y(L) = 0

When you are finished you should be able to run, debug, then success-
fully run an animation of a guitar string with no initial velocity and
an initial upward displacement localized near the center of the string.
(Look at the initial conditions plot to see what they look like.)

Once you have it running, experiment with various time steps τ. Show
by numerical experimentation that if τ> h/c the algorithm blows up
spectacularly. This failure is called a numerical instability and we
will be trying to avoid it all semester. This limit is called the Courant-
Friedrichs-Lewy condition, or sometimes the CFL condition, or some-
times (unfairly) just the Courant condition.

Run the animations long enough that you can see the reflection from
the ends and the way the two pulses add together and pass right
through each other.

(b) Change the boundary conditions so that ∂y
∂x = 0 at each end and watch

how the reflection occurs in this case.
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Figure 5.4 Snapshots of the evo-
lution of a wave on a string with
fixed ends and no initial displace-
ment but with an initial velocity.
(See Problem 5.3(c))

(c) Change the initial conditions from initial displacement with zero
velocity to initial velocity with zero displacement. Use an initial Gaus-
sian velocity pulse just like the displacement pulse you used earlier

Figure 5.3 Richard Courant (left), Kurt Friedrichs (center), and Hans Lewy (right) de-
scribed the CFL instability condition in 1928.
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and use fixed-end boundary conditions. Watch how the wave motion
develops in this case. (You will need to change the y-limits in the axis
command to see the vibrations with these parameters.) Then find a
slinky, stretch it out, and whack it in the middle to verify that the math
does the physics right.

The damped wave equation

We can modify the wave equation to include damping of the waves using a linear
damping term, like this:

∂2 y

∂t 2 +γ∂y

∂t
− c2 ∂

2 y

∂x2 = 0 (5.15)

with c constant. The staggered leapfrog method can be used to solve Eq. (5.15)
also. To do this, we use the approximate first derivative formula

∂y

∂t
≈

yn+1
j − yn−1

j

2τ
(5.16)

along with the second derivative formulas in Eqs. (5.5) and (5.6) and find an
expression for the values one step in the future:

yn+1
j = 1

2+γτ
(
4yn

j −2yn−1
j +γτyn−1

j + 2c2τ2

h2

(
yn

j+1 −2yn
j + yn

j−1

))
(5.17)

P5.4 (a) Derive Eq. (5.17).

(b) Find a new formula for the initial value of yold using Eqs. (5.12) and
(5.17). When you get the answer, ask your TA or instructor to check to
see if you got it right.
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Figure 5.5 The maximum ampli-
tude of oscillation decays expo-
nentially for the damped wave
equation. (Problem 5.4(c))

(c) Modify your staggered leapfrog code to include damping with γ= 0.2.
Then run your animation with the initial conditions in Problem 5.3(c)
and verify that the waves damp away. You will need to run for about
25 s and you will want to use a big skip factor so that you don’t have
to wait forever for the run to finish. Include some code to record the
maximum value of y(x) over the entire grid as a function of time and
then plot it as a function of time at the end of the run so that you can
see the decay caused by γ. The decay of a simple harmonic oscillator
is exponential, with amplitude proportional to e−γt/2. Scale this time
decay function properly and lay it over your maximum y plot to see if
it fits. Can you explain why the fit is as good as it is? (Hint: think about
doing this problem via separation of variables.)
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The damped and driven wave equation

Finally, let’s look at what happens when we add an oscillating driving force to our
string, so that the wave equation becomes

∂2 y

∂t 2 +γ∂y

∂t
− c2 ∂

2 y

∂x2 = f (x)

µ
cos(ωt ) (5.18)

At the beginning of Lab 3 we discussed the qualitative behavior of this system.
Recall that if we have a string initially at rest and then we start to push and pull on
a string with an oscillating force/length of f (x), we launch waves down the string.
These waves reflect back and forth on the string as the driving force continues
to launch more waves. The string motion is messy at first, but the damping in
the system causes the the transient waves from the initial launch and subsequent
reflections to eventually die away. In the end, we are left with a steady-state
oscillation of the string at the driving frequency ω.
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Figure 5.6 Snapshots of the evo-
lution a driven and damped wave
with ω = 400. As the transient
behavior dies out, the oscillation
goes to the resonant mode. To
make the pictures more interest-
ing, the string was not started
from rest in these plots. (In Prob-
lem 5.5 you start from rest for
easier coding.)

Now that we have the computational tools to model the time evolution of the
system, let’s watch this behavior.

P5.5 Re-derive the staggered leapfrog algorithm to include both driving and
damping forces as in Eq. (5.18). Modify your code from Problem 5.4 to
use this new algorithm. We’ll have the string start from rest, so you don’t
need to worry about finding yold. Just set y = 0 and yold = 0 and enter the
time-stepping loop.

This problem involves the physics of waves on a real guitar string, so we’ll
need to use realistic values for our parameters. Use T = 127, µ= 0.003, and
L = 1.2 (in SI units) and remember that c = √

T /µ. Use the same driving
force as in Problem 3.1(a)

f (x) =


0.73 if 0.8 ≤ x ≤ 1

0 otherwise
(5.19)

and set the driving frequency at ω = 400. Choose a damping constant γ
that is the proper size to make the system settle down to steady state after
20 or 30 bounces of the string. (You will have to think about the value of ω
that you are using and about your damping rate result from problem 5.4 to
decide which value of γ to use to make this happen.)

Run the model long enough that you can see the transients die away and
the string settle into the steady oscillation at the driving frequency. You
may find yourself looking at a flat-line plot with no oscillation at all. If
this happens look at the vertical scale of your plot and remember that we
are doing real physics here. If your vertical scale goes from −1 to 1, you
are expecting an oscillation amplitude of 1 meter on your guitar string.
Compare the steady state mode to the shape found in Problem 3.1(a) (see
Fig. 3.1).
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Then run again with ω= 1080, which is close to a resonance (see Fig. 3.2),
and again see the system come into steady oscillation at the driving fre-
quency.



Lab 6

The 2-D Wave Equation With Staggered Leapfrog

Two dimensional grids

a b
c

d

Cell-Edge Grid

a b
c

d

Cell-Center Grid With Ghost Points

Figure 6.1 Two types of 2-D grids.

In this lab we will do problems in two spatial dimensions, x and y , so we need
to spend a little time thinking about how to represent 2-D grids. For a simple
rectangular grid where all of the cells are the same size, 2-D grids are pretty
straightforward. We just divide the x-dimension into equally sized regions and
the y-dimension into equally sized regions, and the two one dimensional grids
intersect to create rectangular cells. Then we put grid points either at the corners
of the cells (cell-edge) or at the centers of the cells (cell-centered). On a cell-center
grid we’ll usually want ghost point outside the region of interest so we can get the
boundary conditions right.

P6.1 Matlab has a nice way of representing rectangular two-dimensional grids
using the ndgrid command. Let’s take a minute to remember how to make
surface plots using this command. Consider a 2-d rectangle defined by
x ∈ [a,b] and y ∈ [c,d ]. To create a 30-point cell-edge grid in x and a 50-
point cell-edge grid in y with a = 0, b = 2, c =−1, d = 3, we use the following
code:

Nx=30; a=0; b=2; dx=(b-a)/(Nx-1); x=a:dx:b;

Ny=50; c=-1; d=3; dy=(d-c)/(Ny-1); y=c:dy:d;

[X,Y]=ndgrid(x,y);

(a) Put the code fragment above in a script and run it to create the 2-D
grid. Examine the contents of X and Y thoroughly enough that you
can explain what the ndgrid command does. See the first section of
chapter 6 in Introduction to Matlab from physics 330 for help under-
standing the indexing.
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Figure 6.2 Plot from Problem 6.1

(b) Using this 2-D grid, evaluate the following function of x and y :

f (x, y) = e(−(x2+y2)) cos(5
√

x2 + y2) (6.1)

HINT: Remember to use ‘dotted’ operators with X and Y (not x and y)
when you build f (x, y).

Use Matlab’s surf command to make a surface plot of this function.
Compare these three ways of using surf:

surf(f) surf(X,Y,f) surf(x,y,f)

35
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and explain what is different between the three forms. Then properly
label the x and y axes with the symbols x and y , to get a plot like
Fig. 6.2. As you do this lab and the ones that follow, use whichever
form is convenient. surf(f) is nice if you want to see your data
displayed in grid coordinates (good for debugging). The other two
forms are pretty much equivalent.

The two-dimensional wave equation

The wave equation for transverse waves on a rubber sheet is 1

µ
∂2z

∂t 2 =σ
(
∂2z

∂x2 + ∂2z

∂y2

)
(6.2)

In this equation µ is the surface mass density of the sheet, with units of mass/area.
The quantity σ is the surface tension, which has rather odd units. By inspecting
the equation above you can find that σ has units of force/length, which doesn’t
seem right for a surface. But it is, in fact, correct as you can see by performing the
following thought experiment. Cut a slit of length L in the rubber sheet and think
about how much force you have to exert to pull the lips of this slit together. Now
imagine doubling L; doesn’t it seem that you should have to pull twice as hard
to close the slit? Well, if it doesn’t, it should; the formula for this closing force is
given by σL, which defines the meaning of σ.

We can solve the two-dimensional wave equation using the same staggered
leapfrog techniques that we used for the one-dimensional case, except now we
need to use a two dimensional grid to represent z(x, y, t). We’ll use the nota-
tion zn

j ,k = z(x j , yk , tn) to represent the function values. With this notation, the
derivatives can be approximated as

∂2z

∂t 2 ≈
zn+1

j ,k −2zn
j ,k + zn−1

j ,k

τ2 (6.3)

∂2z

∂x2 ≈
zn

j+1,k −2zn
j ,k + zn

j−1,k

h2
x

(6.4)

∂2z

∂y2 ≈
zn

j ,k+1 −2zn
j ,k + zn

j ,k−1

h2
y

(6.5)

where hx and hy are the grid spacings in the x and y dimensions. We insert these
three equations into Eq. (6.2) to get an expression that we can solve for z at the
next time (i.e. zn+1

j ,k ). Then we use this expression along with the discrete version
of the initial velocity condition

v0(x j , yk ) ≈
zn+1

j ,k − zn−1
j ,k

2τ
(6.6)

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 129-134.
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to find an expression for the initial value of zn−1
j ,k (i.e. zold) so we can get things

started.

Figure 6.3 A wave on a rubber
sheet with fixed edges.

P6.2 (a) Derive the staggered leapfrog algorithm for the case of square cells
with hx = hy = h. Write a Matlab script that animates the solution of
the two dimensional wave equation on a square region that is [−5,5]×
[−5,5] and that has fixed edges. Use a cell-edge square grid with
the edge-values pinned to zero to enforce the boundary condition.
Choose σ= 2 N/m and µ= 0.3 kg/m2 and use a displacement initial
condition that is a Gaussian pulse with zero velocity

z(x, y,0) = e−5(x2+y2) (6.7)

This initial condition doesn’t strictly satisfy the boundary conditions,
so you should pin the edges to zero.

Run the simulation long enough that you see the effect of repeated
reflections from the edges. You may get annoyed that the colors on
the plot keep changing. You can stop this by using the command

caxis([-0.25 0.25])

after your surf command to fix the range of values that the colors
represent.

(b) You will find that this two-dimensional problem has a Courant condi-
tion similar to the one-dimensional case, but with a factor out front:

τ< f
h

c
(6.8)

Determine the value of the constant f by numerical experimentation.
(Try various values of τ and discover where the boundary is between
numerical stability and instability.)

(c) Also watch what happens at the center of the sheet by making a plot
of z(0,0, t) there. In one dimension the pulse propagates away from
its initial position making that point quickly come to rest with z = 0.
This also happens for the three-dimensional wave equation. But
something completely different happens in two (and higher) even
dimensions; you should be able to see it in your plot by looking at the
behavior of z(0,0, t ) before the first reflection comes back.

(d) Finally, change the initial conditions so that the sheet is initially flat
but with the initial velocity given by the Gaussian pulse of Eq. (6.7).
In one dimension when you pulse the system like this the string at
the point of application of the pulse moves up and stays up until
the reflection comes back from the ends of the system. (We did this
experiment with the slinky in Lab 5.) Does the same thing happen
in the middle of the sheet when you apply this initial velocity pulse?
Answer this question by looking at your plot of z(0,0, t). You should
find that the two-dimensional wave equation behaves very differently
from the one-dimensional wave equation.
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Elliptic, hyperbolic, and parabolic PDEs and their bound-
ary conditions

Now let’s take a step back and look at some general concepts related to solving
partial differential equations. Probably the three most famous PDEs of classical
physics are

(i) Poisson’s equation for the electrostatic potential V (x, y) given the charge
density ρ(x, y)

∂2V

∂x2 + ∂2V

∂y2 = −ρ
ε0

+ Boundary Conditions (6.9)

(ii) The wave equation for the wave displacement y(x, t )

∂2 y

∂x2 − 1

c2

∂2 y

∂t 2 = 0 + Boundary Conditions (6.10)

(iii) The thermal diffusion equation for the temperature distribution T (x, t ) in a
medium with diffusion coefficient D

∂T

∂t
= D

∂2T

∂x2 + Boundary Conditions (6.11)

To this point in the course, we’ve focused mostly on the wave equation, but over
the next several labs we’ll start to tackle some of the other PDEs.

Mathematicians have special names for these three types of partial differential
equations, and people who study numerical methods often use these names, so
let’s discuss them a bit. The three names are elliptic, hyperbolic, and parabolic.
You can remember which name goes with which of the equations above by re-
membering the classical formulas for these conic sections:

ellipse :
x2

a2 + y2

b2 = 1 (6.12)

hyperbola :
x2

a2 − y2

b2 = 1 (6.13)

parabola : y = ax2 (6.14)

Compare these equations with the classical PDE’s above and make sure you can
use their resemblances to each other to remember the following rules: Poisson’s
equation is elliptic, the wave equation is hyperbolic, and the diffusion equation is
parabolic. These names are important because each different type of equation
requires a different type of algorithm and boundary conditions. Fortunately, be-
cause you are physicists and have developed some intuition about the physics of
these three partial differential equations, you can remember the proper boundary
conditions by thinking about physical examples instead of memorizing theorems.
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And in case you haven’t developed this level of intuition, here is a brief review of
the matter.

Elliptic equations require the same kind of boundary conditions as Poisson’s
equation: V (x, y) specified on all of the surfaces surrounding the region of in-
terest. Since we will be talking about time-dependence in the hyperbolic and
parabolic cases, notice that there is no time delay in electrostatics. When all of
the bounding voltages are specified, Poisson’s equation says that V (x, y) is deter-
mined instantly throughout the region surrounded by these bounding surfaces.
Because of the finite speed of light this is incorrect, but Poisson’s equation is a
good approximation to use in problems where things happen slowly compared to
the time it takes light to cross the computing region.

To understand hyperbolic boundary conditions, think about a guitar string
described by the transverse displacement function y(x, t ). It makes sense to give
end conditions at the two ends of the string, but it makes no sense to specify
conditions at both t = 0 and t = tfinal because we don’t know the displacement in
the future. This means that you can’t pretend that (x, t ) are like (x, y) in Poisson’s
equation and use “surrounding”-type boundary conditions. But we can see
the right thing to do by thinking about what a guitar string does. With the end
positions specified, the motion of the string is determined by giving it an initial
displacement y(x,0) and an initial velocity ∂y(x, t)/∂t |t=0, and then letting the
motion run until we reach the final time. So for hyperbolic equations the proper
boundary conditions are to specify end conditions on y as a function of time and
to specify the initial conditions y(x,0) and ∂y(x, t )/∂t |t=0.

Parabolic boundary conditions are similar to hyperbolic ones, but with one
difference. Think about a thermally-conducting bar with its ends held at fixed
temperatures. Once again, surrounding-type boundary conditions are inappro-
priate because we don’t want to specify the future. So as in the hyperbolic case,
we can specify conditions at the ends of the bar, but we also want to give ini-
tial conditions at t = 0. For thermal diffusion we specify the initial temperature
T (x,0), but that’s all we need; the “velocity” ∂T /∂t is determined by Eq. (6.11),
so it makes no sense to give it as a separate boundary condition. Summarizing:
for parabolic equations we specify end conditions and a single initial condition
T (x,0) rather than the two required by hyperbolic equations.

If this seems like an arcane side trip into theory, we’re sorry, but it’s important.
When you numerically solve partial differential equations you will spend 10%
of your time coding the equation itself and 90% of your time trying to make the
boundary conditions work. It’s important to understand what the appropriate
boundary conditions are.

Finally, there are many more partial differential equations in physics than
just these three. Nevertheless, if you clearly understand these basic cases you
can usually tell what boundary conditions to use when you encounter a new one.
Here, for instance, is Schrödinger’s equation:

iħ∂ψ
∂t

=− ħ2

2m

∂2ψ

∂x2 +Vψ (6.15)
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which is the basic equation of quantum (or “wave”) mechanics. The wavy nature
of the physics described by this equation might lead you to think that the proper
boundary conditions on ψ(x, t) would be hyperbolic: end conditions on ψ and
initial conditions on ψ and ∂ψ/∂t . But if you look at the form of the equation, it
looks like thermal diffusion. Looks are not misleading here; to solve this equation
you only need to specify ψ at the ends in x and the initial distribution ψ(x,0), but
not its time derivative.

And what are you supposed to do when your system is both hyperbolic and
parabolic, like the wave equation with damping?

∂2 y

∂x2 − 1

c2

∂2 y

∂t 2 − 1

D

∂y

∂t
= 0 (6.16)

The rule is that the highest-order time derivative wins, so this equation needs
hyperbolic boundary conditions.

P6.3 Make sure you understand this material well enough that you are com-
fortable answering basic questions about PDE types and what types of
boundary conditions go with them on a quiz and/or an exam.



Lab 7

The Diffusion, or Heat, Equation

Now let’s attack the diffusion equation 1

∂T

∂t
= D

∂2T

∂x2 . (7.1)

This equation describes how the distribution T (often associated with temper-
ature) diffuses through a material with diffusion coefficient D. We’ll study the
diffusion equation analytically first and then we’ll look at how to solve it numeri-
cally.

Analytic approach to the diffusion equation

The diffusion equation can be approached analytically by assuming that T is of
the form T (x, t) = g (x) f (t). If we plug this form into the diffusion equation, we
can use separation of variables to find that g (x) must satisfy

g ′′(x)+a2g (x) = 0 (7.2)

where a is a separation constant. If we specify the boundary conditions that
T (x = 0, t) = 0 and T (x = L, t) = 0 then the solution to Eq. (7.2) is simply g (x) =
sin(ax) and the separation constant can take on the values a = nπ/L, where n
is an integer. Any initial distribution T (x, t = 0) that satisfies these boundary
conditions can be composed by summing these sine functions with different
weights using Fourier series techniques.

P7.1 (a) Find how an initial temperature distribution Tn(x,0) = T0 sin(nπx/L)
decays with time, by substituting the form T (x, t) = T (x,0) f (t) into
the diffusion equation and finding fn(t) for each integer n. Do long
wavelengths or short wavelengths decay more quickly?

0

5

−5

0

5

0.2

0.4

0.6

0.8

t
x

Figure 7.1 Diffusion of the Gaus-
sian temperature distribution
given in Problem 7.1(b) with σ= 1
and D = 1.

(b) Separation of variables is not the only way to find an analytic solution
to the diffusion equation. Show that an initial Gaussian temperature
distribution like this

T (x) = T0e−(x−L/2)2/σ2
(7.3)

decays according to the formula

T (x, t ) = T0p
1+4Dt/σ2

e−(x−L/2)2/(σ2+4Dt ) (7.4)

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 110-129.
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by showing that this expression satisfies the diffusion equation Eq. (7.1)
and the initial condition. (It doesn’t satisfy finite boundary conditions,
however; it is zero at ±∞.) Use Mathematica.

(c) Show by using dimensional arguments that the approximate time it
takes for the distribution in Eq. (7.4) to increase its width by a distance
a must be on the order of t = a2/D. Also argue that if you wait time
t , then the distance the width should increase by must be about a =p

Dt . (The two arguments are really identical.)

(d) Show that Eq. (7.4) agrees with your dimensional analysis by finding
the time it takes for the t = 0 width of the Gaussian (σ) to increase to
2σ (look in the exponential in Eq. (7.4).)

Numerical approach: a first try

Now let’s try to solve the diffusion equation numerically on a grid as we did
with the wave equation. It is similar to the wave equation in that it requires
boundary conditions at the ends of the computing interval in x. But because its
time derivative is only first order we only need to know the initial distribution
of T . This means that the trouble with the initial distribution of ∂T /∂t that we
encountered with the wave equation is avoided. But in spite of this simplification,
the diffusion equation is actually more difficult to solve numerically than the
wave equation.

If we finite difference the diffusion equation using a centered time derivative
and a centered second derivative in x to obtain an algorithm that is similar to
leapfrog then we would have

T n+1
j −T n−1

j

2τ
= D

h2

(
T n

j+1 −2T n
j +T n

j−1

)
(7.5)

T n+1
j = T n−1

j + 2Dτ

h2

(
T n

j+1 −2T n
j +T n

j−1

)
(7.6)

There is a problem starting this algorithm because of the need to have T one time
step in the past (T n−1

j ), but even if we work around this problem this algorithm
turns out to be worthless because no matter how small a time step τwe choose, we
encounter the same kind of instability that plagues staggered leapfrog (infinite zig-
zags). Such an algorithm is called unconditionally unstable, and is an invitation to
keep looking. This must have been a nasty surprise for the pioneers of numerical
analysis who first encountered it. It seems almost intuitively obvious that making
an algorithm more accurate is better, but in this case the increased accuracy
achieved by using a centered time derivative leads to numerical instability.

For now, let’s sacrifice second-order accuracy to obtain a stable algorithm. If
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we don’t center the time derivative, but use instead a forward difference we find

T n+1
j −T n

j

τ
= D

h2

(
T n

j+1 −2T n
j +T n

j−1

)
(7.7)

T n+1
j = T n

j + Dτ

h2

(
T n

j+1 −2T n
j +T n

j−1

)
(7.8)

You might expect this algorithm to have problems since the left side of Eq. (7.7)
is centered at time tn+ 1

2
, but the right side is centered at time tn . This problem

makes the algorithm inaccurate, but it turns out that it is stable if τ is small
enough. In the next lab we’ll learn how to get a stable algorithm with both sides
of the equation centered on the same time, but for now let’s use this inaccurate
(but stable) method.2
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Figure 7.2 Diffusion of the n = 1
sine temperature distribution
given in Problem 7.2(a).

P7.2 (a) Modify one of your staggered leapfrog programs that uses a cell-center
grid to implement this algorithm to solve the diffusion equation on
the interval [0,L] with initial distribution

T (x,0) = sin(πx/L) (7.9)

and boundary conditions T (0) = T (L) = 0. Use D = 2, L = 3, and N =
20. (You don’t need to make a space-time surface plot like Fig. 7.2. Just
make a line plot that updates each time step as we’ve done previously.)
This algorithm has a CFL condition on the time step τ of the form

τ≤C
h2

D
(7.10)

Determine the value of C by numerical experimentation.

Test the accuracy of your numerical solution by overlaying a graph
of the exact solution found in 7.1(a). Plot the numerical solution as
points and the exact solution as a line so you can tell the difference.
Show that your grid solution matches the exact solution with increas-
ing accuracy as the number of grid points N is increased from 20 to
40 and then to 80. You can calculate the error using something like

error = mean( abs( y - exact ) )

(b) Get a feel for what the diffusion coefficient does by trying several
different values for D in your code. Give a physical description of this
parameter to the TA.

(c) Verify your answer to the question in problem 7.1(a) about the decay
rate of long versus short wavelengths by trying initial distributions
of T (x,0) = sin(2πx/L), T (x,0) = sin(3πx/L), T (x,0) = sin(4πx/L), etc.
and comparing decay rates.
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Figure 7.3 Diffusion of the Gaus-
sian temperature distribution
given in Problem 7.2(d) with fixed
T boundary conditions.
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Figure 7.4 Diffusion of the Gaus-
sian temperature distribution
given in Problem 7.2(d) with insu-
lating boundary conditions.

2N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 412-421.
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(d) Now use as an initial condition a Gaussian distribution centered at
x = L/2:

T (x,0) = e−40(x/L−1/2)2
(7.11)

Use two different kinds of boundary conditions:

(i) T = 0 at both ends and

(ii) ∂T /∂x = 0 at both ends.

Explain what these boundary conditions mean by thinking about
a watermelon that is warmer in the middle than at the edge. Tell
physically how you would impose both of these boundary conditions
on the watermelon and explain what the temperature history of the
watermelon has to do with your plots of T (x) vs. time.

(Notice how in case (i) the distribution that started out Gaussian
quickly becomes very much like the n = 1 sine wave. This is because
all of the higher harmonics die out rapidly.)
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Figure 7.5 Diffusion of an ini-
tial Gaussian with D as in Prob-
lem 7.2(e).

(e) Modify your program to handle a diffusion coefficient which varies
spatially like this:

D(x) = D0
x2 +L/5

(L/5)
(7.12)

with D0 = 2. Note that in this case the diffusion equation is

∂T

∂t
= ∂

∂x

(
D(x)

∂T

∂x

)
(7.13)

Use the two different boundary conditions of part (d) and discuss why
T (x, t ) behaves as it does in this case.

Even though this technique can give us OK results, the time step constraint for
this method is pretty extreme. The constraint is of the form τ< Bh2, where B is a
constant, and this limitation scales horribly with h. Suppose, for instance, that to
resolve some spatial feature you need to decrease h by a factor of 5; then you will
have to decrease τ by a factor of 25. This will make your script take forever to run,
which is usually intolerable. In the next lab we’ll learn a better way.



Lab 8

Implicit Methods: the Crank-Nicolson Algorithm

You may have noticed that all of the time-stepping algorithms we have dis-
cussed so far are of the same type: at each spatial grid point j you use present, and
perhaps past, values of y(x, t) at that grid point and at neighboring grid points
to find the future y(x, t) at j . Methods like this, that depend in a simple way on
present and past values to predict future values, are said to be explicit and are
easy to code. They are also often numerically unstable, and as we saw in the last
lab, even when they aren’t they can have severe constraints on the size of the time
step. Implicit methods are generally harder to implement than explicit methods,
but they have much better stability properties. The reason they are harder is that
they assume that you already know the future.

Implicit methods

To give you a better feel for what “implicit” means, let’s study the simple first-order
differential equation

ẏ =−γy (8.1)
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−4

−2

0

2

4

y(t)

Euler’s Method

t

Figure 8.1 Euler’s method is unsta-
ble for τ > 2/γ. (τ = 2.1/γ in this
case.)

P8.1 (a) Solve this equation using Euler’s method:

yn+1 − yn

τ
=−γyn . (8.2)

Show by writing a simple Matlab script and doing numerical experi-
mentation that Euler’s method is unstable for large τ. Show by experi-
menting and by looking at the algorithm that it is unstable if τ> 2/γ.
Use y(0) = 1 as your initial condition. This is an example of an explicit
method.
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−0.5
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y(t)

Euler’s Method

t

Figure 8.2 The implicit method in
8.1(b) with τ= 4/γ.

(b) Notice that the left side of Eq. (8.2) is centered on time tn+ 1
2

but the
right side is centered on tn . Let’s center the the right-hand side at time
tn+ 1

2
by using an average of the advanced and current values of y ,

yn ⇒ yn + yn+1

2
.

Show by numerical experimentation in a modified script that when τ
becomes large this method doesn’t blow up. It isn’t correct because yn

bounces between positive and negative values, but at least it doesn’t
blow up. The presence of τ in the denominator is the tip-off that this
is an implicit method, and the improved stability is the point of using
something implicit.
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0 5 10

0

0.5

1

y(t)
Euler’s Method

t

Figure 8.3 The fully implicit
method in 8.1(c) with τ= 2.1/γ.

(c) Now Modify Euler’s method by making it fully implicit by using yn+1

in place of yn on the right side of Eq. (8.2) (this makes both sides of
the equation reach into the future). This method is no more accurate
than Euler’s method for small time steps, but it is much more stable
and it doesn’t bounce between positive and negative values.

Show by numerical experimentation in a modified script that this
fully implicit method damps even when tau is large. For instance,
see what happens if you choose γ = 1 and τ = 5 with a final time of
20 seconds. The time-centered method of part (b) would bounce
and damp, but you should see that the fully implicit method just
damps. It’s terribly inaccurate, and actually doesn’t even damp as fast
as the exact solution, but at least it doesn’t bounce like part (b) or go
to infinity like part (a). Methods like this are said to be “absolutely
stable”. Of course, it makes no sense to choose really large time steps,
like τ= 100 when you only want to run the solution out to 10 seconds.

The diffusion equation with Crank-Nicolson

Now let’s look at the diffusion equation again, and see how implicit methods can
help us. Just to make things more interesting we’ll let the diffusion coefficient be
a function of x:

∂T

∂t
= ∂

∂x

(
D(x)

∂T

∂x

)
(8.3)

We begin by finite differencing the right side, taking care to handle the spatial
dependence of D . Rather than expanding the nested derivatives in Eq. (8.3) let’s
difference it in place on the grid. In the equation below D j± 1

2
= D(x j ±h/2).

∂T j

∂t
=

D j+ 1
2

(
T j+1 −T j

)−D j− 1
2

(
T j −T j−1

)
h2 (8.4)

P8.2 Show that the right side of Eq. (8.4) is correct by finding a centered differ-
ence expression for D(x)∂T

∂x at x j− 1
2

and x j+ 1
2

. Then use these two expres-
sions to find a centered difference formula for the entire expression at x j .
Draw a picture of a grid showing x j−1, x j− 1

2
, x j , x j+ 1

2
, and x j+1 and show

that this form is centered properly.

Now we take care of the time derivative by doing something similar to problem
8.1(b): we take a forward time derivative on the left, putting that side of the
equation at time level n + 1

2 . To put the right side at the same time level (so that
the algorithm will be second-order accurate), we replace each occurrence of T on
the right-hand side by the average

T n+ 1
2 = T n+1 +T n

2
(8.5)
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like this:

T n+1
j −T n

j

τ
=

D j+ 1
2

(
T n+1

j+1 −T n+1
j +T n

j+1 −T n
j

)
−D j− 1

2

(
T n+1

j −T n+1
j−1 +T n

j −T n
j−1

)
2h2

(8.6)
If you look carefully at this equation you will see that there is a problem: how are
we supposed to solve for T n+1

j ? The future values T n+1 are all over the place, and

they involve three neighboring grid points (T n+1
j−1 , T n+1

j , and T n+1
j+1 ), so we can’t

just solve in a simple way for T n+1
j . This is an example of why implicit methods

are harder than explicit methods.

Phyllis Nicolson (1917–1968, English)

John Crank (1916–2006, English)

In the hope that something useful will turn up, let’s put all of the variables at
time level n +1 on the left, and all of the ones at level n on the right.

−D j− 1
2

T n+1
j−1 +

(
2h2

τ
+D j+ 1

2
+D j− 1

2

)
T n+1

j −D j+ 1
2

T n+1
j+1 =

D j− 1
2

T n
j−1 +

(
2h2

τ
−D j+ 1

2
−D j− 1

2

)
T n

j +D j+ 1
2

T n
j+1 (8.7)

We know this looks ugly, but it really isn’t so bad. To solve for T n+1
j we just need to

solve a linear system, as we did in Lab 2 on two-point boundary value problems.
When a system of equations must be solved to find the future values, we say
that the method is implicit. This particular implicit method is called the Crank-
Nicolson algorithm.

To see more clearly what we are doing, and to make the algorithm a bit more
efficient, let’s define a matrix A to describe the left side of Eq. (8.7) and another
matrix B to describe the right side, like this:

AT n+1 = BT n (8.8)

(T is now a column vector). The elements of A are given by

A j ,k = 0 except for :

A j , j−1 =−D j− 1
2

; A j , j = 2h2

τ
+ (D j+ 1

2
+D j− 1

2
) ; A j , j+1 =−D j+ 1

2
(8.9)

and the elements of B are given by

B j ,k = 0 except for :

B j , j−1 = D j− 1
2

; B j , j = 2h2

τ
− (D j+ 1

2
+D j−1/2) ; B j , j+1 = D j+ 1

2
(8.10)

Once the boundary conditions are added to these matrices, Eq. (8.8) can easily be
solved symbolically to find T n+1

T n+1 = A−1BT n . (8.11)

However, since inverting a matrix is computationally expensive we will use Gauss
elimination instead when we actually implement this in Matlab, as we did in lab 2
(see Matlab help on the \ operator). Here is a sketch of how you would implement
the Crank-Nicolson algorithm in Matlab.
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(i) Load the matrices A and B as given in Eq. (8.9) and Eq. (8.10) above for all
of the rows except the first and last. As usual, the first and last rows involve
the boundary conditions. Usually it is a little easier to handle the boundary
conditions if we plan to do the linear solve in two steps, like this:

% compute the right-hand side of the equation

r=B*T;

% load r(1) and r(N+2) as appropriate

% for the boundary conditions

r(1)=...;r(N+2)=...;

% load the new T directly into T itself

T=A\r;

Notice that we can just load the top and bottom rows of B with zeros, creat-
ing a right-hand-side vector r with zeros in the top and bottom positions.
The top and bottom rows of A can then be loaded with the appropriate
terms to enforce the desired boundary conditions on T n+1, and the top
and bottom positions of r can be loaded as required just before the linear
solve, as indicated above. (An example of how this works will be given in
the Crank-Nicolson script below.) Note that if the diffusion coefficient D(x)
doesn’t change with time you can load A and B just once before the time
loop starts.

(ii) Once the matrices A and B are loaded finding the new temperature in-
side the time loop is easy. Here is what it would look like if the boundary
conditions were T (0) = 1 and T (L) = 5 using a cell-centered grid.

The top and bottom rows of A and B and the top and bottom positions of r
would have been loaded like this (assuming a cell-center grid with ghost
points):

A(1,1) = 1

2
A(1,2) = 1

2
B(1,1) = 0 r (1) = 1 (8.12)

A(N +2, N +2) = 1

2
A(N +2, N +1) = 1

2
B(N +2, N +2) = 0 r (N +2) = 5

(8.13)
so that the equations for the top and bottom rows are

T1 +T2

2
= r1

TN+1 +TN+2

2
= rN+2 (8.14)

The matrix B just stays out of the way (is zero) in the top and bottom rows.

The time advance would then look like this:

% find the right-hand side for the solve at interior points

r=B*T;

% load T(0) and T(L)

r(1)=1;r(N+2)=5;
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% find the new T and load it directly into the variable T

% so we will be ready for the next step

T=A\r;

P8.3 (a) Below is a Matlab program that implements the Crank-Nicolson al-
gorithm. Download it from the class web site and study it until you
know what each part does. Test cranknicholson.m by running it
with D(x) = 2 and an initial temperature given by T (x) = sin(πx/L).
As you found in Lab 7, the exact solution for this distribution is:

T (x, t ) = sin(πx/L)e−π
2Dt/L2

(8.15)

Try various values of τ and see how it compares with the exact solution.
Verify that when the time step is too large the solution is inaccurate,
but still stable. To do the checks at large time step you will need to use
a long run time and not skip any steps in the plotting, i.e., use a skip
factor of 1.

Also study the accuracy of this algorithm by using various values of
the cell number N and the time step τ. For each pair of choices run
for 5 seconds and find the maximum difference between the exact
and numerical solutions. You should find that the time step τ hardly
matters at all. The number of cells N is the main thing to worry about
if you want high accuracy in diffusion problems solved with Crank-
Nicolson.
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Figure 8.4 Solution to 8.3(b)

(b) Modify the Crank-Nicolson script to use boundary conditions ∂T /∂x =
0 at the ends. Run with the same initial condition as in part (a) (which
does not satisfy these boundary conditions) and watch what happens.
Use a “microscope” on the plots early in time to see what happens in
the first few grid points during the first few time steps.
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Figure 8.5 Solution to 8.3(c)

(c) Repeat part (b) with D(x) chosen so that D = 1 over the range 0 ≤ x <
L/2 and D = 5 over the range L/2 ≤ x ≤ L. Explain physically why your
results are reasonable. In particular, explain why even though D is
completely different, the final value of T is the same as in part (b).

Listing 8.1 (cranknicholson.m)

clear;close all;

% Set the number of grid points and build a cell-center grid

N=input(' Enter N, cell number - ') L=10; h=L/N; x=-.5*h:h:L+.5*h;

x=x'; % Turn x into a column vector.

% Load the diffusion coefficient array (make it a column vector)

D=ones(N+2,1); % (just 1 for now--we'll change it later)

% Load Dm with average values D(j-1/2) and Dp with D(j+1/2)

Dm=zeros(N+2,1);Dp=zeros(N+2,1); % Make the column vectors
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Dm(2:N+1)=.5*(D(2:N+1)+D(1:N)); % average j and j-1

Dp(2:N+1)=.5*(D(2:N+1)+D(3:N+2)); % average j and j+1

% Set the initial temperature distribution

T=sin(pi*x/L);

% Find the maximum of T for setting plot limits

Tmax=max(T);Tmin=min(T);

% Choose the time step tau.

% The max tau for explicit stability is a reasonable choice

fprintf(' Maximum explicit time step: %g \n',h^2/max(D))

tau = input(' Enter the time step - ')

% Create the matrices A and B by loading them with zeros

A=zeros(N+2); B=zeros(N+2);

% load A and B at interior points

const = 2*h^2 / tau; for j=2:N+1

A(j,j-1)= -Dm(j);

A(j,j) = const + (Dm(j)+Dp(j));

A(j,j+1)= -Dp(j);

B(j,j-1)= Dm(j);

B(j,j) = const-(Dm(j)+Dp(j));

B(j,j+1)= Dp(j);

end

% load the boundary conditions into A and B

A(1,1)=0.5; A(1,2)=0.5; B(1,1)=0.; % T(0)=0

A(N+2,N+1)=0.5; A(N+2,N+2)=0.5; B(N+2,N+2)=0; % T(L)=0

% Set the number of time steps to take.

tfinal=input(' Enter the total run time - ') nsteps=tfinal/tau;

% Choose how many iterations to skip between plots

skip = input(' Number of iterations to skip between plots - ')

% This is the time advance loop.

for mtime=1:nsteps

% define the time

t=mtime*tau;

% find the right-hand side for the solve at interior points

r=B*T;

% apply the boundary conditions

r(1)=0; % T(0)=0

r(N+2)=0; % T(L)=0

% do the linear solve to update T

T=A\r;

% Make a plot of T every once in a while.
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if(rem(mtime,skip) == 0)

plot(x,T)

axis([0 L Tmin Tmax])

pause(.1)

end

end





Lab 9

Schrödinger’s Equation

Here is the time-dependent Schrödinger equation which governs the way a
quantum wave function changes with time in a one-dimensional potential well
V (x):1

iħ∂ψ
∂t

=− ħ2

2m

∂2ψ

∂x2 +V (x)ψ (9.1)

Note that except for the presence of the imaginary unit i , this is very much like
the diffusion equation. In fact, a good way to solve it is with the Crank-Nicolson
algorithm. Not only is this algorithm stable for Schrödinger’s equation, but it has
another important property: it conserves probability. This is very important. If
the algorithm you use does not have this property, then as ψ for a single particle
is advanced in time you have (after a while) 3/4 of a particle, then 1/2, etc.
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Figure 9.1 The probability density
|ψ(x)|2 of a particle in a box that
initially moves to the right and
then interferes with itself as it
reflects from an infinite potential
(Problem 9.2(a)).
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Figure 9.2 The expectation posi-
tion 〈x〉 for the particle in Fig. 9.1
as time progresses and the packet
spreads out (Problem 9.2(c)).

P9.1 Derive the Crank-Nicolson algorithm for Schrödinger’s equation. It will
probably be helpful to use the material in Lab 8 as a guide (beginning with
Eq. (8.3)). Schrödinger’s equation is simpler in the sense that you don’t have
to worry about a spatially varying diffusion constant, but make sure the
V (x)ψ term enters the algorithm correctly.

Modify one of your scripts from Lab 8 to implement this algorithm. Note
that if you need to turn row vectors into column vectors you should use the
Matlab command .' (transpose without complex conjugate) instead of '
(transpose and complex conjugate) since we are doing quantum mechanics
and the imaginary parts matter now.

Particle in a box

Let’s use this algorithm for solving Schrödinger’s equation to study the evolution
of a particle in a box with

V (x) =


0 if −L < x < L

+∞ otherwise
(9.2)

The infinite potential at the box edges is imposed by forcing the wave function to
be zero at these points:

ψ(−L) = 0 ; ψ(L) = 0 (9.3)

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 470-506.
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P9.2 (a) Write a script to solve the time-dependent Schrödinger equation using
Crank-Nicolson as discussed in Lab 8. Use natural units in which
ħ= m = 1 and L = 10. We find that a cell-edge grid

h=2*L/(N-1); x=-L:h:L;

is easiest, but you can also do cell-center with ghost points if you like.
Start with a localized wave packet of width σ and momentum p:

ψ(x,0) = 1√
σ
p
π

e i px/ħe−x2/(2σ2) (9.4)

with p = 2π and σ= 2. This initial condition does not exactly satisfy
the boundary conditions, but it is very close. Check to see how far
off it is at the boundary, and decide how the sizes of L and σ must
compare in order to use this initial condition.

Run the script with N = 200 and watch the particle (wave packet)
bounce back and forth in the well. Plot the real part of ψ as an an-
imation to visualize the spatial oscillation of the wave packet, then
plot an animation of ψ∗ψ so that you can visualize the probability
distribution of the particle. Try switching the sign of p and see what
happens.
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Figure 9.3 The probability density
|ψ(x)|2 of a particle that is initially
more localized quickly spreads
(Problem 9.2(d)).
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Figure 9.4 The expectation posi-
tion of the particle in Fig. 9.3 as
time progresses.

(b) Verify by doing a numerical integral that ψ(x,0) in the formula given
above is properly normalized. Then run the script and check that it
stays properly normalized, even though the wave function is bouncing
and spreading within the well. (If you are on a cell-edge grid you will
need to do the integrals with trapz rather than sum.)

(c) Run the script and verify by numerical integration that the expectation
value of the particle position

〈x〉 =
∫ L

−L
ψ∗(x, t ) x ψ(x, t )d x (9.5)

is correct for a bouncing particle. Plot 〈x〉(t) to see the bouncing
behavior. Run long enough that the wave packet spreading modifies
the bouncing to something more like a harmonic oscillator. (Note:
you will only see bouncing-particle behavior until the wave packet
spreads enough to start filling the entire well.)

(d) You may be annoyed that the particle spreads out so much in time.
Try to fix this problem by narrowing the wave packet (decrease the
value ofσ) so the particle is more localized. Run the script and explain
what you see in terms of quantum mechanics.

Tunneling

Now we will allow the pulse to collide with a with a non-infinite potential barrier
of height V0 and width ∆x = 0.02L, and study what happens. Classically, the
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answer is simple: if the particle has a kinetic energy less than V0 it will be unable
to get over the barrier, but if its kinetic energy is greater than V0 it will slow down
as it passes over the barrier, then resume its normal speed in the region beyond
the barrier. (Think of a ball rolling over a bump on a frictionless track.) Can
the particle get past a barrier that is higher than its kinetic energy in quantum
mechanics? The answer is yes, and this effect is called tunneling.
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Figure 9.5 The probability dis-
tribution |ψ(x)|2 for a particle
incident on a narrow potential
barrier located just before x = 10
with V0 > 〈E〉. Part of the wave
tunnels through the barrier and
part interferes with itself as it is
reflected.

To see how the classical picture is modified in quantum mechanics we must
first compute the energy of our pulse so we can compare it to the height of the
barrier. The quantum mechanical formula for the expectation value of the energy
is

〈E〉 =
∫ ∞

−∞
ψ∗Hψd x (9.6)

where ψ∗ is the complex conjugate of ψ and where

Hψ=− ħ2

2m

∂2ψ

∂x2 +V (x)ψ(x) (9.7)

In our case the initial wave function ψ(x,0) is essentially zero at the location of
the potential barrier, so we may take V (x) = 0 in the integral when we compute
the initial energy.

P9.3 (a) Use Mathematica to compute 〈E〉 for your wave packet. You should
find that

〈E〉 = p2

2m
+ ħ2

4mσ2 ≈ 20 (9.8)

Since this is a conservative system, the energy remains constant and
you can just use the initial wave function in the integral.

HINT: You will need to use the Assuming command to specify that
certain quantities are real and/or positive to get Mathematica to do
the integral.

(b) Modify your script from Problem 9.2 so that it uses a computing region
that goes from −2L to 3L and a potential

V (x) =



0 if −2L < x < 0.98L
V0 if 0.98L ≤ x ≤ L
0 if L < x < 3L

+∞ otherwise

(9.9)

so that we have a square potential hill V (x) = V0 between x = 0.98L
and x = L and V = 0 everywhere else in the well.

Note: Since V (x) was just zero in the last problem, this is the first time
to check if your V (x) terms in Crank-Nicolson are right. If you see
strange behavior, you might want to look at these terms in your code.

Run your script several times, varying the height V0 from less than
your pulse energy to more than your pulse energy. Overlay a plot
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of V (x)/V0 on your plot of |ψ|2 and look at the behavior of ψ in the
barrier region.

You should do several experiments with your code. (1) Try making
the barrier height both higher than your initial energy and lower than
your initial energy. Explain to your TA how the quantum behavior
differs from classical behavior. You should find that even when the
barrier is low enough that a classical particle could get over it, some
particles still come back. (2) Experiment with the width of your barrier
and see what its effect is on how many particles tunnel through. As
part of this experiment, figure out a way to calculate what fraction of
the particles make it through the barrier.
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Poisson’s Equation I

Now let’s consider Poisson’s equation in two dimensions:1

∂2V

∂x2 + ∂2V

∂y2 =− ρ

ε0
(10.1)

Poisson’s equation is used to describe the electric potential in a two-dimensional
region of space with charge density described by ρ. Note that by studying this
equation we are also studying Laplace’s equation (Poisson’s equation with ρ =
0) and the steady state solutions to the diffusion equation in two dimensions
(∂T /∂t = 0 in steady state).

Finite difference form

The first step in numerically solving Poisson’s equation is to define a 2-D spa-
tial grid. For simplicity, we’ll use a rectangular grid where the x coordinate is
represented by Nx values x j equally spaced with step size hx , and the y coor-
dinate is represented by Ny values yk equally spaced with step size hy . This
creates a rectangular grid with Nx ×Ny grid points, just as we used in Lab 6 for
the 2-d wave equation. We’ll denote the potential on this grid using the notation
V (x j , yk ) =V j ,k .

The second step is to write down the finite-difference approximation to the
second derivatives in Poisson’s equation to obtain a grid-based version of Poisson’s
equation. In our notation, Poisson’s equation is the represented by

V j+1,k −2V j ,k +V j−1,k

h2
x

+ V j ,k+1 −2V j ,k +V j ,k−1

h2
y

=−ρ j ,k

ε0
(10.2)

This set of equations can only be used at interior grid points because on the edges
it reaches beyond the grid, but this is OK because the boundary conditions tell us
what V is on the edges of the region.

Equation (10.2) plus the boundary conditions represent a set of linear equa-
tions for the unknowns V j ,k , so we could imagine just doing a big linear solve to
find V all at once. Because this sounds so simple, let’s explore it a little to see why
we are not going to pursue this idea. The number of unknowns V j ,k is Nx ×Ny ,
which for a 100×100 grid is 10,000 unknowns. So to do the solve directly we would
have to be working with a 10,000×10,000 matrix, requiring 800 megabytes of
RAM just to store the matrix. Doing this big solve is possible for 2-dimensional
problems like this because computers with much more memory than this are

1N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 138-150.
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now common. However, for larger grids the matrices can quickly get out of hand.
Furthermore, if you wanted to do a 3-dimensional solve for a 100×100×100 grid,
this would require (104)3 ×8, or 8 million megabytes of memory. Computers like
this are not going to be available for your use any time soon. So even though
gigabyte computers are common, people still use iteration methods like the ones
we are about to describe.

Iteration methods

Let’s look for a version of Poisson’s equation that helps us develop a less memory-
intensive way to solve it.

P10.1 Solve the finite-difference version of Poisson’s equation (Eq. (10.2)) for V j ,k

to obtain

V j ,k =
(

V j+1,k +V j−1,k

h2
x

+ V j ,k+1 +V j ,k−1

h2
y

+ ρ j ,k

ε0

)/(
2

h2
x
+ 2

h2
y

)
(10.3)

With the equation in this form we could just iterate over and over by doing the
following. (1) Choose an initial guess for the interior values of V j ,k . (2) Use this
initial guess to evaluate the right-hand side of Eq. (10.3) and then to replace our
initial guess for V j ,k by this right-hand side, and then repeat. If all goes well, then
after many iterations the left and right sides of this equation will agree and we
will have a solution. 2

Carl Friedrich Gauss (1777–1855,
German)

It may seem that it would take a miracle for this to work, and it really is pretty
amazing that it does, but we shouldn’t be too surprised because you can do
something similar just by pushing buttons on a calculator. Consider solving this
equation by iteration:

x = e−x (10.4)

If we iterate on this equation like this:

xn+1 = e−xn (10.5)

we find that the process converges to the solution x̄ = 0.567. Let’s do a little
analysis to see why it works. Let x̄ be the exact solution of this equation and
suppose that at the nth iteration level we are close to the solution, only missing it
by the small quantity δn like this: xn = x̄ +δn . Let’s substitute this approximate
solution into Eq. (10.5) and expand using a Taylor series. Recall that the general
form for a Taylor’s series is

f (x +h) = f (x)+ f ′(x)h + 1

2
f ′′(x)h2 + ·· · + f (n)(x)

hn

n!
+ ·· · (10.6)

2N. Asmar, Partial Differential Equations and Boundary Value Problems (Prentice Hall, New
Jersey, 2000), p. 429-441.
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When we substitute our approximate solution into Eq. (10.5) and expand around
the exact solution x̄ we get

xn+1 = e−x̄−δn ≈ e−x̄ −δne−x̄ +·· · (10.7)

If we ignore the terms that are higher order inδ (represented by · · · ), then Eq. (10.7)
shows that the error at the next iteration step is δn+1 =−e−x̄δn . When we are close
to the solution the error becomes smaller every iteration by the factor −e−x̄ . Since
x̄ is positive, e−x̄ is less than 1, and the algorithm converges. When iteration works
it is not a miracle—it is just a consequence of having this expansion technique
result in an error multiplier that is less than 1 in magnitude.

P10.2 Write a short Matlab script to solve the equation x = e−x by iteration and
verify that it converges. Then try solving this same equation the other way
round: x =− ln x and show that the algorithm doesn’t converge. Then use
the x̄ +δ analysis above to show why it doesn’t.

Well, what does this have to do with our problem? To see, let’s notice that the
iteration process indicated by Eq. (10.3) can be written in matrix form as

Vn+1 = LVn + r (10.8)

where L is the matrix which, when multiplied into the vector Vn , produces the
V j ,k part of the right-hand side of Eq. (10.3) and r is the part that depends on
the charge density ρ j ,k . (Don’t worry about what L actually looks like; we are just
going to apply general matrix theory ideas to it.) As in the exponential-equation
example given above, let V̄ be the exact solution vector and let δn be the error
vector at the nth iteration. The iteration process on the error is, then,

δn+1 = Lδn (10.9)

Now think about the eigenvectors and eigenvalues of the matrix L. If the matrix is
well-behaved enough that its eigenvectors span the full solution vector space of
size Nx ×Ny , then we can represent δn as a linear combination of these eigenvec-
tors. This then invites us to think about what iteration does to each eigenvector.
The answer, of course, is that it just multiplies each eigenvector by its eigenvalue.
Hence, for iteration to work we need all of the eigenvalues of the matrix L to have
magnitudes less than 1. So we can now restate the original miracle, “Iteration
on Eq. (10.3) converges,” in this way: “All of the eigenvalues of the matrix L on
the right-hand side of Eq. (10.3) are less than 1 in magnitude.” This statement is
a theorem which can be proved if you are really good at linear algebra, and the
entire iteration procedure described by Eq. (10.8) is known as Jacobi iteration.
Unfortunately, even though all of the eigenvalues have magnitudes less than 1
there are lots of them that have magnitudes very close to 1, so the iteration takes
forever to converge (the error only goes down by a tiny amount each iteration).

But Gauss and Seidel discovered that the process can be accelerated by making
a very simple change in the process. Instead of only using old values of V j ,k on
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the right-hand side of Eq. (10.3), they used values of V j ,k as they became available
during the iteration. (This means that the right side of Eq. (10.3) contains a
mixture of V -values at the n and n +1 iteration levels.) This change, which is
called Gauss-Seidel iteration is really simple to code; you just have a single array
in which to store V j ,k and you use new values as they become available. (When
you see this algorithm coded you will understand this better.)

Successive over-relaxation

Even Gauss-Seidel iteration is not the best we can do, however. To understand
the next improvement let’s go back to the exponential example

xn+1 = e−xn (10.10)

and change the iteration procedure in the following non-intuitive way:

xn+1 =ωe−xn + (1−ω)xn (10.11)

where ω is a number which is yet to be determined.

P10.3 Verify that even though Eq. (10.11) looks quite different from Eq. (10.10), it
is still solved by x = e−x . Now insert xn = x̄ +δn and expand as before to
show that the error changes as we iterate according to the following

δn+1 = (−ωe−x̄ +1−ω)δn (10.12)

Now look: what would happen if we chose ω so that the factor in parentheses
were zero? The equation says that we would find the correct answer in just one
step! Of course, to choose ω this way we would have to know x̄, but it is enough
to know that this possibility exists at all. All we have to do then is numerically
experiment with the value of ω and see if we can improve the convergence.

P10.4 Write a Matlab script that accepts a value of ω and runs the iteration in
Eq. (10.11). Experiment with various values of ω until you find one that
does the best job of accelerating the convergence of the iteration. You
should find that the bestω is near 0.64, but it won’t give convergence in one
step. See if you can figure out why not. (Think about the approximations
involved in obtaining Eq. (10.12).)

As you can see from Eq. (10.12), this modified iteration procedure shifts the
error multiplier to a value that converges better. So now we can see how to
improve Gauss-Seidel: we just use an ω multiplier like this:

Vn+1 =ω (LVn + r )+ (1−ω)Vn (10.13)

then play with ω until we achieve almost instantaneous convergence.
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Sadly, this doesn’t quite work. The problem is that in solving for Nx × Ny

unknown values V j ,k we don’t have just one multiplier; we have many thousands
of them, one for each eigenvalue of the matrix. So if we shift one of the eigenvalues
to zero, we might shift another one to a value with magnitude larger than 1 and
the iteration will not converge at all. The best we can do is choose a value ofω that
centers the entire range of eigenvalues symmetrically between −1 and 1. (Draw a
picture of an arbitrary eigenvalue range between -1 and 1 and imagine shifting
the range to verify this statement.)

Using anωmultiplier to shift the eigenvalues is called Successive Over-Relaxation,
or SOR for short. Here it is written out so you can code it:

V j ,k =ω
(

V j+1,k +V j−1,k

h2
x

+ V j ,k+1 +V j ,k−1

h2
y

+ ρ j ,k

ε0

)/(
2

h2
x
+ 2

h2
y

)
+ (1−ω)V j ,k

(10.14)
or (written in terms of Rhs, the right-hand side of Eq. (10.3) ):

V j ,k =ωRhs + (1−ω)V j ,k (10.15)

with the values on the right updated as we go, i.e., we don’t have separate arrays
for the new V ’s and the old V ’s. And what value should we use for ω? The answer
is that it depends on the values of Nx and Ny . In all cases ω should be between
1 and 2, with ω= 1.7 being a typical value. Some wizards of linear algebra have
shown that the best value of ω when the computing region is rectangular and the
boundary values of V are fixed (Dirichlet boundary conditions) is given by

ω= 2

1+
p

1−R2
(10.16)

where

R =
h2

y cos(π/Nx )+h2
x cos(π/Ny )

h2
x +h2

y
. (10.17)

These formulas are easy to code and usually give a reasonable estimate of
the best ω to use. Note, however, that this value of ω was found for the case of a
cell-edge grid with the potential specified at the edges. If you use a cell-centered
grid with ghost points, and especially if you change to derivative boundary con-
ditions, this value of ω won’t be quite right. But there is still a best value of ω
somewhere near the value given in Eq. (10.16) and you can find it by numerical
experimentation.

Finally, we come to the question of when to stop iterating. It is tempting just
to watch a value of V j ,k at some grid point and quit when its value has stabilized
at some level, like this for instance: quit when ε= |V ( j ,k)n+1 −V ( j ,k)n | < 10−6.
You will see this error criterion sometimes used in books, but do not use it. We
know of one person who published an incorrect result in a journal because this
error criterion lied. We don’t want to quit when the algorithm has quit changing
V ; we want to quit when Poisson’s equation is satisfied. (Most of the time these
are the same, but only looking at how V changes is a dangerous habit to acquire.)
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In addition, we want to use a relative (%) error criterion. This is easily done by
setting a scale voltage Vscale which is on the order of the biggest voltage in the
problem and then using for the error criterion

ε=
∣∣∣∣Lhs −Rhs

Vscale

∣∣∣∣ (10.18)

where Lhs is the left-hand side of Eq. (10.3) and Rhs is its right-hand side. Be-
cause this equation is just an algebraic rearrangement of our finite-difference
approximation to Poisson’s equation, ε can only be small when Poisson’s equation
is satisfied. (Note the use of absolute value; can you explain why it is important to
use it? Also note that this error is to be computed at all of the interior grid points.
Be sure to find the maximum error on the grid so that you only quit when the
solution has converged throughout the grid.)

And what error criterion should we choose so that we know when to quit?
Well, our finite-difference approximation to the derivatives in Poisson’s equation
is already in error by a relative amount of about 1/(12N 2), where N is the smaller
of Nx and Ny . There is no point in driving ε below this estimate. For more details,
and for other ways of improving the algorithm, see Numerical Recipes, Chapter
19. OK, we’re finally ready to code this all up.
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Figure 10.1 The electrostatic po-
tential V (x, y) with two sides
grounded and two sides at con-
stant potential.

P10.5 (a) Below is a piece of Matlab code sor.m that implements these ideas
for a two-dimensional cell-edge grid [−Lx /2,Lx /2] × [0,Ly ] with x
corresponding to Lx and y corresponding to Ly . You just have to fill
in the blank sections of code and it will be ready to go. Finish writing
the script and run it repeatedly with Nx = Ny = 30 and different values
of ω. Note that the boundary conditions on V (x, y) are V (−Lx /2, y) =
V (Lx /2, y) = 1 and V (x,0) = V (x,Ly ) = 0. Set the error criterion to
10−4. Verify that the optimum value of ω given by Eq. (10.16) is the
best one to use.

(b) Using the optimum value of ω in each case, run sor.m for Nx = Ny =
20, 40, 80, and 160. See if you can find a rough power law formula
for how long it takes to push the error below 10−5, i.e., guess that
Run Time ≈ AN p

x , and find A and p. The tic and toc commands
will help you with the timing. (Make sure not to include any plotting
commands between tic and toc.) The Matlab fitting tool cftool can
be helpful for curve fitting.

NOTE: If you’ve finished this much and still have time, you should continue on to
lab 11 (it is a continuation of this lab and is a bit long).

Listing 10.1 (sor.m)

% Solve Poisson's equation by Successive-Over-relaxation

% on a rectangular Cartesian grid

clear; close all;

eps0=8.854e-12; % set the permittivity of free space
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Nx=input('Enter number of x-grid points - '); Ny=input('Enter number of

y-grid points - ');

Lx=4; % Length in x of the computation region

Ly=2; % Length in y of the computation region

% define the grids

hx=Lx/(Nx-1); % Grid spacing in x

hy=Ly/(Ny-1); % Grid spacing in y

x = (0:hx:Lx)-.5*Lx; %x-grid, x=0 in the middle

y = 0:hy:Ly; %y-grid

% estimate the best omega to use

R = (hy^2 * cos(pi/Nx)+hx^2*cos(pi/Ny))/(hx^2+hy^2); omega=2/(1+sqrt(1-R^2));

fprintf('May I suggest using omega = %g ? \n',omega);

omega=input('Enter omega for SOR - ');

% define the voltages

V0=1; % Potential at x=-Lx/2 and x=+Lx/2

Vscale=V0; % set Vscale to the potential in the problem

% set the error criterion

errortest=input(' Enter error criterion - say 1e-6 - ') ;

% Initial guess is zeroes

V = zeros(Nx,Ny);

% set the charge density on the grid

rho=zeros(Nx,Ny);

% set the boundary conditions

% recall that in V(j,k), j is the x-index and k is the y-index

. . .

% MAIN LOOP

Niter = Nx*Ny*Nx; %Set a maximum iteration count

% set factors used repeatedly in the algorithm

fac1 = 1/(2/hx^2+2/hy^2); facx = 1/hx^2; facy = 1/hy^2;

for n=1:Niter

err(n)=0; % initialize the error at iteration n to zero

for j=2:(Nx-1) % Loop over interior points only

for k=2:(Ny-1)

% load rhs with the right-hand side of the Vjk equation,

% Eq. (10.3)

rhs = . . .

% calculate the relative error for this point, Eq. (10.18)

currerr = . . .
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% Add some logic to compare err(n) and currerr and store

% the bigger one in err(n). err(n) should hold

% the biggest error on the grid for this n step after

% finishing the j and k loops

err(n)= . . .

% SOR algorithm Eq. (10.14), to

% update V(j,k) (use rhs from above)

V(j,k) = . . .

end

end

% if err < errortest break out of the loop

fprintf('After %g iterations, error= %g\n',n,err(n));

if(err(n) < errortest)

disp('Desired accuracy achieved; breaking out of loop');

break;

end

end

% make a contour plot

figure

cnt=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]; % specify contours

cs = contour(x,y,V',cnt); % Contour plot with labels

xlabel('x'); ylabel('y'); clabel(cs,[.2,.4,.6,.8])

% make a surface plot

figure

surf(x,y,V'); % Surface plot of the potential

xlabel('x'); ylabel('y');

% make a plot of error vs. iteration number

figure semilogy(err,'b*') xlabel('Iteration'); ylabel('Relative Error')



Lab 11

Poisson’s Equation II

In three dimensions, Poisson’s equation is given by

∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 =− ρ

ε0
(11.1)

You can solve this equation using the SOR technique, but we won’t make you do
that here. Instead, we’ll look at several geometries that are infinitely long in the
z-dimension with a constant cross-section in the x-y plane. In these cases the
z derivative goes to zero, and we can use the 2-D SOR code that we developed
in the last lab to solve for the potential of a cross-sectional area in the x and y
dimensions.
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Figure 11.1 The potential V (x, y)
from Problem 11.1(a).
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Figure 11.2 The surface charge
density from Problem 11.1(a).

P11.1 (a) Modify sor.m to model a rectangular pipe with V (−Lx /2, y) = −V0,
V (Lx /2, y) = V0, and the y = 0 and y = Ly edges held at V = 0. Then
make a plot of the surface charge density at the inside surface of the
y = 0 side of the pipe. Assume that the pipe is metal on this surface.

To do this you will need to remember that the connection between
surface charge density and the normal component of E is

σ= ε0(E2 −E1) · n̂ (11.2)

where E1,2 are the fields on sides 1 and 2 of the boundary and n̂ is a
unit vector pointing normal to the surface from side 1 to side 2. You’ll
also need to recall how to compute E from the potential V :

E =−∇V (11.3)

HINT: Since you only care about the normal component of E, you
only need to do the y-derivative part of the gradient. You can do an
appropriate finite difference derivative to find Ey half way between
the first and second points, and another difference to find Ey half way
between the second and third points. Then you can use Eq. (1.3) with
these two interior values of Ey to find the field at the edge of your grid.
Since the boundary is metal, the field on the other side is zero.

(b) Modify your code from (a) so that the boundary condition at the x =
−Lx /2 edge of the computation region is ∂V /∂x = 0 and the boundary
condition on the y = Ly edge is ∂V /∂y = 0. You can do this problem
either by changing your grid and using ghost points or by using a
quadratic extrapolation technique (see Eq. (2.12)). Both methods
work fine, but note that you will need to enforce boundary conditions
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inside the main SOR loop now instead of just setting the values at the
edges and then leaving them alone.
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Figure 11.3 The potential V (x, y)
with zero-derivative boundary
conditions on two sides (Prob-
lem 11.1(b).)

You may discover that the script runs slower on this problem. See if
you can make it run a little faster by experimenting with the value ofω
that you use. Again, changing the boundary conditions can change the
eigenvalues of the operator. (Remember that Eq. (10.16) only works
for cell-edge grids with fixed-value boundary conditions, so it only
gives a ballpark suggestion for this problem.)

P11.2 (a) Modify sor.m to solve the problem of an infinitely long hollow rectan-
gular pipe of x-width 0.2 m and y-height 0.4 m with an infinitely long
thin diagonal plate from the lower left corner to the upper right corner.
The edges of the pipe and the diagonal plate are all grounded. There
is uniform charge density ρ = 10−10 C/m3 throughout the lower trian-
gular region and no charge density in the upper region (see Fig. 11.4).
Find V (x, y) in both triangular regions. You will probably want to have
a special relation between Nx and Ny and use a cell-edge grid in order
to apply the diagonal boundary condition in a simple way.
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Figure 11.4 The potential V (x, y)
with constant charge density on a
triangular region grounded at its
edges (Problem 11.2(a).)
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Figure 11.5 The electric field from
Problem 11.2(b).)

(b) Make a quiver plot of the electric field at the interior points of the
grid. Use online help to see how to use quiver, and make sure that the
quiver command is followed by the command axis equal so that
the x and y axes have the same scale. Matlab’s gradient command

[Ex,Ey] = gradient(-V',hx,hy)

will let you quickly obtain the components of E. The transpose on V in
this command is necessary because of the (row,column) versus (x,y)
notation issue.

P11.3 Study electrostatic shielding by going back to the boundary conditions of
Problem 11.1(a) with Lx = 0.2 and Ly = 0.4, while grounding some points in
the interior of the full computation region to build an approximation to a
grounded cage. Allow some holes in your cage so you can see how fields
leak in.

You will need to be creative about how you build your cage and about how
you make SOR leave your cage points grounded as it iterates. One thing
that won’t work is to let SOR change all the potentials, then set the cage
points to V = 0 before doing the next iteration. It is much better to set them
to zero and force SOR to never change them. An easy way to do this is to
use a cell-edge grid with a mask. A mask is an array that you build that is
the same size as V, initially defined to be full of ones like this

mask=ones(Nx,Ny);

Then you go through and set the elements of mask that you don’t want SOR
to change to have a value of zero. (We’ll let you figure out the logic to do
this for the cage.) Once you have your mask built, you add an if statement
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to our code so that the SOR stuff inside the j and k for loops only changes a
given point and updates the error if mask(j,k) is one:

if (mask(j,k)==1)

% SOR stuff and error calculation in here

end

This logic assumes you have to set the values of V for these points before
the for loop execute, just like the boundary conditions. Using this tech-
nique you can calculate the potential for quite complicated shapes just by
changing the mask array.
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Figure 11.6 The potential V (x, y) for an electrostatic “cage” formed by
grounding some interior points. (Problem 11.3.)
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Gas Dynamics I

So far we have only studied the numerical solution of partial differential
equations one at a time, but in many interesting situations the problem to be
solved involves coupled systems of differential equations. A “simple” example of
such a system are the three coupled one-dimensional equations of gas dynamics.
These are the equations of acoustics in a long tube with mass density ρ(x, t),
pressure p(x, t), and gas velocity v(x, t) as the dynamic variables. We’ll discuss
each of the three equations separately, and then we’ll look at how to solve the
coupled system.

Conservation of mass

The equation that enforces conservation of mass is called the continuity equation:

∂ρ

∂t
+ ∂

∂x

(
ρv

)= 0 (12.1)

This equation says that as the gas particles are moved by the flow velocity v(x, t ),
the density is carried along with the flow, and can also be compressed or rarefied.
As we will see shortly, if ∂v/∂x > 0 then the gas expands, decreasing ρ; if ∂v/∂x < 0
then the gas compresses, increasing ρ.

P12.1 (a) Roughly verify the statement above by expanding the spatial derivative
in Eq. (12.1) to put the equation in the form

∂ρ

∂t
+ v

∂ρ

∂x
=−ρ∂v

∂x
(12.2)

If v = const, show that the simple moving pulse formula ρ(x, t) =
ρ0(x −v t ), where ρ0(x) is the initial distribution of density solves this
equation. (Just substitute it in and show that it works.) This simply
means that the density distribution at a later time is the initial one
moved over by a distance v t : this is called convection.

(b) Now suppose that the initial distribution of density is ρ(x,0) = ρ0 =
const but that the velocity distribution is an “ideal explosion”, with
v = 0 at x = 0 and velocity increasing linearly away from 0 like this:
v(x) = v0x/a (v doesn’t vary with time.) Show that the solution of
Eq. (12.1) is now given by ρ(x, t ) = ρ0e−αt and determine the value of
the decay constant α. (You may be concerned that even though ρ is
constant in x initially, it may not be later. But we have given you a
very special v(x), namely the only one that keeps an initially constant
density constant forever. So just assume that ρ doesn’t depend on
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x, then show that your solution using this assumption satisfies the
equation and the boundary conditions.)

Think carefully about this flow pattern long enough that you are con-
vinced that the density should indeed go down as time passes.

(c) Now repeat part (b) with an implosion (the flow is inward): v(x) =
−v0x/a. Does your solution make sense?

These are both very simple cases, but they illustrate the basic physical
effects of a velocity flow field v(x, t): the density is convected along
with the flow and either increases or decreases as it flows depending
on the sign of ∂v/∂x.

Conservation of energy

The temperature of a gas is a macroscopic manifestation of the energy of the
thermal motions of the gas molecules. The equation that enforces conservation
of energy for our system is

∂T

∂t
+ v

∂T

∂x
=−(γ−1)T

∂v

∂x
+DT

∂2T

∂x2 (12.3)

where γ is the ratio of specific heats in the gas: γ=Cp /Cv . This equation says that
as the gas is moved along with the flow and squeezed or stretched, the energy is
convected along with the flow and the pressure goes up and down adiabatically
(that’s why γ is in there). It also says that thermal energy diffuses due to thermal
conduction. Thermal diffusion is governed by the diffusion-like term containing
the thermal diffusion coefficient DT given in a gas by

DT = (γ−1)Mκ

kBρ
(12.4)

where κ is the thermal conductivity, M is the mass of a molecule of the gas, and
where kB is Boltzmann’s constant.

It is probably easier to conceptualize pressure waves rather than temperature
waves. The ideal gas law gives us a way to calculate the pressure, given a density
ρ and a temperature T .

P12.2 Show that the ideal gas law P = nkB T (where n is the number of particles
per unit volume) specifies the following connection between pressure P
and the density ρ and temperature T :

P = kB

M
ρT (12.5)
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Newton’s second law

Finally, let’s consider Newton’s second law for this system in a form analogous to
a = F /m:

∂v

∂t
+ v

∂v

∂x
=− 1

ρ

∂P

∂x
+ 4µ

3ρ

∂2v

∂x2 (12.6)

You should quickly recognize the first term d v/d t as acceleration, and we’ll
discuss the origin of the other acceleration term in a minute. The first term on
the right is the pressure force that pushes fluid from high pressure toward low
pressure, with the pressure P given by the ideal gas law in Eq. (12.5). The second
term on the right represents the force of internal friction called viscosity, and the
parameter µ is referred to as the coefficient of viscosity. (Tar has high viscosity,
water has medium viscosity, and air has almost none.) The 1/ρ factor in the force
terms represents the mass m in a = F /m (but of course we are working with mass
density ρ here).

You may be unconvinced that the left side of Eq. (12.6) is acceleration. To
become convinced, let’s think about this situation more carefully. Notice that
Newton’s second law does not apply directly to a place in space where there is a
moving fluid. Newton’s second law is for particles that are moving, not for a piece
of space that is sitting still with fluid moving through it. This distinction is subtle,
but important. Think, for instance, about a steady stream of honey falling out of a
honey bear held over a warm piece of toast. If you followed a piece of honey along
its journey from the spout down to the bread you would experience acceleration,
but if you watched a piece of the stream 10 cm above the bread, you would see
that the velocity of this part of the stream is constant in time: ∂v/∂t = 0. This is a
strong hint that there is more to acceleration in fluids than just ∂v/∂t = 0.

P12.3 To see what’s missing, let’s force ourselves to ride along with the flow by
writing v = v(x(t), t), where x(t) is the position of the moving piece of
honey. Carefully use the rules of calculus to evaluate d v/d t and derive the
acceleration formula on the left-hand side of Eq. (12.6).

Numerical approaches to the continuity equation

In the next lab we will actually tackle the hard problem of simultaneously advanc-
ing ρ, T , and v in time and space, but for now we will just practice on one of them
to develop the tools we need to do the big problem. And to keep things simple,
we will work with the simplest equation of the set:

∂ρ

∂t
+ ∂ρv

∂x
= 0 (12.7)

with a specified flow profile v(x) which is independent of time and an initial
density distribution ρ(x,0) = ρ0(x).
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The apparent simplicity of this equation is deceptive; it is one of the most
difficult equations to solve numerically in all of computational physics because
stable methods tend to be inaccurate and accurate methods tend either to be
unstable, or non-conservative (as time runs mass spontaneously disappears), or
unphysical (mass density and/or pressure become negative.) In the following
problem we will try an algorithm that is unstable, another that is stable but
inaccurate, and finally one that is both stable and conservative, but only works
well if the solution doesn’t become too steep. (Warning: we are talking about
gas dynamics here, so shock waves routinely show up as solutions. Numerical
methods that properly handle shocks are much more difficult than the ones we
will show you here.)

Before we continue we need to tell you about the boundary conditions on
Eq. (12.7). This is a convection equation, meaning that if you stand at a point in
the flow, the solution at your location arrives (is convected to you) from further
“upwind.” This has a strong effect on the boundary conditions. Suppose, for
instance, that the flow field v(x) is always positive, meaning that the wind is
blowing to the right. At the left-hand boundary it makes sense to specify ρ

because somebody might be feeding density in at that point so that it can be
convected across the grid. But at the right boundary it makes no sense at all to
specify a boundary condition because when the solution arrives there we just
want to let the wind blow it away. (An exception to this rule occurs if v = 0 at the
boundary. In this case there is no wind to blow the solution from anywhere and it
would be appropriate to specify a boundary condition.)

Peter Lax (b. 1926, American) Lax was
the PhD advisor for Burton Wendroff.

P12.4 Let’s start with something really simple and inaccurate just to see what can
go wrong.

ρn+1
j −ρn

j

τ
+ 1

2h

(
ρn

j+1v j+1 −ρn
j−1v j−1

)
= 0 (12.8)

This involves a nice centered difference in x and an inaccurate forward
difference in t . Solve this equation for ρn+1

j and use it in a time-advancing
script like the one you built to do the wave equation in Lab 5. We suggest
that you use a cell-center grid with ghost points because we will be using a
grid like this in the next lab. Use about 400 grid points. Use

ρ(x,0) = 1+e−200(x/L−1/2)2
(12.9)

with x ∈ [0,L], L = 10, and
v(x) = v0 (12.10)

with v0 = 1. At the left end use ρ(0, t) = 1 and at the right end try the
following two things:

(i) Set a boundary condition: ρ(L, t ) = 1.

(ii) Just let it leave by using linear extrapolation:

ρ(L, t ) = 2ρ(L−h, t )−ρ(L−2h, t ) or ρN+2 = 2ρN+1 −ρN (12.11)
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Run this algorithm with these two boundary conditions enough times, and
with small enough time steps, that you become convinced that ρ(L, t ) = 1 is
wrong and that the entire algorithm is worthless because it is unstable.

P12.5 Now let’s try another method, known as the Lax-Wendroff method. The
idea of the Lax-Wendroff algorithm is to use a Taylor series in time to obtain
a second-order accurate method.

ρ(x, t +τ) = ρ(x, t )+τ∂ρ
∂t

+ τ2

2

∂2ρ

∂t 2 (12.12)

(a) Use this Taylor expansion and Eq. (12.7) to derive the following expres-
sion (assume that v is not a function of time):

ρ(x, t +τ) = ρ(x, t )−τ∂ρv

∂x
+ τ2

2

∂

∂x

(
v
∂ρv

∂x

)
. (12.13)

If you stare at this equation for a minute you will see that a diffusion-
like term has showed up. To see this subtract ρ(x, t ) from both sides
and divide by τ, then interpret the new left-hand side as a time deriva-
tive.

Since the equation we are solving is pure convection, the appearance
of diffusion is not good news, but at least this algorithm is better than
the horrible one in 12.4. Notice also that the diffusion coefficient you
found above is proportional to τ (stare at it until you can see that this
is true), so if small time steps are being used diffusion won’t hurt us
too much.

(b) Now finite difference the expression in Eq. (12.13) assuming that
v(x) = v0 = const, as in 12.4 to find the Lax-Wendroff algorithm:

ρn+1
j = ρn

j −
v0τ

2h
[ρn

j+1 −ρn
j−1]+ v2

0τ
2

2h2 [ρn
j+1 −2ρn

j +ρn
j−1] (12.14)

Change your script from 12.4 to use the Lax-Wendroff algorithm.
Again, use a cell-center grid with ghost points and about 400 grid
points. Also use the same initial condition as in Problem 12.4 and use
the extrapolated boundary condition that just lets the pulse leave.

Show that Lax-Wendroff works pretty well unless the time step exceeds
a Courant condition. Also show that it has the problem that the peak
density slowly decreases as the density bump moves across the grid.
(To see this use a relatively coarse grid and a time step just below the
stability constraint.

Warning: do not run with τ= h/v0. If you do you will conclude that
this algorithm is perfect, which is only true for this one choice of time
step.) This problem is caused by the diffusive term in the algorithm,
but since this diffusive term is the reason that this algorithm is not
unstable like the one in 12.4, we suppose we should be grateful.
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P12.6 Finally, let’s try an implicit method, Crank-Nicolson in fact. Proceeding as
we did with the diffusion equation and Schrödinger’s equation we finite
difference Eq. (12.7) like this:

ρn+1
j −ρn

j

τ
=− 1

2h

(
ρn+1

j+1 +ρn
j+1

2
v j+1 −

ρn+1
j−1 +ρn

j−1

2
v j−1

)
(12.15)

Note that v has no indicated time level because we are treating it as constant
in time for this lab. (In the next lab we will let v change in time as well as
space.) And now because we have ρn+1

j−1 , ρn+1
j , and ρn+1

j+1 involved in this
equation at each grid point j we need to solve a linear system of equations
to find ρn+1

j .

(a) Put the Crank-Nicolson algorithm above into matrix form like this:

Aρn+1 = Bρn (12.16)

by finding A j , j−1, A j , j , A j , j+1, B j , j−1, B j , j , and B j , j+1 (the other ele-
ments of A and B are zero.)

0
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Figure 12.1 A pulse is convected
across a region in which the con-
vection velocity v(x) is constant
(Problem 12.6(c)).

(b) Work out how to implement the boundary conditions, ρ(0, t ) = 1 and
ρ(L, t ) is just allowed to leave, by properly defining the top and bottom
rows of the matrices A and B. This involves multiplying Bρn to find
an r-vector as you have done before.

(c) Implement this algorithm with a constant convection velocity v =
v0 and show that the algorithm conserves amplitude to very high
precision and does not widen due to diffusion. These two properties
make this algorithm a good one as long as shock waves don’t develop.

Figure 12.2 A pulse is convected
across a region in which the con-
vection velocity v(x) is decreasing.
Note that the pulse narrows and
grows, conserving mass. (Prob-
lem 12.6(d))

(d) Now use a convection velocity that varies with x:

v(x) = 1.2−x/L (12.17)

This velocity slows down as the flow moves to the right, which means
that the gas in the back is moving faster than the gas in the front,
causing compression and an increase in density. You should see the
slowing down of the pulse and the increase in density in your numeri-
cal solution.

(e) Go back to a constant convection velocity v = v0 and explore the way
this algorithm behaves when we have a shock wave (discontinuous
density) by using as the initial condition

ρ(x,0) =


1.0 if 0 ≤ x ≤ L/2

0 otherwise
(12.18)

The true solution of this problem just convects the step to the right;
you will find that Crank-Nicolson fails at this seemingly simple task.

(f) For comparison, try the same step-function initial condition in your
Lax-Wendroff script from Problem 12.5.



Lab 13

Gas Dynamics II

Now we are going to use the implicit algorithm that we developed in the
previous lab as a tool to solve the three nonlinear coupled partial differential
equations of one-dimensional gas dynamics. These are the equations of one-
dimensional sound waves in a long tube pointed in the x-direction, assuming that
the tube is wide enough that friction with the walls doesn’t matter. As a reminder,
the three equations we need to solve are conservation of mass

∂ρ

∂t
+ ∂

∂x

(
ρv

)= 0 , (13.1)

conservation of energy

∂T

∂t
+ v

∂T

∂x
+ (γ−1)T

∂v

∂x
= (γ−1)Mκ

kB

1

ρ

∂2T

∂x2 , (13.2)

and Newton’s second law

∂v

∂t
+ v

∂v

∂x
=− 1

ρ

∂P

∂x
+ 4µ

3ρ

∂2v

∂x2 (13.3)

The pressure P is given by the ideal gas law

P = kB

M
ρT (13.4)

Because of the nonlinearity of these equations and the fact that they are
coupled we are not going to be able to write down a simple algorithm that will ad-
vance ρ, T , and v in time. But if we are creative we can combine simple methods
that work for each equation separately into a stable and accurate algorithm for
the entire set. We are going to show you one way to do it, but the computational
physics literature is full of other ways, including methods that handle shock waves.
This is still a very active and evolving area of research, especially for problems in
2 and 3 dimensions.

Simultaneously advancing ρ, T , and v

Let’s try a predictor-corrector approach similar to second-order Runge-Kutta
(which you learned about back in 330) by first taking an approximate step in time
of length τ to obtain predicted values for our variables one time step in the future.
We’ll refer to these first-order predictions for the future values as ρ̃n+1, T̃ n+1, and
ṽn+1. In the predictor step we will treat v as constant in time in Eq. (13.1) to
predict ρ̃n+1. Then we’ll use ρ̃n+1 to help us calculate T̃ n+1 using Eq. (13.2), while

75
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still treating v as fixed in time. Once these predicted values are obtained we can
use them with Eq. (13.3) to obtain a predicted ṽ . With all of these predictors for
the future values of our variables in hand, we do another round of Crank-Nicolson
on all three equations to step the solution forward in time. We can represent this
procedure schematically as follows:

Step 1 Use the old velocity vn as input for Eqn. (13.1) → Solve for the predicted
density ρ̃.

Step 2 Use vn and ρ̃ as inputs for Eqn. (13.2) → Solve for the predicted tempera-
ture T̃ .

Step 3 Use ρ̃ and T̃ as inputs for Eqn. (13.3) → Solve for the predicted velocity ṽ .

Step 4 Use ṽ as input for Eqn. (13.1) → Solve for the new density ρn+1.

Step 5 Use ṽ and ρn+1 as inputs for Eqn. (13.2) → Solve for the new temperature
T n+1.

Step 6 Use ρn+1 and T n+1 as inputs for Eqn. (13.3) → Solve for the new velocity
vn+1.

This procedure probably seems a bit nebulous at this point, so let’s go through
it in more detail. First we’ll derive the Crank-Nicolson algorithms for our three
equations, then we’ll show how to use these algorithms to solve the system using
the predictor-corrector method.

We’ll start off with the continuity equation, Eq. (13.1). We can’t solve this
equation directly because it has two unknowns (ρ and v). But if we assume that v
is known, then it is possible to solve the equation using Crank-Nicolson. As usual
for Crank-Nicolson, we forward difference in time and center difference in space
to find

ρn+1
j −ρn

j

τ
=−

vn
j+1ρ

n
j+1 − vn

j−1ρ
n
j−1

2h
(13.5)

Then we use time averaging to put the right side of the equation at the same time
level as the left (i.e. at the n +1/2 time level):

ρn+1
j −ρn

j =C1

(
ρn

j+1 +ρn+1
j+1

)
−C2

(
ρn

j−1 +ρn+1
j−1

)
(13.6)

where

C1 =− τ

8h

(
vn

j+1 + vn+1
j+1

)
(13.7)

C2 =− τ

8h

(
vn

j−1 + vn+1
j−1

)
(13.8)

Then we put the ρn+1 terms on the left and the ρn terms on the right:

C2ρ
n+1
j−1 +ρn+1

j −C1ρ
n+1
j+1 =−C2ρ

n
j−1 +ρn

j +C1ρ
n
j+1 (13.9)
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Then we write these equations along with the boundary conditions in matrix form

Aρn+1 = Bρn (13.10)

which we solve using linear algebra techniques. In order for the algorithm repre-
sented by Eq. 13.10 to calculate ρn+1, we need to feed it values for ρn , vn , and vn+1.
Since the inputs for these variables will be different in the predictor and the cor-
rector steps, we need to invent some notation. We’ll refer to this Crank-Nicolson
algorithm for stepping forward to find ρn+1 using the notation Sρ

(
ρn , vn , vn+1

)
so the variables the algorithm needs as inputs are explicitly shown.

Now let’s tackle the energy equation (13.2) to find a predicted value for T one
step in the future. We forward difference the time derivative and center difference
the space derivatives to find

T n+1
j −T n

j

τ
=−vn

j

T n
j+1 −T n

j−1

2h
− (γ−1)T n

j

vn
j+1 − vn

j−1

2h
+F

1

ρn
j

T n
j+1 −2T n

j +T n
j−1

h2

(13.11)
where

F = (γ−1)Mκ

kB
(13.12)

We then rearrange Eq. (13.11) into a form that makes the upcoming algebra (and
coding) more readable:

T n+1
j −T n

j

τ
= T n

j−1D1 +T n
j D2 +T n

j+1D3 (13.13)

where

D1 =
vn

j

2h
+ F

ρn
j h2 (13.14)

D2 =−(γ−1)
vn

j+1 − vn
j−1

2h
− 2F

ρn
j h2 (13.15)

D3 =−
vn

j

2h
+ F

ρn
j h2 (13.16)

P13.1 Finish deriving the Crank-Nicolson algorithm for T n+1 by putting the right-
hand side of Eq. (13.13) at the n + 1/2 time level. This means replacing
T n terms with (T n +T n+1)/2 in Eq. (13.13) and making the replacements
ρn ⇒ (ρn +ρn+1)/2 and vn ⇒ (vn + vn+1)/2 in D1, D2, and D3. Then put
your system of equations in the form

AT n+1 = BT n

and write out the coefficients in the A and B matrices so we can code them
later.
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When you are finished with Problem 13.1 you will have an algorithm for stepping
T forward in time. We’ll refer to this algorithm as ST

(
T n , vn , vn+1,ρn ,ρn+1

)
, so

we explicitly see the variables that are required as inputs.
Finally, we get to Newton’s law (Eq. (13.3) with Eq. (13.4)). Notice that Eq. (13.3)

has a nonlinear term: v(∂v/∂x). There is no way to directly represent this non-
linear term using a linear matrix form like Avn+1 = Bvn , so we’ll have to make an
approximation. We’ll assume that the leading v in the nonlinear term is somehow
known and designate it as v̄ . (We’ll deal with finding something to use for v̄ later.)
With a forward time derivative and a centered space derivative, we have

vn+1
j − vn

j

τ
=−v̄n

j

(
vn

j+1 − vn
j−1

2h

)
− kB

Mρn
j

(
ρn

j+1T n
j+1 −ρn

j−1T n
j−1

2h

)

+ 4µ

3ρn
j

(
vn

j+1 −2vn
j + vn

j−1

h2

)
(13.17)

Again, we’ll rewrite the equations with named groups of expressions that don’t
depend on v so that our algebra is manageable:

vn+1
j − vn

j

τ
= E0 + vn

j−1E1 + vn
j E2 + vn

j+1E3 (13.18)

where

E0 =− kB

Mρn
j

(
ρn

j+1T n
j+1 −ρn

j−1T n
j−1

2h

)
(13.19)

E1 =
v̄n

j

2h
+ 4µ

3ρn
j h2 (13.20)

E2 =− 8µ

3ρn
j h2 (13.21)

E3 =−
v̄n

j

2h
+ 4µ

3ρn
j h2 (13.22)

P13.2 Finish deriving the Crank-Nicolson algorithm for v by making the replace-
ments vn ⇒ (vn+1 + vn)/2 the right-hand side of Eq. (13.18) and ρn ⇒
(ρn + ρ̃n+1)/2, T n ⇒ (T n + T̃ n+1)/2, and v̄n ⇒ (v̄n + v̄n+1)/2 in E0, E1, E2,
and E3. Show that your system of equations needs to be in the form

Avn+1 = Bvn +E0

where E0 is a column vector. Write out the coefficients in the A and B
matrices so you can code them later.

We’ll refer to this v-stepping algorithm as Sv
(
vn , v̄n , v̄n+1,ρn ,ρn+1,T n ,T n+1

)
,

where, as usual, we explicitly show the variables that are required as inputs.
OK, now that you have algorithms for all three equations, we can restate the

predictor-corrector algorithm using our newly-developed notation.
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Predictor Step: First we predict ρn+1 while treating v as a constant:

ρ̃n+1 = Sρ
(
ρn , vn , vn+1 = vn)

Then we predict T n+1 using ρ̃n+1, still treating v as a constant

T̃ n+1 = ST
(
T n , vn , vn+1 = vn ,ρn ,ρn+1 = ρ̃n+1)

Then we predict vn+1 using ρ̃n+1 and T̃ n+1, while treating v̄ from the non-
linear term as a constant equal to the current v

ṽn+1 = Sv
(
vn , v̄n = vn , v̄n+1 = vn ,ρn ,ρn+1 = ρ̃n+1,T n , T̃ n+1)

Corrector Step: Now that we have predicted values for each variable, we step ρ
forward using

ρn+1 = Sρ
(
ρn , vn , vn+1 = ṽn)

Then we step T using

T n+1 = ST
(
T n , vn , vn+1 = ṽn ,ρn ,ρn+1)

And finally, we step v forward using

vn+1 = Sv
(
vn , v̄n = vn , v̄n+1 = ṽn ,ρn ,ρn+1,T n ,T n+1)

Waves in a closed tube

Now let’s put this algorithm into a script and use it to model waves in a tube of
length L = 10 m with closed ends through which there is no flow of heat. For
disturbances in air at sea level at 20◦ C we have temperature T = 293 K, mass
density ρ = 1.3 kg/m3, adiabatic exponent γ = 1.4, coefficient of viscosity µ =
1.82×10−5 kg/(m·s), and coefficient of thermal conductivity κ= 0.024 J/(m·s·K).
Boltzmann’s constant is kB = 1.38×10−23 J/K and the mass of the molecules of
the gas is M = 29×1.67×10−27 kg for air.

P13.3 (a) As you might guess, debugging the algorithm that we just developed
is painful because there are so many steps and so many terms to get
typed accurately. (When we wrote the solution code, it took over an
hour to track down two minus sign errors and a factor of two error.)
We’d rather have you use the algorithm than beat your head on the
wall debugging it, so here are four m-files (one main file and three
function files) that implement the algorithm. Go to the class web
site now and download these m-files. Study them and make sure you
understand how they work. Then call the TA over and explain how the
code works.
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(b) The one thing we haven’t included in the code is the boundary condi-
tions. The ends are insulating, so we have

∂T /∂x = 0 (13.23)

at both ends. Because the wall ends are fixed and the gas can’t pass
through these walls, the boundary conditions on the velocity are

v(0, t ) = v(L, t ) = 0 (13.24)

Use this fact to obtain the following differential boundary condition
on the density at the ends of the tube:

∂ρ

∂t
+ρ∂v

∂x
= 0 at x = 0 and x = L (13.25)

This condition simply says that the density at the ends goes up and
down in obedience to the compression or rarefaction produced by the
divergence of the velocity.

Write down the finite difference form for all three of these boundary
conditions. Make sure they are properly centered in time and space
for a cell-center grid with ghost points. Then code these boundary
conditions in the proper spots in the code.

Listing 13.1 (gas.m)

% Gas Dynamics in a closed tube, Physics 430

clear;close all;

global gamma kB mu M F A B h tau N;

% Physical Constants

gamma = 1.4; % Adiabatic Exponent

kappa = 0.024; % Thermal conductivity

kB = 1.38e-23; % Boltzman Constant

mu = 1.82e-5; % Coefficient of viscosity

M = 29*1.67e-27; % Mass of air molecule (Average)

F = (gamma-1)*M*kappa/kB; % a useful constant

% System Parameters

L=10.0; % Length of tube

T0 = 293; % Ambient temperature

rho0 = 1.3; % static density (sea level)

% speed of sound

c=sqrt(gamma * kB * T0 /M);

% cell-center grid with ghost points

N=100; h=L/N; x=-.5*h:h:L+.5*h;

x=x'; % turn x into a column vector

% initial distributions
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rho = rho0 * ones(N+2,1); T = T0 * ones(N+2,1); v = exp(-200*(x/L-0.5).^2) *

c/100;

% taulim=...;

% fprintf(' Courant limit on time step: %g \n',taulim);

tau=1e-4; %input(' Enter the time step - ')

tfinal = 0.1; %input(' Enter the run time - ')

nsteps = tfinal/tau;

skip = 5; %input(' Steps to skip between plots - ')

A=zeros(N+2,N+2); B=A;

for n=1:nsteps

time = (n-1) * tau;

% Plot the current values before stepping

if mod((n-1),skip)==0

subplot(3,1,1)

plot(x,rho);

ylabel('\rho');

axis([0 L 1.28 1.32])

title(['time=' num2str(time)])

subplot(3,1,2)

plot(x,T);

ylabel('T')

axis([0 L 292 294])

subplot(3,1,3)

plot(x,v);

ylabel('v');

axis([0 L -4 4])

pause(0.1)

end

% 1. Predictor step for rho

rhop = Srho(rho,v,v);

% 2. Predictor step for T

Tp = ST(T,v,v,rho,rhop);

% 3. Predictor step for v

vp = Sv(v,v,v,rho,rhop,T,Tp);

% 4. Corrector step for rho

rhop = Srho(rho,v,vp);

% 5. Corrector step for T

Tp = ST(T,v,vp,rho,rhop);

% 6. Corrector step for v

v = Sv(v,v,vp,rho,rhop,T,Tp);

% Now put rho and T at the same time-level as v

rho = rhop;
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T = Tp;

end

Listing 13.2 (Srho.m)

function rho = Srho(rho,v,vp)

% Step rho forward in time by using Crank-Nicolson

% on the continuity equation

global A B h tau N;

% Clear A and B (pre-allocated in main program)

A=A*0; B=A;

% Load interior points

for j=2:N+1

C1 = -tau * (v(j+1) + vp(j+1)) / (8*h);

C2 = -tau * (v(j-1) + vp(j-1)) / (8*h);

A(j,j-1)=C2;

A(j,j)=1;

A(j,j+1)=-C1;

B(j,j-1)=-C2;

B(j,j)=1;

B(j,j+1)=C1;

end

% Apply boundary condition

. . .

% Crank Nicolson solve to step rho in time

r = B*rho; rho = A\r;

end

Listing 13.3 (ST.m)

function T = ST(T,v,vp,rho,rhop)

global gamma F A B h tau N;

% Clear A and B (pre-allocated in main program)

A=A*0; B=A;

% Load interior points

for j=2:N+1

D1 = (v(j) + vp(j))/(4*h) + 2*F/(rho(j)+rhop(j))/h^2;

D2 = -(gamma-1) * (v(j+1) + vp(j+1) - v(j-1) - vp(j-1) )/(4*h) ...

- 4*F/(rho(j) + rhop(j))/h^2;

D3 = -(v(j) + vp(j))/(4*h) + 2*F/(rho(j)+rhop(j))/h^2;

A(j,j-1)=-0.5*D1;

A(j,j)=1/tau - 0.5*D2;

A(j,j+1)=-0.5*D3;

B(j,j-1)=0.5*D1;
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B(j,j)=1/tau + 0.5*D2;

B(j,j+1)=0.5*D3;

end

% Apply boundary condition

% Insulating: dt/dx = 0

. . .

% Crank Nicolson solve to step rho in time

r = B*T; T = A\r;

end

Listing 13.4 (Sv.m)

function v = Sv(v,vbar,vbarp,rho,rhop,T,Tp)

global kB mu M A B h tau N;

% Clear A and B (pre-allocated in main program)

A=A*0; B=A;

E0 = v * 0; % create the constant term the right size

% Load interior points

for j=2:N+1

E0(j) = -kB/4/h/M/(rho(j)+rhop(j)) * ...

( (rho(j+1) + rhop(j+1)) * (T(j+1) + Tp(j+1)) ...

- (rho(j-1) + rhop(j-1)) * (T(j-1) + Tp(j-1)));

E1 = (vbar(j) + vbarp(j))/(4*h) ...

+8*mu/3/h^2/(rho(j)+rhop(j));

E2 =-16*mu/3/h^2/(rho(j)+rhop(j));

E3 =-(vbar(j) + vbarp(j))/(4*h) ...

+8*mu/3/h^2/(rho(j)+rhop(j));

A(j,j-1)=-0.5*E1;

A(j,j)=1/tau - 0.5*E2;

A(j,j+1)=-0.5*E3;

B(j,j-1)=0.5*E1;

B(j,j)=1/tau + 0.5*E2;

B(j,j+1)=0.5*E3;

end

% Apply boundary condition

% Fixed: v = 0

. . .

% Crank Nicolson solve to step rho in time

r = B*v + E0; v = A\r;

end

P13.4 (a) Test the script by making sure that small disturbances travel at the
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sound speed c =
√

γkB T
M . To do this set T and ρ to their atmospheric

values and set the velocity to

v(x,0) = v0e−200(x/L−1/2)2
(13.26)

with v0 = c/100. If you look carefully at the deviation of the density
from its atmospheric value you should see two oppositely propagating
signals. Verify that they travel at the speed of sound.

(b) The predictor-corrector algorithm is not as stable as plain Crank-
Nicolson. Vary the time step and find where it begins to be unstable.
Then change N and see how the stability threshold changes. Come up
with an equation that estimates a limit on the step size in terms of h.

(c) Remove the effects of viscosity and thermal conduction by setting
µ= 0 and κ= 0. Increase the value of v0 to c/10 and beyond and watch
how the pulses develop. You should see the wave pulses develop steep
leading edges and longer trailing edges; you are watching a shock wave
develop. But if you wait long enough you will see your shock wave
develop ugly wiggles; these are caused by Crank-Nicolson’s failure to
properly deal with shock waves.

(d) Repeat part (c) with non-zero µ and κ and watch thermal conduction
and viscosity widen the shock and prevent wiggles. Try artificially
large values of µ and κ as well as their actual atmospheric values.



Lab 14

Solitons: Korteweg-deVries Equation

Figure 14.1 The log flume ride at
Lagoon produces a solitary wave
(marked by arrows in the frames
above). The leading edge of the
soliton is where the water begins
to spill over the side of the trough.

At the Lagoon amusement park in the town of Farmington, just north of Salt
Lake City, Utah, there is a water ride called the Log Flume. It is a standard, old-
fashioned water ride where people sit in a 6-seater boat shaped like a log which
slowly travels along a fiberglass trough through some scenery, then is pulled up
a ramp to an upper level. The slow ascent is followed by a rapid slide down into
the trough below, which splashes the passengers a bit, after which the log slowly
makes its way back to the loading area. But you can see something remarkable
happen as you wait your turn to ride if you watch what happens to the water in
the trough when the log splashes down. A large water wave is pushed ahead of
the log, as you might expect. But instead of gradually dying away, as you might
think a single pulse should in a dispersive system like surface waves on water, the
pulse lives on and on. It rounds the corner ahead of the log that created it, enters
the area where logs are waiting to be loaded, pushes each log up and down in
turn, then heads out into the scenery beyond, still maintaining its shape.

This odd wave is called a “soliton”, or “solitary wave”, and it is an interesting
feature of non-linear dynamics that has been widely studied in the last 30 years, or
so. The simplest mathematical equation which produces a soliton is the Korteweg-
deVries equation

∂y

∂t
+ y

∂y

∂x
+α∂

3 y

∂x3 = 0, (14.1)

which describes surface waves in shallow water. In the first two terms of this
equation you can see the convective behavior we studied in Lab 12, but the last
term, with its rather odd third derivative, is something new. We will be studying
this equation in this laboratory.

Numerical solution for the Korteweg-deVries equation

We will begin our study of the Korteweg-deVries equation by using Crank-Nicolson
to finite difference it on a grid so that we can explore its behavior by numerical
experimentation. The first step is to define a grid, and since we want to be able to
see the waves travel for a long time we will copy the trough at Lagoon and make
our computing region be a closed loop. We can do this by choosing an interval
from x = 0 to x = L, as usual, but then we will make the system be periodic by
declaring that x = 0 and x = L are actually the same point, as would be the case
in a circular trough. We will subdivide this region into N subintervals and let
h = L/N and x j = ( j −1)h, so that the grid is cell-edge. Normally such a cell-edge
grid would have N +1 points, but ours doesn’t because the last point ( j = (N +1))
is just a repeat of the first point: xN+1 = x1, because our system is periodic.
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We now do the usual Crank-Nicolson differencing, where we evaluate each
term in the equation at time level n +1/2. The last term in Eq. (14.1) has a third
derivative, which we haven’t done yet in our numerical methods. If you look back
at Eq. (1.15) in Problem 1.5(b), you’ll find a convenient finite difference form for
the third derivative. When we time average Eq. (1.15), we find

α
∂3 y

∂x3 = α

2h3

(
yn+1

j+2 −3yn+1
j+1 +3yn+1

j − yn+1
j−1 + yn

j+2 −3yn
j+1 +3yn

j − yn
j−1

)
(14.2)

Look closely at Eq. (14.2) and also at Eq. (1.15) to convince yourself that they are
not centered on a grid point, but at spatial location j +1/2. The use of this third
derivative formula thus adds a new twist to the usual Crank-Nicolson differencing:
we will evaluate each term in the equation not only at time level n +1/2, but also
at spatial location j +1/2 (at the center of each subinterval) so that the first and
third derivative terms are both properly centered. This means that we will be
using a cell-edge grid, but that the spatial finite differences will be cell centered.

Diederik Korteweg (1848–1941, Dutch)

Gustav de Vries (1866–1934, Dutch)
Diederik Korteweg was Gustav’s disser-
tation advisor.

With this wrinkle in mind, we can write the first term in Eq. (14.1) at time level
n +1/2 and space location j +1/2 as

∂y

∂t
= 1

2τ

(
yn+1

j + yn+1
j+1 − yn

j − yn
j+1

)
(14.3)

Now we have have to decide what to do about the nonlinear convection term
y∂y/∂x. We will assume that the leading y is known somehow by designating it
as ȳ and decide later how to properly estimate its value. Recalling again that we
need to evaluate at time level n +1/2 and space location j +1/2, the non-linear
term becomes

y
∂y

∂x
= ȳ j+1 + ȳ j

4h

(
yn+1

j+1 − yn+1
j + yn

j+1 − yn
j

)
(14.4)

For now, we’ve ignored the problem that the derivative in Eq. (14.4) is centered in
time at n +1/2 while the ȳ term isn’t. We’ll have to deal with this issue later.

Each of these approximations in Eqs. (14.2)–(14.4) is now substituted into
Eq. (14.1), the yn+1 terms are gathered on the left side of the equation and the yn

terms are gathered on the right, and then the coefficients of the matrices A and B
are read off to put the equation in the form

Ayn+1 = Byn (14.5)

in the usual Crank-Nicolson way. If we denote the four nonzero elements of A
and B like this:

A j , j−1 = a−− A j , j = a−
A j , j+1 = a+ A j , j+2 = a++
B j , j−1 = b−− B j , j = b−
B j , j+1 = b+ B j , j+2 = b++

(14.6)
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then the matrix coefficients turn out to be

a−− =− α

2h3 a− = 1

2τ
+ 3α

2h3 − (ȳ−+ ȳ+)

4h

a+ = 1

2τ
− 3α

2h3 + (ȳ−+ ȳ+)

4h
a++ = α

2h3

b−− = α

2h3 b− = 1

2τ
− 3α

2h3 + (ȳ−+ ȳ+)

4h

b+ = 1

2τ
+ 3α

2h3 − (ȳ−+ ȳ+)

4h
b++ =− α

2h3

(14.7)

where y− = y j and where y+ = y j+1, the grid points on the left and the right of the
j +1/2 spatial location (where we are centering).

P14.1 Derive the formulas in Eq. (14.7) for the a and b coefficients using the
finite-difference approximations to the three terms in the Korteweg-deVries
equation given in Eqs. (14.2)-(14.4).

Now that the coefficients of A and B are determined we need to worry about
how to load them so that the system will be periodic. For instance, in the first row
of A the entry A1,1 is a−, but a−− should be loaded to the left of this entry, which
might seem to be outside of the matrix. But it really isn’t, because the system is
periodic, so the point to the left of j = 1 (which is also the point j = (N +1)) is the
point j −1 = N . The same thing happens in the last two rows of the matrices as
well, where the subscripts + and ++ try to reach outside the matrix on the right.
So correcting for these periodic effects makes the matrices A and B look like this:

A =



a− a+ a++ 0 0 ... 0 a−−
a−− a− a+ a++ 0 ... 0 0

0 a−− a− a+ a++ ... 0 0
. . . . ... . . .
0 ... 0 0 a−− a− a+ a++

a++ 0 ... 0 0 a−− a− a+
a+ a++ 0 0 ... 0 a−− a−


(14.8)

B =



b− b+ b++ 0 0 ... 0 b−−
b−− b− b+ b++ 0 ... 0 0

0 b−− b− b+ b++ ... 0 0
. . . . ... . . .
0 ... 0 0 b−− b− b+ b++

b++ 0 ... 0 0 b−− b− b+
b+ b++ 0 0 ... 0 b−− b−


(14.9)

P14.2 Discuss these matrices with your lab partner and convince yourselves that
this structure correctly models a periodic system (it may help to think about
the computing grid as a circle with x1 = xN+1.)
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An easy way to load the coefficients in this way is to invent integer arrays
jmm, jm, jp, jpp corresponding to the subscripts −−, −, +, and ++ used in
the coefficients above. These arrays are built by these four lines of Matlab code
below. Run them and verify that they produce the correct “wrap-around” integer
arrays to load A, as shown in the for loop below.

N=10; jm=1:N; jp=mod(jm,N)+1; jpp=mod(jm+1,N)+1; jmm=mod(jm-2,N)+1;

for j=1:N

A(j,jmm(j))=...; % a(--)

A(j,jm(j))=...; % a(-)

A(j,jp(j))=...; % a(+)

A(j,jpp(j))=...; % a(++)

end

OK, we are almost ready to go. All we need to settle now is what to do with ȳ . To
properly center Crank-Nicolson in time between tn and tn+1 we need ȳ = yn+1/2,
but this is not directly possible. But if we use a predictor-corrector technique like
we did in the last lab, we can approximately achieve this goal. It goes like this.

We will apply Crank-Nicolson twice in each time step. In the first step (the
predictor step) we simply replace ȳ with yn , the present set of values of y , and call
the resulting new value (after Crank-Nicolson is used) ỹn+1, the predicted future
value. In the second step we combine this predicted value with the current value
to approximately build ȳn+1/2 using ȳn+1/2 ≈ (yn + ỹn+1)/2, then rebuild A and B
and do Crank-Nicolson again.

All right, that’s it. You may have the feeling by now that this will all be a little
tricky to code, and it is. We would rather have you spend the rest of the time in
this lab doing physics instead of coding, so below (and on the course web site)
you will find a copy of a Matlab script kdv.m that implements this algorithm. You
and your lab partner should carefully study the script to see how each step of
the algorithm described above is implemented, then work through the problems
listed below by running the script and making appropriate changes to it.

Listing 14.1 (kdv.m)

% Korteweg-deVries equation on a periodic

% cell-centered grid using Crank-Nicolson

clear; close all;

N=500; L=10; h=L/N; x=h/2:h:L-h/2;

x=x'; % turn x into a column vector

alpha=input(' Enter alpha - ')

ymax=input(' Enter initial amplitude of y - ')

% load an initial Gaussian centered on the computing region

y=ymax*exp(-(x-.5*L).^2);

% choose a time step

tau=input(' Enter the time step - ')
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% select the time to run

tfinal=input(' Enter the time to run - ') Nsteps=ceil(tfinal/tau);

iskip=input(' Enter the plot skip factor - ')

% Initialize the parts of the A and B matrices that

% do not depend on ybar and load them into At and Bt.

% Make them be sparse so the code will run fast.

At=sparse(N,N); Bt=At;

% Build integer arrays for handling the wrapped points at the ends

% (periodic system)

jm=1:N; jp=mod(jm,N)+1; jpp=mod(jm+1,N)+1; jmm=mod(jm-2,N)+1;

% load the matrices with the terms that don't depend on ybar

for j=1:N

At(j,jmm(j))=-0.5*alpha/h^3;

At(j,jm(j))=0.5/tau+3/2*alpha/h^3;

At(j,jp(j))=0.5/tau-3/2*alpha/h^3;

At(j,jpp(j))=0.5*alpha/h^3;

Bt(j,jmm(j))=0.5*alpha/h^3;

Bt(j,j)=0.5/tau-3/2*alpha/h^3;

Bt(j,jp(j))=0.5/tau+3/2*alpha/h^3;

Bt(j,jpp(j))=-0.5*alpha/h^3;

end

for n=1:Nsteps

% do the predictor step

A=At;B=Bt;

% load ybar, then add its terms to A and B

ybar=y;

for j=1:N

tmp=0.25*(ybar(jp(j))+ybar(jm(j)))/h;

A(j,jm(j))=A(j,jm(j))-tmp;

A(j,jp(j))=A(j,jp(j))+tmp;

B(j,jm(j))=B(j,jm(j))+tmp;

B(j,jp(j))=B(j,jp(j))-tmp;

end

% do the predictor solve

r=B*y;

yp=A\r;

% corrector step

A=At;B=Bt;

% average current and predicted y's to correct ybar

ybar=.5*(y+yp);

for j=1:N

tmp=0.25*(ybar(jp(j))+ybar(jm(j)))/h;

A(j,jm(j))=A(j,jm(j))-tmp;

A(j,jp(j))=A(j,jp(j))+tmp;
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B(j,jm(j))=B(j,jm(j))+tmp;

B(j,jp(j))=B(j,jp(j))-tmp;

end

% do the final corrected solve

r=B*y;

y=A\r;

if rem(n-1,iskip)==0

plot(x,y)

xlabel('x');ylabel('y')

pause(.1)

end

end

Solitons
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Figure 14.2 A Gaussian pulse af-
ter 1 second of propagation by
the Korteweg-deVries equation
(Problem 14.3)

P14.3 (a) Run kdv.m with α = 0.1, ymax = 2, τ = 0.5, tfinal = 100, and iskip=1.
After a while you should see garbage on the screen. This is to convince
you that you shouldn’t choose the time step to be too large.

(b) Now run (a) again, but with τ= 0.1, then yet again with τ= 0.02. Use
tfinal = 10 for both runs and iskip big enough that you can see the
pulse moving on the screen. You should see the initial pulse taking off
to the right, but leaving some bumpy stuff behind it as it goes. The
trailing bumps don’t move as fast as the big main pulse, so it laps them
and runs over them as it comes in again from the left side, but it still
mostly maintains its shape. This pulse is a soliton. You should find
that there is no point in choosing a very small time step; τ= 0.1 does
pretty well.

The standard “lore” in the field of solitons is that the moving bump you saw in
problem 14.3 is produced by a competition between the wave spreading caused
by the third derivative in the Korteweg-deVries equation and the wave steepening
caused by the y∂y/∂x term. Let’s run kdv.m in such a way that we can see the
effect of each of these terms separately.

P14.4 (a) Dispersion (wave-spreading) dominates: Run kdv.m with α = 0.1,
ymax = 0.001, τ= 0.1, and tfinal = 10. The small amplitude makes the
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Figure 14.3 Dispersion dominates
(Problem 14.4(a).): after 3 seconds
of time.

nonlinear convection term y∂y/∂x be so small that it doesn’t matter;
only the third derivative term matters. You should see the pulse fall
apart into random pulses. This spreading is similar to what you saw
when you solved Schrödinger’s equation. Different wavelengths have
different phase velocities, so the different parts of the spatial Fourier
spectrum of the initial pulse get out of phase with each other as time
progresses.
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(b) Non-linear wave-steepening dominates: Run kdv.m with α = 0.01,
ymax = 2, τ = 0.01, and tfinal = 10. (If your solution develops short
wavelength wiggles this is an invitation to use a smaller time step. The
problem is that the predictor-correction algorithm we used on the
nonlinear term is not stable enough, so we have a Courant condition
in this problem.)
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Figure 14.4 Steepening dominates
(Problem 14.4(b).): after 0.5 sec-
onds of time.

Now it is the dispersion term that is small and we can see the effect
of the non-linear convection term. Where y is large the convection is
rapid, but out in front where y is small the convection is slower. This
allows the fast peak to catch up with the slow front end, causing wave
steepening. (An effect just like this causes ocean waves to steepen and
then break at the beach.)

The large pulse that is born out of our initial Gaussian makes it seem like
there ought to be a single pulse that the system wants to find. This is, in fact the
case. It was discovered that the following pulse shape is an exact solution of the
Korteweg-deVries equation:

y(x, t ) = 12k2α

cosh2 (k(x −x0 −4αk2t ))
(14.10)

where x0 is the center of the pulse at time t = 0.

P14.5 (a) Use Mathematica to show that this expression does indeed satisfy the
Korteweg-deVries equation.

(b) Now replace the Gaussian initial condition in kdv.m with this pulse
shape, using k = 1.1, x0 = L/2, and adjusting α so that the height of
the initial pulse is exactly equal to 2, so that it matches the Gaussian
pulse you ran in 14.3. You should find that this time the pulse does
not leave trailing pulses behind, but that it moves without changing
shape. It is a perfect soliton.

(c) The formula at the beginning of this problem predicts that the speed
of the pulse should be

csoliton = 4αk2 (14.11)

Verify by numerical experimentation that your soliton moves at this
speed. The commands max and polyfit are useful in this part.

P14.6 One of the most interesting things about solitons is how two of them interact
with each other. When we did the wave equation earlier you saw that left
and right moving pulses passed right through each other. This happens
because the wave equation is linear, so that the sum of two solutions is
also a solution. The Korteweg-deVries equation is nonlinear, so simple
superposition can’t happen. Nevertheless, two soliton pulses do interact
with each other in a surprisingly simple way.
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To see what happens keep α= 0.1, but modify your code from 14.5 so that
you have a soliton pulse with k = 1.5 centered at x = 3L/4 and another
soliton pulse with k = 2 centered at x = L/4. Run for about 20 seconds and
watch how they interact when the fast large amplitude pulse in the back
catches up with the slower small amplitude pulse in the front. Is it correct
to say that they pass through each other? If not, can you think of another
qualitative way to describe their interaction?



Appendix A

Fourier Methods for Solving the Wave Equation

The wave equation is often solved analytically using Fourier methods. In this
method, you first consider the behavior of a plane wave solution to the wave
equation in the form y(t , x) = Ae i (ωt−kx). This type of plane wave satisfies linear
wave equations for arbitrary frequencies ω as long as k is chosen appropriately.
The relationship between k and ω is referred to as the dispersion relation, and
encodes much of the physics describing wave propagation.

Once you have the appropriate dispersion relation for the system, you can
calculate wave propagation through the system using Fourier theory. To do this,
you first recall that if you add a bunch of sinusoids of the form g (ω)e iωt with
appropriately chosen amplitudes g (ω), you can get them to interfere and produce
any wave form with any temporal shape you like. If you know the temporal shape
of the pulse at a given spatial point, say x = 0, you can get the amplitudes g (ω) for
your coefficients by taking a Fourier transform:

g (ω, x = 0) = 1p
2π

∞∫
−∞

f (t , x = 0)e iωt d t (A.1)

Then, to calculate the temporal form of the pulse at points besides x = 0
you add up traveling waves of the form g (ω)e i (kx−ωt ). The different frequency
components travel at their individual phase velocities, given by vp =ω/k. If there
is no dispersion, k and ω are related by the simple dispersion relation k =ω/c
(where c is a constant with units of speed), so the phase velocity is the same
for all frequency components: vp = c. However, in many situations we have a
different dispersion relation k(ω) because different frequency components move
at a different speeds. As the frequency components shift phase relative to one
another, the shape of the pulse evolves.

If the medium responds linearly to the waves, Fourier analysis provides an
easy way to add up all of these frequency components with different phase veloci-
ties. If we freeze time, the phase change for each frequency component due to
moving to a different point in space is given by k(ω)x. In complex notation, this
means that the spectrum at a point x is related to the spectrum at x = 0 through

g (ω, x) = g (ω, x = 0)e i k(ω)x (A.2)

If we take an inverse Fourier transform of this spectrum

f (t , x) = 1p
2π

∞∫
−∞

g (ω, x)e−iωt dω= 1p
2π

∞∫
−∞

g (ω, x = 0)e i (kx−ωt )dω (A.3)
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we can find the form of the pulse at an arbitrary x. Note that the last expression
explicitly has the sum of traveling waves that we talked about conceptually.
PA.1 Let’s use this technique to model the propagation of a water wave. Since

Eqs. (A.1) and (A.3) are written as standard Fourier integrals, use the Matlab
functions ft.m and ift.m as discussed in Introduction to Matlab rather
than the regular fft. Use a time array that is 200 s wide with N = 216 =
65536, like this

N = 2^16; tmax = 200; tau = tmax/(N-1); t=0:tau:(N-1)*tau; dw = 2*pi/tmax;

w = -(N/2)*dw:dw:dw*(N/2-1);

Notice that we’ve chosen a symmetric ω array because we will be using
ft.m and ift.m.

Make your initial water pulse using f (t , x = 0) = e−(t−20)2/0.52
. This is a

bump of water, sort of like the wave that a speedboat pushes away from it
as it drives. (A boat makes two waves that propagate away from each other
to make the wake—we’ll just look at one of the waves.) Plot f (t , x = 0) to see
its shape, and then, find the spectrum g (ω, x = 0) of this pulse using ft.m.

Now find the spectrum of the pulse at x = 30 by multiplying g (ω, x = 0) by
e i k(ω)x . The dispersion relation for water waves is

ω2 = g k tanh(kd) (A.4)

where g is the acceleration of gravity and d is the depth of the water. Since
we need k(ω), Eq. (A.4) needs to be solved numerically. You know how to
solve this equation using fzero, but since our ω array has 65,536 elements
it would take a while to just do each element directly. In the interest of time,
we’ve given you the matlab function waterk.m below that calculates k(ω)
for you. Look it over briefly to understand how it works, then just use it.

Finally, find f (t , x = 30) by taking the inverse Fourier transform of g (ω, x =
30) (using ift.m). Plot f (t , x = 0) and f (t , x = 30) on the same axis and
explain what you see. Decide whether high or low frequency water waves
travel faster in this model.

You have probably seen the dispersion of water waves behavior before. When
the wave that defines the edge of a wake leaves the boat, it is mostly just a single
bump of water. But it takes a lot of frequencies to make that bump. As the wave
propagates, each frequency component travels at its own phase velocity and the
bump spreads out and develops ripples. At the shore you get a long train of ripples
rather than a single bump.

Listing A.1 (waterk.m)

% function to calculate the water dispersion relation

function k = waterk(w,g,d)

% Make an approximate k. Error is less that 1e-15 for |kd| > 20

k = w.*abs(w) / g;
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% Fix the errors for |kd| < 20 using dsolve

disp('Refining the dispersion relation. Please be patient.'); disp('If your

w array has a lot of small values, this can take a while.')

for istep = 1:length(k)

if (abs(k(istep)*d) < 20)

eq = @(k) w(istep).^2-g*k*tanh(k*d);

k(istep) = fzero(eq, k(istep));

end

end





Appendix B

Implicit Methods in 2-Dimensions: Operator Splitting

Figure B.1 Diffusion in 2-
dimensions with an elliptical
central region set to zero.

Consider the diffusion equation in two dimensions, simplified so that the
diffusion coefficient is a constant:

∂T

∂t
= D

(
∂2T

∂x2 + ∂2T

∂y2

)
(B.1)

If we define the finite difference operators Lx and Ly as follows,

Lx T j ,k = T j+1,k −2Ti , j +T j−1,k

h2 ; Ly T j ,k = T j ,k+1 −2T j ,k +T j ,k−1

h2 (B.2)

then it is easy to write down the Crank-Nicolson algorithm in 2-dimensions (We
have suppressed the spatial subscripts to avoid clutter):

T n+1 −T n

τ
= D

2

(
Lx T n+1 +Lx T n +Ly T n+1 +Ly T n)

(B.3)

If we could solve simply for T n+1 = T n+1
i , j , as we did in the Lab 8, we would be

on our way. But, unfortunately, the required solution of a large system of linear
equations for the unknown T n+1

j ’s is not so simple.
To see why not, suppose we have a 100×100 grid, so that there are 10,000

grid points, and hence 10,000 unknown values of T n+1
i , j to find. And, because of

the difficulty of numbering the unknowns on a 2-dimensional grid, note that the
matrix problem to be solved is not tridiagonal, as it was in 1-dimension. Well,
even with modern computers, solving 10,000 equations in 10,000 unknowns is a
pretty tough job, so it would be better to find a clever way to do Crank-Nicolson
in 2-dimensions.

One such way is called operator splitting, and was invented by Douglas1 and
by Peaceman and Rachford.2 The idea is to turn each time step into two half-steps,
doing a fully implicit step in x in the first half-step and another one in y in the
second half-step. It looks like this:

T n+1/2 −T n

τ/2
= D

(
Lx T n+1/2 +Ly T n)

(B.4)

T n+1 −T n+1/2

τ/2
= D

(
Lx T n+1/2 +Ly T n+1) (B.5)

1Douglas, J., Jr., SIAM J. , 9, 42, (1955)
2Peaceman, D. W. and Rachford, H. H. , J. Soc. Ind. Appl. Math. , 3, 28, (1955)

97



98 Computational Physics 430

If you stare at this for a while you will be forced to conclude that it doesn’t
look like Crank-Nicolson at all.
PB.1 Use Mathematica to eliminate the intermediate variable T n+1/2 and show

that the algorithm gives

T n+1 −T n

τ
= D

2

(
Lx T n+1 +Lx T n +Ly T n+1 +Ly T n)−D2τ2

4
LxLy

(
T n+1 −T n

τ

)
(B.6)

which is just like 2-dimensional Crank-Nicolson (Eq. (B.3)) except that an
extra term corresponding to

D2τ2

4

∂5T

∂x2∂y2∂t
(B.7)

has erroneously appeared. But if T (x, y, t) has smooth derivatives in all
three variables this error term is second-order small in the time step τ.

We saw in Lab 8 that the accuracy of Crank-Nicolson depends almost com-
pletely on the choice of h and that the choice of τ mattered but little. This will
not be the case here because of this erroneous term, so τ must be chosen small
enough that D2τ2/`4 ¿ 1, where ` is the characteristic distance over which the
temperature varies (so that we can estimate LxLy ≈ 1/`4.) Hence, we have to be
a little more careful with our time step in operator splitting.

So why do we want to use it? Notice that the linear solve in each half-step
only happens in one dimension. So operator splitting only requires many sepa-
rate tridiagonal solves instead of one giant solve. This makes for an enormous
improvement in speed and makes it possible for you to do the next problem.

PB.2 Consider the diffusion equation with D = 2.3 on the x y square [−5,5]×
[−5,5]. Let the boundary conditions be T = 0 all around the edge of the
region and let the initial temperature distribution be

T (x, y,0) = cos
(πx

10

)
cos

(πy

10

)
(B.8)

First solve this problem by hand using separation of variables (let T (x, y, t ) =
f (t )T (x, y,0) from above, substitute into the diffusion equation and obtain
a simple differential equation for f (t ).) Then modify your Crank-Nicolson
script from Lab 7 to use the operator splitting algorithm described in Prob-
lem B.1. Show that it does the problem right by comparing to the analytic
solution. Don’t use ghost points; use a grid with points right on the bound-
ary instead.

PB.3 Modify your script from Problem B.2 so that the normal derivative at each
boundary vanishes. Also change the initial conditions to something more
interesting than those in B.2; it’s your choice.
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PB.4 Modify your script from Problem B.2 so that it keeps T = 0 in the square
region [−L,0]× [−L,0], so that T (x, y) relaxes on the remaining L-shaped
region. Note that this does not require that you change the entire algorithm;
only the boundary conditions need to be adjusted.





Appendix C

Tri-Diagonal Matrices

Many of the algorithms that we used in the labs involved solving matrix
equations of the form

Ax = r (C.1)

where the matrix A had a tri-diagonal form (i.e. it has non-zero elements only
on the diagonal and one element to either side). The full matrix A can get very
large if you need a lot of grid points. However, it is possible to make the algorithm
more efficient because of the simple form of A. Because only the main diago-
nal and its nearest diagonal neighbors are non-zero, it is possible to do Gauss
elimination using just these three sets of numbers while ignoring the rest of the
matrix. The Matlab script below called tridag.m does this and its calling syntax
is tridag(A,r). The input matrix A has N rows, where N is the number of grid
points, and it has three columns, one for each of the diagonals. The vector r is
the single-column right-hand side vector in the linear system of Eq. (C.1) The
routine tridag first puts the tridiagonal matrix in upper triangular form. In this
simple form it is easy to solve for xN because now the bottom row of the matrix is
simple, and the algorithm then just works its way back up to x1. This algorithm
was invented a long time ago and is usually called the Thomas algorithm.

To use it, first load the diagonal just below the main diagonal into A(:,1) (put
a zero in A(1,1) because the lower diagonal doesn’t have a point there); then fill
A(:,2) with the main diagonal, and finally put the upper diagonal into A(:,3)

(loading a zero into A(N,3).) Then do the solve with the command
x=tridag(A,r);

Here is the script tridag(A,r).

Listing C.1 (tridag.m)

function x = tridag(A,r)

% Solves A*x=r where A contains the three diagonals

% of a tridiagonal matrix. A contains the three

% non-zero elements of the tridiagonal matrix,

% i.e., A has n rows and 3 columns.

% r is the column vector on the right-hand side

% The solution x is a column vector

% first check that A is tridiagonal and compatible

% with r

[n,m]=size(A); [j,k]=size(r);
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if n ~= j

error(' The sizes of A and r do not match')

end

if m ~= 3

error(' A must have 3 columns')

end

if k ~= 1

error(' r must have 1 column')

end

% load diagonals into separate vectors

a(1:n-1) = A(2:n,1); b(1:n) = A(1:n,2); c(1:n-1) = A(1:n-1,3);

% forward elimination

for i=2:n

coeff = a(i-1)/b(i-1);

b(i) = b(i) - coeff*c(i-1);

r(i) = r(i) - coeff*r(i-1);

end

% back substitution

x(n) = r(n)/b(n); for i=n-1:-1:1

x(i) = (r(i) - c(i)*x(i+1))/b(i);

end

x = x.'; % Return x as a column vector

return;



Appendix D

Answers to Review Problems

Problem 0.1(a)

Listing D.1 (lab0p1a.m)

% Lab Problem 0.1a, Physics 430

for n=2:3:101

if mod(n,5)==0

fprintf(' fiver: %g \n',n);

end

end

Problem 0.1(b)

Listing D.2 (lab0p1b.m)

% Lab Problem 0.1b, Physics 430

N=input(' Enter N - ') sum=0; for n=1:N

sum=sum+n;

end

fprintf(' Sum = %g Formula = %g \n',sum,N*(N+1)/2);

Problem 0.1(c)

Listing D.3 (lab0p1c.m)

% Lab Problem 0.1c, Physics 430

x=input(' Enter x - ')

sum=0;

for n=1:1000

sum=sum + n*x^n;

end

fprintf(' Sum = %g Formula = %g \n',sum,x/(1-x)^2);
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Problem 0.1(d)

Listing D.4 (lab0p1d.m)

% Lab Problem 0.1d, Physics 430

sum=0; n=0;

term=1;

while term > 1e-8

n=n+1;

term=n*x^n;

sum=sum+term;

end

fprintf(' Sum = %g Formula = %g \n',sum,x/(1-x)^2);

Problem 0.1(e)

Listing D.5 (lab0p1e.m)

% Lab Problem 0.1e, Physics 430

% initialize the counter n, the term to be added, and the sum

n=1; term=1.; sum=term;

while term>1e-6

n=n+1;

term=1/n^2;

sum=sum+term ;

end

fprintf(' Sum/(pi^2/6) = %g \n',sum*6/pi^2);

Problem 0.1(f )

Listing D.6 (lab0p1f.m)

% Lab Problem 0.1f, Physics 430

prod=1;

for n=1:100000

term=1+1/n^2;

prod=prod*term;

if term-1 < 1e-8

break

end

end

fprintf(' Product = %g Formula = %g \n',prod,sinh(pi)/pi);
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Problem 0.1(g)

Listing D.7 (lab0p1g.m)

% Lab Problem 0.1g, Physics 430

x1=1;x2=1;x3=1;

chk=1;

while chk > 1e-8

x1new=exp(-x1);

x2new=cos(x2);

x3new=sin(2*x3);

chk=max([abs(x1new-x1),abs(x2-x2new),abs(x3-x3new)]);

x1=x1new;

x2=x2new;

x3=x3new;

end

fprintf(' x1 = %g x2 = %g x3 = %g \n',x1,x2,x3);





Appendix E

Glossary of Terms

by Dr. Colton and students in the Winter 2010 semester
Algorithm a set of steps used to solve a problem; frequently these are expressed

in terms of a programming language.

Analytical approach finding an exact, algebraic solution to a differential equa-
tion.

Cell-center grid a grid with a point in the center of each cell. For instance, a
cell-center grid ranging from 0 to 10 by steps of 1 would have points at 0.5,
1.5, . . . , 8.5, 9.5. Note that in this case, there are exactly as many points as
cells (10 in this case).

Cell-center grid with ghost points the same as a regular cell-center grid, but
with one additional point at each end of the grid (with the same spacing as
the rest). A cell-center grid with ghost points ranging from 0 to 10 by steps
of 1 would have points at -0.5, 0.5, . . . , 9.5, 10.5. Note that in this case, there
are two more points than cells. This arrangement is useful when setting
conditions on the derivative at a boundary.

Cell-edge grid a grid with a point at the edge of each cell. For instance, a cell-
edge grid ranging from 0 to 10 by steps of 1 would have points at 0, 1, . . . ,
9, 10. Note that in this case, there are actually N −1 cells (where N is the
number of points: 11 in this case). The discrepancy between the number
of cell and number of points is commonly called the “fence post problem”
because in a straight-line fence there is one more post than spaces between
posts.

Centered difference formula a formula for calculating derivatives on grids whereby
the slope is calculated at a point centered between the two points where
the function is evaluated. This is typically the best formula for the first
derivative that uses only two values.

f ′(x) ≈ f (x +h)− f (x −h)

2h

Courant condition also called the Courant-Friedrichs-Lewy condition or the
CFL condition, this condition gives the maximum time step for which an
explicit algorithm remains stable. In the case of the Staggered-Leap Frog
algorithm, the condition is τ> h/c.
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Crank Nicolson method an implicit algorithm for solving differential equations,
e.g. the diffusion equation, developed by Phyllis Nicolson and John Crank.

Dirichlet boundary conditions boundary conditions where a value is specified
at each boundary, e.g. if 0 < x < 10 and the function value at x = 10 is forced
to be 40.

Dispersion the spreading-out of waves

Eigenvalue problem the linear algebra problem of finding a vector g that obeys
Ag =λg.

Explicit algorithm an algorithm that explicitly use past and present values to
calculate future ones (often in an iterative process, where the future values
become present ones and the process is repeated). Explicit algorithms are
typically easier to implement, but more unstable than implicit algorithms.

Extrapolation approximating the value of a function past the known range of
values, using at least two nearby points.

Finite-difference method method that approximates the solution to a differen-
tial equation by replacing derivatives with equivalent difference equations.

Forward difference formula a formula for calculating derivatives on grids whereby
the slope is calculated at one of the points where the function is evaluated.
This is typically less exact than the centered difference formula, although
the two both become exact as h goes to zero.

f ′(x) ≈ f (x +h

− f (x)h

Gauss-Seidel method a Successive Over-Relaxation technique with w = 1.

Generalized eigenvalue problem the problem of finding a vector g that obeys
Ag =λBg.

Ghost points see “Cell-center grid with ghost points.”

Grid A division of either a spatial or temporal range (or both), used to numerically
solve differential equations.

Implicit algorithm an algorithm that use present and future values to calculate
future ones (often in a matrix equation, whereby all function points at a
given time level are calculated at once). Implicit algorithms are typically
more difficult to implement, but more stable than explicit algorithms.

Interpolation approximating the value of a function somewhere between two
known points, possibly using additional surrounding points.
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Iteration repeating a calculation a number of times, usually until the error is
smaller than a desired amount.

Korteweg-deVries Equation a differential equation that describes the motion of
a soliton.

Lax-Wendroff algorithm an algorithm that uses a Taylor series in time to obtain
a second-order accurate method

Neumann boundary conditions boundary conditions where the derivative of
the function is specified at each boundary, e.g. if 0 < x < 10 and at x = 10
the derivative d x/d t is forced to be 13.

Resonance the point at which a system has a large steady-state amplitude with
very little driving force.

Roundoff an error in accuracy that occurs when dealing with fixed-point arith-
metic on computers. This can introduce very large errors when subtracting
two numbers that are nearly equal.

Second derivative formula this is a centered formula for finding the second
derivative on a grid:

f ′′(x) ≈ f (x +h)−2 f (x)+ f (x −h)

h2

Staggered-Leap Frog an algorithm for solving differential equations (e.g. the
wave equation) whereby the value of a function one time step into the
future is found current and past values of the function. It suffers from the
difficulty at the start of needing to know the function value prior to the
initial conditions.

Steady State solutions to differential equations in which the system reaches an
equilibrium solution that continues on forever in the same fashion.

Successive Over-Relaxation A way to shift the eigenvalues. More specifically, it
is using a multiplier w to shift the eigenvalues., with w > 1.

Successive Over-Relaxation (SOR) An algorithm for solving a linear system such
as Vnew = L×Vol d + r by iterations, by shifting the eigenvalues. This can be
done via solving the equivalent problem of Vnew = w×[RHS of previous equation]+
(1−w)×Vol d . For good choices of w , this can lead to much quicker conver-
gence.

Transients solutions to differential equations that are initially present but which
quickly die out (due to damping), leaving only the steady-state behavior.
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Acoustics, 69

Boundary conditions
conservation of mass, 72
Dirichlet, 27
Neumann, 27
PDEs, 39

Cell-center grid, 1, 22
Cell-edge grid, 1
Centered difference formula, 4
CFL condition, 31

for diffusion equation, 43
Conservation of energy, 70
Conservation of mass, 69
Convection, 69
Courant condition, 31
Crank-Nicolson algorithm, 45, 47
Crank-Nicolson, gas dynamics, 74

Damped transients, 15
Data, differentiating, 8
Derivatives, first and second, 4
Differential equations on grids, 9
Differential equations via linear alge-

bra, 10
Differentiating data, 8
Diffusion equation, 41

CFL condition, 43
Diffusion in 2-dimensions, 97
Dirichlet boundary conditions, 27, 28

eig (Matlab command), 18
Eigenvalue problem, 16

generalized, 18, 22
Eigenvectors, 18
Electrostatic shielding, 66
Elliptic equations, 38

Explicit methods, 45
Extrapolation, 2, 5

For loop, v
Forward difference formula, 4

Gas dynamics, 69
Gauss-Seidel iteration, 59
Generalized eigenvalue problem, 18,

22
Ghost points, 1, 22
Gradient, Matlab command, 66
Grids

cell-center, 1, 22
cell-edge, 1
solving differential equations, 9
two-dimensional, 35

Hanging chain, 21
Hyperbolic equations, 38

Implicit methods, 45, 47
Initial conditions

wave equation, 27, 29
Instability, numerical, 31
Interpolation, 2
Iteration, vi, 58

Gauss-Seidel, 59
Jacobi, 59

Jacobi iteration, 59

Korteweg-deVries equation, 85

Laplace’s equation, 57
Lax-Wendroff algorithm, 73
Linear algebra

using to solve differential equa-
tions, 10
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Linear extrapolation, 5
Loops

for, v
while, v

Matrix form for linear equations, 10

ndgrid, 35
Neumann boundary conditions, 27,

29
Newton’s second law, 71
Nonlinear Coupled PDE’s, 75
Nonlinear differential equations, 13
Numerical instability, 31

Operator splitting, 97

Parabolic equations, 38
Partial differential equations, types,

38
Particle in a box, 53
Poisson’s equation, 57
Potential barrier

Schrödinger equation, 55

Quadratic extrapolation, 5

Resonance, 16
Roundoff, 8

Schrödinger equation, 39
bound states, 23
potential barrier, 55
time-dependent, 53

Second derivative, 4
Shielding, electrostatic, 66
Shock wave, 74
Solitons, 85
SOR, 61
Spatial grids, 1
Staggered leapfrog

wave equation, 27
Steady state, 15
Successive over-relaxation (SOR), 57,

61
Successive substitution, vi

Taylor expansion, 5
Thermal diffusion, 70
Tridag, 101
Tridiagonal matrix, 101
Two-dimensional grids, 35
Two-dimensional wave equation, 35

Wave equation, 15
boundary conditions, 27
initial conditions, 27
two dimensions, 35
via staggered leapfrog, 27

While loop, v
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