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Role of the instantaneous spectrum on pulse
propagation in causal linear dielectrics

Justin Peatross and Michael Ware

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Scott A. Glasgow

Department of Mathematics, Brigham Young University, Provo, Utah 84602

Received November 13, 2001; revised manuscript received January 23, 2001; accepted February 1, 2001

A model-independent theorem demonstrates how a causal linear dielectric medium responds to the instanta-
neous spectrum, that is, the spectrum of the electric field pulse that is truncated at each new instant (as a
given locale in the medium experiences the pulse). This process leads the medium to exchange energy with
the front of a pulse differently than with the back as the instantaneous spectrum laps onto or off of nearby
resonances. So-called superluminal pulse propagation in either absorbing or amplifying media as well as
highly subluminal pulse propagation are understood qualitatively and quantitatively within this context.
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1. INTRODUCTION
In this paper, we present an analytical description of how
pulses interact with nearby resonances in linear causal
media even when the spectral content of the pulse seems
insufficient to permit the interaction. This paper pro-
vides an analytical explanation for the qualitative argu-
ments made by Chiao and co-workers1–3 regarding super-
luminal pulse propagation in an amplifying medium.
Their simulations and analysis of the Lorentz model
showed that the leading portion of a pulse can borrow en-
ergy from an amplifying medium; this energy is then re-
turned to the medium from the later portions of the pulse.
Thus the superluminal behavior is understood to be a
pulse-reshaping effect caused by an exchange of energy
with the medium. Wang and co-workers4 incorrectly dis-
missed this interpretation in connection with their recent
superluminal observations, citing the lack of spectral
overlap between the pulse and the nearby amplifying
resonances.

The results presented here also provide analytical in-
sight into the earlier research by Garrett and McCumber5

and Chu and Wong6 in connection with superluminal
pulse propagation in absorbing linear dielectrics. Again,
as was understood in qualitative and model-dependent
contexts, the forward portion of an on-resonance pulse
can pass through a medium relatively unattenuated,
whereas the rear portion is preferentially absorbed.
Likewise, highly subluminal pulse propagation7 can be
understood as a pulse-reshaping effect (i.e., the attenua-
tion of the front of the pulse, the amplification of the back,
or both). Subluminal behavior is usually discussed in the
context of group velocity instead of in the present context
of pulse reshaping because concerns about relativity
naturally don’t arise.

All these phenomena can be described in the context of
the instantaneous power spectrum. The instantaneous
0740-3232/2001/071719-07$15.00 ©
spectrum is that spectrum perceived by individual points
in the medium up to any given moment as the pulse
sweeps past. Previously, the instantaneous power spec-
trum was utilized in describing the response of driven
electronic circuits,8 the acoustical response of materials to
sound waves,9 and the behavior of photon counters.10

We recently demonstrated11 that the time-dependent
spectrum arises naturally in Poynting’s theorem when
the principle of causality is invoked in the form of
Kramers–Kronig.12 This is done independently of spe-
cific models or approximations (in contrast with most dis-
cussions regarding exotic pulse-propagation phenomena).
The principle of causality requires a medium experienc-
ing a pulse to be prepared for an abrupt termination of
the field at any moment, in which case further exchange
of energy with the field cannot take place. Such a termi-
nation produces a truncated waveform that generally con-
tains a wider range of spectral components than are
present in the pulse taken in its entirety. This momen-
tary spectrum can lap onto nearby absorbing or amplify-
ing resonances. The medium accordingly attenuates or
amplifies this perceived spectrum. As the medium expe-
riences the waveform, it continually reassesses the spec-
trum and thereby treats the front and the rear of the
pulses differently.

In presenting our arguments, we refer to Poynting’s
theorem and to the traditional energy-transport
velocity,13–15 which, in the context that we give it, is
strictly luminal. A brief review is given in Section 2.
Section 3 describes how the energy density in Poynting’s
theorem can be rewritten in terms of the instantaneous
spectrum. Section 4 explains the role of the instanta-
neous spectrum in superluminal propagation in amplify-
ing media. Section 5 explains the spectrum’s role in su-
perluminal propagation in absorbing media. Section 6
explains its role in subluminal pulse propagation. We
2001 Optical Society of America



1720 J. Opt. Soc. Am. A/Vol. 18, No. 7 /July 2001 Peatross et al.
discuss the results further in Section 7 and make the con-
nection with group velocity.

2. POYNTING’S THEOREM
In this paper, we utilize Maxwell’s equations in a linear,
isotropic, nonmagnetic, nonconducting medium:
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We considered energy transport in anisotropic and dia-
magnetic media in another report.11 By convention, we
take all fields to be real in the time domain.

Poynting’s theorem is a direct consequence of Eqs. (1)
and can be written (under the previous assumptions) as
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where the Poynting vector is S [ E 3 B/m0 and the total
energy density is given by

u~t ! 5 ufield 1 uexchange 1 u~2`!. (3)

Expression (3) for the energy density includes all forms of
energy, including a nonzero integration constant u(2`)
that corresponds to energy stored in the medium before
the arrival of any pulse. The electromagnetic field en-
ergy is
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2
. (4)

The time-dependent accumulation of energy transferred
into the medium from the field is given by

uexchange 5 E
2`

t

E •

]P

]t8
dt8. (5)

As uexchange increases, the energy in the medium in-
creases; conversely, as uexchange decreases, the medium
surrenders energy to the electromagnetic field. Although
it is possible for uexchange to become negative, the combi-
nation uexchange 1 u(2`) should never be considered to
become negative because a material cannot surrender
more energy than it has to begin with.

The energy-transport velocity13–15 is defined as

vE [ S/u. (6)

If only ufield is used in evaluating Eq. (6) the Cauchy–
Schwartz inequality (i.e., a2 1 b2 > 2ab) ensures that
vE is strictly bounded by c. We insist that the total en-
ergy density u never be considered to be less than ufield .
In this we differ from previous usage of the energy-
transport velocity in connection with amplifying media1,3

in which the constant of integration u(2`) was left at
zero (apparently by default), resulting in the viewpoint of
superluminal and negative (opposite to the direction of S)
energy-transport velocities.
3. INSTANTANEOUS SPECTRUM
We now turn our attention to an examination of uexchange
in a frequency-dependent context. We utilize the
frequency-domain representation of the electric field:

E~v! [
1

A2p
E

2`

`

exp~ivt !E~t !dt. (7)

In accord with the linear and the isotropic assumptions
the temporally nonlocal constitutive relation between the
electric field and the polarization can be written in terms
of the linear susceptibility as

P~v! 5 e0x~v!E~v!. (8)

The polarization as a function of time is then obtained
from

P~t ! 5
1

A2p
E

2`

`

P~v!exp@2~ivt !#dv. (9)

We developed the following exact representation11 for
the exchange energy density defined in Eq. (5):

uexchange 5 e0E
2`

`

uEt~v!u2v Im x~v!dv, (10)

where

Et~v! [
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Theorem (11) is obtained by the imposition of the require-
ments of causality on the susceptibility x(v). An outline
of the derivation is provided in Appendix A. As is ex-
plained below, this general form of uexchange reveals physi-
cal insights into the manner in which causal dielectric
materials exchange energy with different parts of an elec-
tromagnetic pulse. The description here is model inde-
pendent. It is applicable to any function x(v) that obeys
the Kramers–Kronig relations.12 Only the imaginary
part of x(v) is needed because it directly controls absorp-
tion and is therefore responsible for the energy exchange.
Although the real part of x(v) is not formally present in
Eq. (10), it is not independent of the imaginary part and
can be obtained if desired through the Kramers–Kronig
relations.

uexchange does not increase (or decrease) monotonically.
Its value depends on the past history of the pulse up until
the current time t. This time dependence enters through
only the square magnitude of Et(v), called the instanta-
neous power spectrum. Et(v) can be interpreted as the
Fourier transform of the pulse that is truncated at the
current time t and set to zero thereafter. Obviously, a
truncated pulse can include many frequency components
that are not present in the pulse taken in its entirety.
This relation explains why the medium responds differ-
ently to the front of a pulse versus the back. Even
though absorption or amplification resonances may lie
outside of the spectral envelope of the entire pulse the in-
stantaneous spectrum perceived by the medium may mo-
mentarily overlap the resonances. The medium cannot
anticipate the future of the pulse, so it must amplify or
attenuate in accord with the spectrum of the pulse expe-
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rienced up until the current time t. In doing this the ma-
terial is always prepared for the possibility of an abrupt
termination of the field, in which case there can be no fur-
ther exchange of energy. This means that the amplifica-
tion or attenuation must be correct at each instant.

Because the exchange energy density uexchange handles
the transfer of energy from the field to the medium, it is
controlled by the imaginary part of x(v). For a strictly
absorptive medium [i.e., v Im x(v) > 0, because fields are
taken to be real in the time domain] uexchange is seen to be
positive definite so that the total energy density is always
greater than ufield [with u(2`) appropriately set to zero].
In an active medium [i.e., v Im x(v) < 0] the integrand
becomes negative because energy is pulled from the me-
dium and given to the field. In this case u(2`) is chosen
to be sufficiently large to avoid removing (even if momen-
tarily) energy from the medium that is not there to begin
with. In either case strict luminality of the energy-
transport velocity is maintained with u > ufield .

4. SUPERLUMINAL EFFECTS IN
AMPLIFYING MEDIA
Equations (10) and (11) elucidate what happens when a
narrow-band pulse in an amplifying medium undergoes
the Chiao effect. The instantaneous spectrum dictates
how the front of the pulse borrows energy from neighbor-
ing amplifying resonances even if the spectrum of the
complete pulse is well outside of any gain peak. The in-
stantaneous spectrum laps onto nearby amplifying reso-
nances during early potions of the pulse, and the medium
accordingly amplifies this perceived spectrum. As the

Fig. 1. (a) Electric field envelope in units of E0 . The vertical
lines indicate times for the assessment of the instantaneous spec-
trum. (b) Refractive index associated with an amplifying reso-
nance. (c) Exchange energy density in units of e0E0

2/2. (d) In-
stantaneous spectra of the field pulse in units of E0

2/g2. The
spectra are assessed at the times indicated by the vertical lines
in (a) and (c).
medium experiences the waveform, it continually reas-
sesses the spectrum in accord with Eq. (11). During the
trailing portion of the pulse the instantaneous spectrum
narrows as the perceived pulse spectrum withdraws from
the nearby resonance and previously borrowed energy is
returned to the medium.

Figure 1(a) shows the field envelope of a Gaussian
pulse given by E(t) 5 E0 exp(2t2/t 2)cos(v̄t). We con-
sider this waveform to be passing through a point in a me-
dium with an amplifying resonance that is centered on
the frequency v0 5 v̄ 1 10g, where g is the width of the
resonance. For illustration purposes, we employ the Lor-
entz model, x(v) 5 fvp

2/@v0
2 2 v2 2 (igv)#, where vp is

the plasma frequency and f is the oscillator strength [note
that Eqs. (10) and (11) are model independent]. The pa-
rameters of the active medium are chosen to be v0
5 100g and fvp

2 5 2100g2. Figure 1(b) shows the real
and the imaginary parts of the refractive index in the
neighborhood of the resonance. As usual, the connection
to the susceptibility is given by (Re n 1 i Im n)2 5 1 1 x.
The duration of the pulse is chosen to be t 5 1/g, which
results in a pulse spectral width (centered on v̄) that is
similar to the width of the amplifying resonance. Figure
1(c) depicts the exchange energy density uexchange for a
point experiencing the pulse as a function of time. The
dip in the curve indicates the well-known effect of the
pulse’s borrowing excess energy from the medium that it
returns (in part) during the later portion. The gray curve
depicts the rapid oscillations (approximately 100—not re-
solved in the figure), whereas the black curve is time av-
eraged.

Figure 1(d) displays the instantaneous power spectrum
(used in computing uexchange) evaluated at various times
during the pulse. The corresponding times are indicated
with vertical lines in both Figs. 1(a) and 1(c). The format
of each vertical line matches a corresponding spectral
curve. The instantaneous spectrum exhibits wide wings
that vary in strength, depending on when the integral in
Eq. (11) truncates the pulse. The spectral wings appear
early during the pulse, grow stronger, and then diminish
as the pulse passes. A comparison of Figs. 1(b) and 1(d)
shows that the wings lap onto the amplifying resonance
during the passage of the pulse. As the wings grow and
access the neighboring resonance, the pulse extracts ex-
cess energy from the medium; as the wings diminish, the
pulse surrenders that energy back to the medium. A
similar result can also be seen when the pulse spectrum is
centered above the amplifying resonance (or between two
resonances, as in the experiment by Wang et al.4).

5. SUPERLUMINAL EFFECTS IN
ABSORBING MEDIA
The effect reported by Garret and McCumber5 and by
Chu and Wong6 is the converse of the description in Sec-
tion 4 of the amplifying case. This effect occurs when a
narrow-band pulse is centered on an absorption reso-
nance. The instantaneous spectrum during early por-
tions of the pulse extends away from the resonance. This
effect is seen in Figs. 2(a)–2(d), which are similar to Figs.
1(a)–1(d). However, as is characteristic of an absorption
resonance, the oscillator strength f is taken to be positive
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instead of negative. Also, the pulse duration is taken to
be t 5 10/g (10 times longer than that shown in Fig. 1),
making the spectral content of the pulse narrower than
the absorption resonance. All other parameters are the
same as in Section 4 except that the center frequency of
the pulse is chosen to lie on resonance (i.e., v0 5 v̄), as
can be seen from Fig. 2(d).

A comparison of Figs. 2(b) and 2(d) shows that the
wings of the instantaneous spectrum extend well away
from the absorbing resonance during the early part of the
pulse. This position is consistent with the fact that the
exchange energy seen in Fig. 2(c) is delayed in transfer-
ring energy from the field to the material. The rapid os-
cillations are on such a tiny scale that they are not seen in
the figures. The dark diamond in the center of Fig. 2(c)
corresponds to the exchange energy at time t 5 0 (i.e.,
the midpoint in time of the Gaussian field profile). As is
apparent, significantly less than half of the final exchange
energy has transferred by this time. This condition cor-
responds to the fact that the early part of the field enve-
lope is less attenuated than the rear portion. Note that,
in this situation, the slope of the exchange energy is al-
ways positive. This slope indicates that the resultant
electric field envelope after the exchange lies within the
original pulse envelope.

6. SUBLUMINAL EFFECTS
As was described in Sections 4 and 5, superluminal be-
havior is manifest when a pulse propagates off resonance
in an amplifying medium or on resonance in an absorbing

Fig. 2. (a) Electric field envelope in units of E0 . The vertical
lines indicate times for the assessment of the instantaneous spec-
trum. (b) Refractive index associated with an absorbing reso-
nance. (c) Exchange energy density in units of e0E0

2/2. (d) In-
stantaneous spectra of the field pulse in units of E0

2/g2. The
spectra are assessed at the times indicated by the vertical lines
in (a) and (c). Note that the pulse duration is longer than that
shown in Fig. 1.
medium. Subluminal behavior occurs in the reverse of
either situation. This behavior is illustrated in Figs.
3(a)–3(d), which are identical to Figs. 1(a)–1(d) except
that the oscillator strength f is positive so that the off-
resonance pulse propagates in an absorbing medium. As
can be seen from Fig. 3(c), the material absorbs excess en-
ergy from the front of the pulse; this energy is surren-
dered to the later portion. As always, this enhancement
of one part of the field envelope at the expense of another
is controlled directly by the instantaneous spectrum. In
fact, the instantaneous spectra seen in Figs. 1(d) and 3(d)
are identical. Because the instantaneous spectra access
a susceptibility that is inverted from the amplifying case,
the exchange energy seen in Fig. 3(c) is inverted from that
in Fig. 1(c). This inversion leads to the commonly ob-
served slowing of light in materials. In the circumstance
just presented the extent of the slowing is modest.

The remaining situation to address is the case of a
pulse propagating on resonance in an amplifying medium.
The slowing of light results from the early instantaneous
spectrum moving off of the amplifying resonance, which is
followed by a narrowing of the spectrum so that the back
of the pulse is preferentially amplified. The on-
resonance propagation of a pulse in an amplifying me-
dium can be highly subluminal. However, a pulse propa-
gating on resonance in an amplifying medium can grow
dramatically, just as the pulse in Figs. 2(a)–2(d) is
strongly attenuated as it propagates on resonance in an
absorbing medium. Nevertheless, it is naturally more
fashionable to create a situation for highly subluminal
propagation in which the pulse is neither amplified nor
attenuated. To do this, one can employ two superim-
posed resonances of differing widths: one amplifying and
one attenuating.

Figures 4(a)–4(d) are similar to Figs. 2(a)–2(d) except
that a negative oscillator strength f is employed, repre-
senting an amplifying resonance of width g1 . In addi-

Fig. 3. Same as is shown in Fig. 1 with an absorbing resonance.
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tion, a second absorbing resonance with a spectral width
of g2 5 4.14g1 is included in the material. The positive
oscillator strength for this absorbing resonance is also 4
times greater than that of the amplifying resonance.
With the exception of this second resonance the magni-
tude of fvp

2 throughout this paper is consistently set to
100g1

2.
Both resonances are centered at v0 5 100g1 , as usual.

The structure of the real and the imaginary parts of the
refractive index are seen in Fig. 4(b). Figures 4(a) and
4(c) show the field envelope and the exchange energy, re-
spectively, for a pulse with a duration of t 5 10/g1 that
has a narrow spectrum centered at v̄ 5 v0 . The com-
bined effect of the amplifying and the absorbing reso-
nances is such that there is no net energy exchange after
the passage of the entire pulse. Nevertheless, as is evi-
dent from Fig. 4(c), there is a strong transfer of energy
from the early portion of the pulse to the medium that is
offset nearly completely as the energy returns to the rear
of the pulse. The effect is pronounced because the in-
stantaneous spectrum accesses the absorptive spectral re-
gions on both sides of center and finally narrows to the re-
gion of transmission7 in which the absorption and the
amplifying resonances offset each other. Although this
example corresponds to strongly subluminal propagation,
highly subluminal results depend on much narrower reso-
nance structures than those used in this example.

7. DISCUSSION
In the above examples, we have considered the energy
density at a single point within the medium. As the
pulse passes through this point, the medium exchanges
energy with the electromagnetic field, which is the mobile
form of energy associated with the Poynting flux. This

Fig. 4. Similar to Fig. 2 but with an amplifying resonance. In
addition, a wider absorptive resonance is superimposed on the
amplifying resonance.
specific point in the medium can thereafter interact with
only future portions of the pulse, the opportunity for in-
teraction with the earlier portions having permanently
passed. As the pulse continues to propagate, it is further
modified at each subsequent point in the medium. In the
case of superluminal behavior in an amplifying medium,
what was once the far leading wing of, say, a Gaussian
can grow into a hump resembling the original Gaussian,
whereas the old body of the pulse eventually diminishes
into the trailing edge.

To find the temporal profile (including the arrival time,
as specified by some criterion) of a pulse emerging from a
medium of finite thickness, one must integrate Maxwell’s
equations. This integration can be accomplished
exactly12 through the standard Fourier decomposition of
the electromagnetic temporal waveform into its spectral
components at a point at which the waveform is known.
Each spectral component is then propagated (phase shift
and attenuation) to any other point (assuming a homoge-
neous medium) at which the waveform can be recon-
structed exactly. We emphasize that the results pre-
sented here [i.e., Eqs. (10) and (11)] are in every way
compatible with this picture. However, the result in no
way substitutes for the full description of wave propaga-
tion. The instantaneous spectrum describes how a point
in the medium responds to a given waveform’s passing
through it. In this paper, we have selected as examples
waveforms under exotic conditions in which the pulse
propagation is known to exhibit superluminal or highly
subluminal behaviors over finite propagation distances
(avoiding the mature-dispersion regime16–18).

As was described in our recent paper19 and in exact
agreement with Maxwell’s equations, the time interval
between the temporal center of mass of the Poynting flux
as it arrives at two distinct points is given by a spectral
average over group delay (the inverse of the group veloc-
ity) that is modified by a reshaping term if the spectral
amplitude becomes altered during propagation. The
emergence of the pulse can, indeed, be superluminal
when reckoning is by the arrival of the Poynting flux that
tracks only the field energy. For example, if the (super-
luminal) pulse described in Fig. 1 propagates an addi-
tional distance Dr 5 0.1c/g along a particular direction
the temporal center of mass of the Poynting flux down-
stream occurs after a delay of only Dt 5 0.07/g (note that
Dr/Dt 5 1.4c). If the (superluminal) pulse described in
Fig. 2 propagates a similar distance the temporal center
of mass of the Poynting flux downstream occurs after a
delay of Dt 5 27/g (occurring at the second point before
the first). These results are well known and have been
described and experimentally authenticated by many au-
thors in the narrow-band limit.1–6,12

As the field and the medium exchange energy, the
tracking of the presence of the field energy can move dra-
matically even though the energy-transport velocity is
modest (strictly luminal). The rapid appearance of a
pulse downstream is merely an artifact of not recognizing
the energy already present in the medium until it con-
verts to the form of field energy, as governed by the in-
stantaneous spectrum. The traditional group velocity is
connected to this partial accounting of the energy, which
is why it can become superluminal. Group velocity (or
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rather, a spectral average of its inverse) is intimately
linked to the Poynting flux (even for wide bandwidths)
and tracks in an average sense in which the field energy
is manifest.

We note in passing that Eqs. (10) and (11) manifestly
contain the well-known Sommerfeld–Brillouin result13,3

that a sharp signal edge cannot transmit faster than c. If
a pulse begins abruptly at time t0 the instantaneous spec-
trum Et(v) clearly remains identically zero until that
time. In other words, no energy can be extracted from
the medium until the field energy from the pulse arrives.
Because, as was pointed out in Section 2, the Cauchy–
Schwartz inequality prevents the field energy from trav-
eling faster than c, at no point in the medium can a signal
front exceed c.

In summary, we have elucidated the role of the instan-
taneous spectrum in situations in which linear, causal di-
electric media exchange energy with the front of a pulse
differently than with the back. This perspective provides
an intuitive understanding of superluminal and highly
subluminal phenomena in the vicinity of absorbing and
amplifying resonances. This intuition is distinct from
but complementary to the perspective gained through an
understanding of group velocity.

APPENDIX A
We provide here a derivation of Eqs. (10) and (11) (as de-
veloped by S. A. Glasgow). The derivation is for an iso-
tropic linear causal dielectric with the susceptibility x(v),
independent of any particular model. A more general
proof including the possibility of anisotropy and diamag-
netic effects is given in Ref. 11. From Eqs. (7)–(9) the po-
larization in the medium can be written as

P~t ! 5 E
2`

`

dt8E~t8!G~t 2 t8!,

G~t ! [
e0

2p E
2`

`

x~v!exp@2~ivt !#dv. (A1)

The Green’s function G(t) can be written as the sum of
two parts, the first being associated with the real part of
the susceptibility and the second being associated with
the imaginary part, as

G~t ! 5 GRe~t ! 1 GIm~t !, (A2)

where

GRe~t ! [
e0

2p
E

2`

`

Re@x~v!#exp@2~ivt !#dv,

GIm~t ! [ i
e0

2p E
2`

`

Im@x~v!#exp@2~ivt !#dv. (A3)

We now show that GRe(t) and GIm(t) are equal for t
. 0 and equal but opposite for t , 0. To do this, we in-
voke the Kramers–Kronig relation12

Re x~v! 5
1

p
PE

2`

` Im x~v8!

v8 2 v
dv8. (A4)
The letter P in front of the integral indicates the principle
part. Substitution of Eq. (A4), which embodies the prin-
ciple of causality, into the expression for GRe(t) yields

GRe~t ! 5
e0

2p2 E
2`

`

dv8 Im x~v8!PE
2`

` exp@2~ivt !#dv

v8 2 v
,

(A5)

where the ordering of the integration was reversed. The
final integral in Eq. (A5) can be performed analytically,20

and it yields

PE
2`

` exp@2~ivt !#

v8 2 v
dv 5 H ip exp@2~iv8!# t . 0

2ip exp@2~iv8t !# t , 0
.

(A6)

Equation (A5) then becomes

GRe~t ! 5 H GIm~t ! t . 0

2GIm~t ! t , 0.
(A7)

We are now able to express the polarization P(t) in
terms of the electric field and only the imaginary part of
x(v). Then Eqs. (A1) become

P~t ! 5 E
2`

t

dt8E~t8!2GIm~t 2 t8!

5
ie0

p
E

2`

`

dv Im@x~v!#exp@2~ivt !#

3 E
2`

t

dt8E~t8!exp~ivt8!, (A8)

where again we changed the order of integration. Note
that the upper limit of integration was also changed to t
because Eq. (A2) is zero for negative time arguments.

To evaluate Eq. (5), we require the time derivative of
Eq. (A8):

]P~t !

]t
5

e0

p
E

2`

`

dvv Im@x~v!#exp@2~ivt !#

3 E
2`

t

dt8E~t8!exp~ivt8!

1
e0E~t !

p
E

2`

`

dv Im x~v!. (A9)

The final term in Eq. (A9) vanishes because Im x(v) is an
odd function of frequency [given that E(t) and P(t) are
both real]. In addition, the truncated Fourier transform
in Eq. (A9) can be replaced with the definition equation
(11). Then the exchange energy density given by Eq. (5)
becomes

uexchange~t ! 5 2e0E
2`

`

dvv Im x~v!E
2`

t 1

A2p
exp@2~ivt8!#

3 E~t8! • Et8~v!dt8, (A10)

where the order of integration was again changed.
If we note that exp@2(ivt)#E(t)/A2p is the time deriva-

tive of the complex conjugate of Eq. (11) the exchange en-
ergy density can be rewritten as
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uexchange~t ! 5 2e0E
2`

`

dvv Im x~v!

3 E
2`

` ]Et8
* ~v!

]t8
• Et8~v!dt8. (A11)

Because uexchange is a real quantity, it costs nothing to add
its complex conjugate and divide by 2. The exchange en-
ergy density then becomes

uexchange~t ! 5 e0E
2`

`

dvv Im x~v!E
2`

t F ]Et8
* ~v!

]t8
• Et8~v!

1 Et8
* ~v! •

]Et8~v!

]t8
Gdt8

5 e0E
2`

t

dvv Im x~v!E
2`

` ]uEt8~v!u2

]t8
dt8

5 e0E
2`

`

dvv Im x~v!uEt~v!u2, (A12)

and Eq. (10) is verified. This formula is well known21 for
t 5 1`, in which case it applies regardless of whether the
medium behaves casually. The injection of causality can
be made directly to the formula by the truncation of the
Fourier transform at the current time. We have shown
that this is consistent with the Kramers–Kronig rela-
tions.
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