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The phenomenon of stripe domain nucleation is deeply investigated both theoretically and experimentally in
FePd films by the rigorous micromagnetic theory of domain nucleation and x-ray resonant magnetic scattering.
The critical domain width and the nucleation field are determined by measuring the magnetic satellite peak
position and integrated intensities in a wide temperature interval up to 400 °C �0.9Tc� at varying in-plane
magnetic fields for each temperature value. We develop and demonstrate a procedure that allows us to deter-
mine directly from the micromagnetic treatment the exchange stiffness constant A and the first order anisotropy
constant Ku as a function of temperature. The proposed procedure, based on linearized micromagnetic equa-
tions at the critical field, is valid for magnetic films with perpendicular magnetic anisotropy, and is therefore
effective to measure A and Ku in a technologically relevant class of materials.
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I. INTRODUCTION

In this paper, we give a detailed account of a general
procedure for determining the thermal variation of the ex-
change stiffness A and of the first order uniaxial magneto-
crystalline anisotropy constant Ku in a technologically rel-
evant class of materials: magnetic films with perpendicular
magnetic anisotropy �PMA�. In practice, very few methods
can be employed to measure A and they are applicable only
in special cases, in particular, making use of spin-wave reso-
nance experiments.1 Static measurements are sometimes uti-
lized to deduce A indirectly from the Curie temperature or
from the temperature dependence of the magnetization, in
the frame of either molecular field or spin-wave theories.2

Regarding the temperature dependence of A, little informa-
tion has been published. In metallic films the few experimen-
tal points obtained from spin-wave resonance experiments3

yield A proportional to Ms
2. In magnetic oxides, the only

published data date back to Gemperle et al.4 who studied the
domain structure temperature dependence in magnetoplum-
bite, and subsequently deduced the thermal dependence of A.
At intermediate temperature they also observe A to vary as
the square of the magnetization. To the best of our knowl-
edge, this remains the only confirmation of the invoked ther-
mal dependence of A as deduced from the relation including
the magnetization of the different sublattices.5

In the past decade, magnetic films with PMA have at-
tracted renewed interest, mainly for perpendicular magnetic
recording, magneto-optic recording, and patterned media.
Particular emphasis has been given to films made of interme-
tallic compounds, such as Fe-Pt, Fe-Pd, and Co-Pt, which
crystallize in the tetragonal structure L10 �CuAu�I� type�.
This ordered structure consists of alternating planes of Fe
�or Co� and Pt �or Pd� so that the conventional cell has only
one fourfold symmetry axis, which is an easy magnetization

axis. First order uniaxial anisotropy constants Ku in the range
of 106–107 J /m3 are reported.6–8 From the point of view of
micromagnetism and magnetization processes, highly pure
and ordered layers with a perpendicular easy axis share a
common phenomenology. In properly oriented layers, the
high Ku can overcome the demagnetizing field of the film, so
that the stable magnetization direction lies perpendicularly to
the film plane. This situation corresponds to the condition
Q�1 having introduced the so called quality factor Q
=Ku /Kd where Kd=�0Ms

2 /2 is the shape anisotropy constant.
Films with effective PMA �Q�1� are suitable media for
high density magnetic recording.9 Finally, it is worth men-
tioning also that the recently proposed thermal assisted per-
pendicular recording is being actively investigated and relies
on high Ku perpendicular layers �FePt, in particular�.10,11

The procedure we propose to determine A and Ku is based
on the rigorous treatment of weak stripe domain nucleation
with in-plane magnetic field. Although the micromagnetic
theory of this process dates back to Muller12 and Brown,13 it
is worth noting that it has never been applied to PMA films.
The search for periodic solutions to the linearized micromag-
netic equations at the critical field leads to the construction
of phase diagrams in terms of generic reduced variables
which can be applied to any material. This feature allows us
to measure directly from the micromagnetic equations the
intrinsic material parameters A and Ku. The procedure re-
quires two experimentally determined sets of data: the tem-
perature dependence of the stripe domain nucleation field
and of the critical domain width. The thermal variation of the
spontaneous magnetization Ms must also be known.

For demonstrating the method we select epitaxial films of
the tetragonal FePd equiatomic compound. In such systems,
above a critical thickness, regular weak stripe domain pat-
terns are formed due to the competition between the magne-
tocrystalline anisotropy and the shape anisotropy.14 We de-

PHYSICAL REVIEW B 76, 094414 �2007�

1098-0121/2007/76�9�/094414�8� ©2007 The American Physical Society094414-1

http://dx.doi.org/10.1103/PhysRevB.76.094414


termine the thermal variation of both A and Ku up to 400 °C,
i.e., almost up to the Curie temperature �about 450 °C�. We
use x-ray resonant magnetic scattering �XRMS� experiments
at different temperatures in variable magnetic fields to mea-
sure the temperature dependence of the crucial parameters of
the magnetic domain structure. XRMS has the capability of
probing striped domain structures,15 since the regular domain
pattern gives rise to magnetic satellite peaks on the specular
reflection peak sides, whose position is directly correlated to
the domain width W. Although the high spatial resolution
achievable with this technique is important in samples show-
ing nanoscale domain patterns, however, our approach does
not depend on the particular method chosen to fully charac-
terize the domain structure.

The phenomenon of weak stripe domain nucleation with
in-plane magnetic field, as already pointed out by Brown,13

allows us to access the intrinsic values of the nucleation field
and of the critical domain width, since the role of imperfec-
tions should be negligible. It is known that the influence of
defects is of paramount importance in the magnetization re-
versal of a ferromagnet. Indeed, reversal at the switching
field is an irreversible process initiated locally at a defect,
implying a transition from a metastable state to the stable
state at a negative internal field. Even a small number of
defects representing the “weak point” of the system, deter-
mines the magnetic reversal. In the present case, we deal
with a different situation, in which the domain nucleation is
a collective phenomenon described by a continuous revers-
ible process of the magnetic system always at its absolute
energy minimum. The presence of diluted defects only im-
plies a negligible and continuous alteration of the total en-
ergy of the system which is reflected in a negligible modifi-
cation of the overall demagnetization process. Moreover, the
adopted experimental procedure, based on a magnetic dif-
fraction technique, inherently provides evidence of the spe-
cific global character of the transition we observe: the pres-
ence of a periodic configuration of the gradually emerging
domain structure. A localized defect or a random distribution
of imperfections could hardly establish at a precise critical
field such a regular and spatially extended pattern.

Our procedure allows one to determine the thermal depen-
dence of A and of Ku in PMA films. Recently, the thermal
dependence of Ku has been predicted to follow Ms

2 in FePd
�Ref. 16� and FePt �Ref. 17� on the basis of relativistic cal-
culations of electronic properties. Then, in these materials
one should expect a constant A /Ku ratio when temperature is
varied. This fact would yield a stripe domain structure with a
distinctive feature, namely, that the representative point in
the phase diagrams does not vary.

II. EXCHANGE STIFFNESS AND ANISOTROPY FROM
STRIPE DOMAIN NUCLEATION

Let us consider an infinite slab of thickness D along y axis
under the action of a uniform external field, H, in the plane
of the slab, parallel to z axis �Fig. 1�. Starting from satura-
tion, we reduce H until a critical condition is realized at a
value H=Hc at which the magnetization vector starts to de-
viate from the z direction, giving rise to weak stripe domains

parallel to the field direction. The theory of weak stripe do-
main nucleation allows calculation of the critical field Hc and
the critical domain width Wc at nucleation if the intrinsic
material parameters A, Ku, and Ms, and the thickness D of
the sample are known. Conversely, if Wc, Hc, and Ms are
known experimentally, the A and Ku values can be deduced.

In fact, we have carried out an in-depth analysis of the
theory, in order to formulate all the equations in a suitable
manner to be easily compared with the experimental data. In
this section a brief overview of our theoretical treatment is
given. A detailed description is reported in the Appendix,
since the mathematical treatment is an essential part of the
overall measurement procedure. The magnetization equilib-
rium condition inside a single homogeneous film with per-
pendicular anisotropy is

m� � H� eff = m� � ��2A/�0Ms��2m� + �2Ku/�0Ms�

�myj� − �� � + Hk�� = 0, �1�

where m� is the magnetization unit vector, � is the scalar

potential of the magnetostatic field, and H� eff is the total ef-
fective field, obtained as the sum of exchange, anisotropy,
magnetostatic, and external fields. The following dimension-
less quantities can be conveniently introduced:

� =
x

a
, � =

y

a
, � =

z

a
, � =

D

a
, 	 =

�

aMs
; �2�
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HK
; h�eff =
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HK
,

where Hk=2Ku /�0Ms and a=�A /Ku. Equation �1� becomes

m� �h�eff=0 with

h�eff = �2m� + myj� −
1

Q
�� 	 + hk� ,

where �� is now the gradient operator with respect to �, �,
and �. Considering that at nucleation mx ,my→0 and mz�1
to first order, the vectorial equilibrium condition �1� reduces
to only two differential equations which must be solved si-
multaneously with the one relating the potential to the mag-
netic charges as follows:
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FIG. 1. �Color online� Basic scheme for the weak stripe domain
micromagnetic model of the film with anisotropy axis perpendicular
to the film plane and the external field applied in the film plane.
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The scalar potential outside the film, 	̃, satisfies the Laplace
equation

�2	̃ = 0. �4�

The boundary conditions at the film surfaces are
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��
�
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= 0, �5�
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while at infinity it must be
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 � 
, �my��,�=±
 � 
, �	��,�=±
 � 
 , �6�

�	̃��,�=±
 � 
, �	̃��=±
 = 0.

A class of solutions is represented by periodic functions of
the form

�mx,my,	� = �B,C,U�ei���+
�+���, �m̃x,m̃y,	̃�

= �0,0,Ũ�ei��̃�+
̃�+�̃��. �7�

Substituting the ansatz �7� in Eqs. �3�–�5�, an algebraic
linear system of equations is obtained. The existence of non-
trivial solutions representing nucleation of the stripe domain
structure requires that the determinant of the coefficient ma-
trix is vanishing. This yields a secular equation for �, � �the
reduced wave vectors introduced in Eq. �7��, and � and h
�defined in Eq. �2��. The energy minimization implies that
nucleation takes place for the reduced wave numbers � and �
in correspondence to which � is minimum at fixed h �these
critical values are symbolized with �c and hc in Fig. 2�. It can
be demonstrated that for �2+�2 comprised between zero and
1−hc, there exists certainly a minimum �c for �.18 The nu-
merical calculations show that the solution of minimum en-
ergy can be always found with two-dimensional functions
independent of z ��=0�. As a consequence, the stripe domain
pattern is parallel to the external field, and the reduced do-
main width, defined as half-period w=W /a, is related to the
reduced wave number � along the x direction �w=� /��. On
the other hand, this two-dimensional configuration is typi-
cally observed in the experimental conditions. The results of
this analysis are well synthesized in the universal curves of
the phase diagrams giving the critical parameters of the do-
main structure nucleation in terms of the intrinsic material
properties �see Fig. 2�. From the comparison of these univer-

sal curves with specific experimental features, one could ob-
tain accurate determinations of crucial parameters character-
izing a particular magnetic material. The implemented
procedure is as follows. Experimentally, the nucleation field
Hc and the critical domain width Wc have to be measured at
different temperatures for a platelet having a known thick-
ness D, which obviously coincides with the critical thickness
Dc. Moreover, the thermal dependence of the spontaneous
magnetization Ms must be known. For each temperature, we
assign to Ku the value which assures agreement in the dia-
gram of Fig. 2�b�, between the theoretical and the experi-
mental values of the ratio D /Wc�=� /wc�. Afterwards we ex-
tract the values of the exchange stiffness A from the
expression A=D2 /�2Ku, which follows directly from the
definition of �. It should be noted that the above procedure is
particularly versatile since Q, hc, and � /wc do not depend on
A, a circumstance which is determined by the suitably cho-
sen set of reduced variables. Figure 2 reports the complete
phase diagrams synthesizing all the possible nucleation con-
ditions for any material. In Fig. 2�a� the reduced critical
thickness divided by 2� and in Fig. 2�b� the inverse of the
critical domain width normalized to the film thickness are
reported as a function of the quality factor for different val-
ues of the reduced nucleation critical field. In the diagrams,
we depict selected isofield lines.
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FIG. 2. Calculated phase diagrams for weak stripe domain
nucleation. �a� The ratio �c /2� is plotted as a function of Q for
different values of the reduced critical nucleation field hc. �b� The
ratio Dc /Wc is plotted as a function of Q for different values of the
reduced critical nucleation field hc. Both horizontal and vertical
scales are linear.
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It can be readily demonstrated that the coherent rotation is
a particular solution �not belonging to the ansatz �7�� of the
weak stripe model �see the general equation �1��, with a criti-
cal field given by hc=hA=HA /Hk=1−1/Q�1 where HA
=2�Ku−Kd� /�0Ms is the overall anisotropy field. As shown
by Brown,13 also the nucleation of noncoherent mode hap-
pens always with hc�1. Being the coherent rotation an over-
constrained solution13 of the micromagnetic equations, then
the weak stripe domain nucleation field is hc�hA. For weak
anisotropy �Q�1�hA is negative, so in principle one could
obtain from the theory negative values for hc. However, this
is never the case, since the magnetization becomes unstable
at the zero-field cross �it undergoes a sudden jump around
the y axis toward the reversed saturated state�,19 so that one
must assume hc�0. For strong anisotropy hA is definitely
positive and coincident with the limit of hc when �→0 and
correspondingly D /Wc→0. In conclusion, weak stripe do-
main nucleation has physical meaning when hc�0 for Q
�1 and when hc�hA=1−1/Q for Q�1.

III. EXPERIMENT

An epitaxial FePd film was grown by molecular beam
epitaxy on a MgO substrate, with the structure
MgO/Cr/Pd/FePd�43 nm� /Pd as described elsewhere.20,21

The Cr seed layer facilitates the epitaxial growth of the
60 nm Pd single crystal buffer layer. The FePd layer has
been deposited at room temperature in a “layer by layer”
mode �alternation of Pd and Fe deposition�. The 20 nm thick
Pd capping layer avoids oxidation. The thickness and crystal
structure of the sample were determined by x-ray reflectivity
and diffraction, respectively. PMA in FePd films has a bulk
origin and is basically independent of the sample thickness,
while it depends on the chemical order, and specifically on
the stabilization of the L10 phase. Uniaxial ordering can be
controlled during epitaxial growth and the magnetization can
be stabilized perpendicularly to the film plane. Vibrating
sample magnetometry was used to check the magnetic qual-
ity of the sample. XRMS experiments were carried out on
the SB7 SuperAco �LURE� beamline at the Fe L3 edge
��=17.5 Å�. The scanning geometry is sketched in Fig. 3
and the procedure utilized to collect experimental data is

similar as in Ref. 22. Scans at constant temperatures, from
RT up to 400 °C �0.9Tc�, were performed at different exter-
nal in-plane magnetic fields. As an example, Fig. 4 reports a
typical recorded spectrum. Two magnetic satellite peaks are
neatly observed offset by the central specular peak by
0.0065 Å−1 corresponding to a real space period �which is
twice the average domain width� of 96 nm. In Fig. 5 the
typical observed evolution of the magnetic diffraction peak
with varying external field is reported corresponding to T
=125 °C. It turns out that the integrated intensity of the mag-
netic signal is increasing with decreasing the applied field
below a certain critical value Hc, which can be determined
by extrapolation to zero of the satellite peak intensity versus
magnetic field. In Fig. 6 the thermal dependence Hc�T� as
obtained by iterating the above procedure at different tem-
peratures is reported. The domain width at nucleation Wc was
observed to be nearly independent of temperature and deter-
mined to have an average value 	Wc
=48.2 nm, with a varia-
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FIG. 3. �Color online� XRMS experimental geometry with x
rays incident perpendicularly to the stripe direction at an angle cen-
tered at �0.
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tion of ±1 nm over the 25–400 °C interval �Fig. 6�. Table I
lists all the considered and measured values of T, Hc, and Wc.
The Ms values shown in the same table have been obtained
from Ref. 6 in the case of equiatomic FePd bulk material. In
fact, measuring Ms in thin films in the high temperature
range is an extremely difficult task.

IV. DATA ANALYSIS AND DISCUSSION

Applying the procedure described in Sec. II allows us to
obtain the values of Ku and A reported in Table I. Figure 7
compares the temperature dependence of Ku and A. They are
both observed to decrease monotonically with temperature
with a surprising similar behavior over the whole tempera-
ture range. In fact, the relation between A and Ku can be
fitted by a linear law with a least squares correlation coeffi-
cient R=0.996 67 and a relative standard error �=0.01 �see
Fig. 8�. Therefore we conclude that the anisotropy and the
exchange parameters follow a very similar temperature law
within the considered temperature range. This property is a
direct consequence of the constancy of the domain width
when changing the temperature. Indeed, if we examine the
general phase diagrams of Fig. 2, we note that they have a

similar pattern. This characteristic implies that if the domain
width Wc �and consequently the ratio Dc /Wc; we recall that
in our case the critical thickness Dc=D is obviously fixed� is
constant, the reduced thickness �c and so the ratio A /Ku turn
out to be nearly constant. If the dependence of Ku on Ms
follows a power law with exponent m, then the variation of
Q with Ms is Q=Qmax�Ms /Ms,max�m−2 where Qmax and Msmax

are related to the minimum temperature value. If we suppose
that m�2, then Q decreases with increasing temperature.
The maximum possible variation of Q is equal to Qmax
−Qinf, where Qinf is a lowest limit that can be deduced from
Fig. 2�b� �Qinf is zero if Dc /Wc�1, otherwise it is �0�.
Figure 9 shows the calculated curves �c /2� and A /Ku as a
function of Q, corresponding to the fixed value Dc / 	Wc

=0.892. The variation of A /Ku in the interval from Qinf to
Qmax is ±10%, a result which does not depend on the true
behavior of Ms when the temperature T is varied. In the
present experiment the actual variation of Q is smaller and
correspondingly A /Ku changes even less. In the extreme hy-
pothesis of assuming both A and Ku proportional to Ms

2, the
quantities hc and Q would remain perfectly constant with
temperature, so the representative critical point would main-
tain fixed positions in the phase diagrams, yielding constant
�c and Wc. Indeed, our results provide representative points
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TABLE I. Summary of all the relevant physical parameters as measured and calculated in the analysis of
the XRMS experiment: the temperature T, the nucleation field Hc, the nucleation domain width Wc, the
uniaxial magnetocrystalline anisotropy constant Ku, the exchange constant A, the quality factor Q, and the
reduced nucleation field hc. The values of the saturation magnetization Ms are extracted from Ref. 6.

T
�°C�

Hc

�kA/m�
Wc

�nm�
Ms

�MA/m�
Ku

�kJ/m3�
A

�J /m�10−11� Q hc

25 124.86 49.16 1.092 331.63 1.91 0.443 0.258

125 122.27 48.78 1.018 290.78 1.63 0.447 0.269

175 109.14 47.55 0.972 249.96 1.35 0.421 0.267

200 112.32 48.02 0.949 246.38 1.34 0.435 0.272

250 104.17 47.76 0.886 212.71 1.15 0.431 0.273

275 91.47 47.88 0.848 189.04 1.04 0.418 0.258

300 68.00 48.40 0.803 157.64 0.92 0.389 0.218

325 73.33 48.78 0.753 147.24 0.86 0.413 0.236

375 55.11 48.04 0.623 95.26 0.55 0.391 0.226

400 23.20 48.27 0.528 55.44 0.35 0.316 0.139
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FIG. 7. Exchange stiffness and uniaxial anisotropy constants
plotted as a function of the temperature.
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at different temperatures falling in a small interval of �c and
Wc in correspondence to a relatively small variation of Q
�see Table I and Fig. 10�.

Actually, from our procedure we obtain a dependence of
Ku on Ms which can be fitted by a power law with exponent
m=2.4 and correlation coefficient R=0.997 64 �see Fig.
11�a��. The direct fitting of the dependence of A on Ms yields
a power law with exponent m=2.25 and correlation coeffi-
cient R=0.995 96 �see Fig. 11�b��. However, a wide region
of low Ms values is not supported by the experimental data.
The lack of data is a consequence of the chosen experimental
parameters. In any case, the nucleation phenomenon for
small values of Ms would not be guaranteed to occur for the
assumed film thickness �see Fig. 2�. If we take into account
that the deduced m exponent values depend critically on the
assumed Ms versus T dependence �we remember that we
have adopted the Ms values of equiatomic FePd bulk mate-
rial as given in Ref. 6�, the uncertainty is such that our re-
sults are substantially in agreement with the data reported in
literature which give A varying as Ms

2, as already reported for
metallic films.3,4 The room temperature value of A=1.91
�10−11 J /m is slightly lower than the value for Fe �Ref. 23�
and significantly higher than the value reported for FePt
films by Okamoto et al.24 On the other hand, our value for
FePd agrees reasonably with the value calculated by
Belashchenko25 for the in-plane components of tensor Aik.

Concerning the anisotropy constant Ku, the value obtained
at room temperature is perfectly compatible with the data

reported in the literature for FePd films with weak
anisotropy.20 As for the Ku variation with Ms, we point out
that the found exponent 2.4 depends on the specific utilized
values of Ms, so any conclusive argument should be taken
cautiously since we do not dispose of true experimental data
concerning our film. A recent paper by Staunton et al.16 de-
veloped a first-principles theory based on relativistic elec-
tronic structure theory, of the variation of magnetic aniso-
tropy Ku with temperature in metallic ferromagnets. They
applied the theory to a uniaxial magnetic material with te-
tragonal crystal symmetry, L10-ordered FePd, with easy axis
perpendicular to the Fe/Pd layers. To our knowledge this is
the only attempt to evaluate the magnetic anisotropy varia-
tion up to the Curie temperature. Their theory predicts for
FePd a Ms

2 dependence of Ku. The same result was previ-
ously found also in L10-ordered FePt.17

V. CONCLUSIONS

We have successfully demonstrated a method to measure
directly from the micromagnetic equations the intrinsic ma-
terials parameters A and Ku in films with PMA. The proce-
dure is based on the rigorous treatment of weak stripe do-
main nucleation with in-plane magnetic field. Using high
temperatures XRMS measurements in varying magnetic
fields, we have been able to determine the temperature de-
pendence of the stripe domain nucleation field and of the
critical domain width. From these data we have deduced the
thermal variation of both A and Ku up to 400 °C in an epi-
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taxial, molecular beam epitaxy grown, FePd film, using lit-
erature data for the Ms�T� dependence. Our approach does
not depend on the particular method chosen to fully charac-
terize the domain structure. Our findings for FePd films show
that the ratio A /Ku is constant as temperature is varied and
moreover that the thermal variation of both Ku and A com-
pare reasonably well with Ms

2.
Our micromagnetic analysis was concerned with critical

phenomena, a feature with several advantages. First of all,
micromagnetic predictions can be expected to be far less
sensitive to the role of defects and inhomogeneities, and fur-
thermore are based on linearized equations, which can be
analytically treated. Secondly, partly for the same reasons,
the weak stripe domain theoretical analysis can be extended
to the high temperature range, close to the Curie
temperature.26
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APPENDIX

From conditions �6� it follows that �, �, �̃, and �̃ need to
be real. Substituting mx, my, and 	 of expressions �7� into

system �3� leads to an algebraic system of three equations
which admits nonvanishing solutions if and only if the deter-
minant of the coefficient matrix is vanishing. The obtained
bicubic equation allows us to express the variable 
2 as a
function of �2 and �2. For each value of �2 and �2 there are
three corresponding roots �1, �2, and �3 and so six values
±
1, ±
2, and ±
3 of 
. Taking into account that the roots of
the bicubic equation are continuous functions of � and �, it
follows that a root �3 always exists positive in the first quad-
rant of the �-� plane, inside the area between the axes and
the circle of radius �1−h−�2, and vanishes at the origin and
on the circle. The other two solutions �1 and �2 are real and
negative inside the same area near the origin, but may be-
come complex and conjugate approaching the circle. For Q
→0 and Q→
, the roots are all real and only for interme-
diate values of Q the bicubic equation may have complex
and conjugate roots. Figure 12 summarizes the principal re-
sults of the above analysis.

As regards the region of space outside the film, substitut-

ing 	̃ in Eq. �4� allows us to find 
̃=−��̃2+ �̃2 for ��� /2

and 
̃=��̃2+ �̃2 for ��� /2.
Both the differential and the boundary condition equations

�3�–�5� are linear and homogeneous. As a consequence, any
linear combination of particular solutions with varying �, �,

= ±
 j��2 ,�2� �j=1,2 ,3� �̃, �̃, is also a solution. Inserting
the general linear combination inside the boundary condi-
tions �5� we obtain �̃=�, �̃=�. Moreover, expressing the
coefficients Bj

± and Cj
± as a function of Uj

± through system
�3�, we get from Eqs. �5� an algebraic system of eight homo-

geneous equations in the eight unknown Uj
±, Ũ±. Next, we

transform the above system into two separate systems of four

equations in the four unknown Uj =Uj
+−Uj

−, Ũ= Ũ+− Ũ− and

U�=Uj
++Uj

−, Ũ�= Ũ++ Ũ−. The two systems have different
coefficient matrices. Consequently, if a system has nonvan-
ishing solutions, the other one necessarily admits the trivial
solution. Hence, we conclude that the solutions can be
grouped into two symmetry classes. In the first class, the
potential is an odd function of �. Hence, it follows that mx is
odd and my even. The second class is energetically disadvan-
taged because, being my an odd function of �, the surface
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magnetic charge is an even function. The coefficient matrix
determinant of the obtained system is a function of � and h.
The system has nonvanishing solutions only for particular
values of � and h and these values depend on �2 and �2. We
emphasize that for a given field h there are infinite � solu-
tions and the critical thickness which bears physical meaning
is the minimum one. The above statement can be understood
on the basis of energy considerations. It can be shown that
the determinant of the algebraic system certainly vanishes
for values of the reduced thickness � within the interval 0
���3� /
3. Moreover, along any line inside the circle
quarter �=�1−h−�2 that joins the origin of the �-� plane
with it, this solution presents surely a minimum. In particu-
lar, when Q→0 the problem can be solved analytically ob-

taining �=�c=2� / �1−h� and Dc /Wc=��1+h� / �1−h� for �

=�1−h2 /2 and �=02. Therefore, in the above limit, the criti-
cal thickness is always different from zero and takes the
value �c=2� for zero external field. On the contrary, for
strong anisotropy �Q�1� the critical thickness approaches
zero when the field tends to the effective anisotropy field
hA=1−1/Q. The corresponding domain width grows up to-
ward infinity ��=�=0�.

Numerical calculations show that the critical thickness al-
ways corresponds to domains parallel to the external field
��=0�.12,13 Moreover, they also show that outside the circle
quarter �=�1−h−�2 the coefficient matrix determinant of
system �5� never vanishes.

*Present address: The Institute of Solid State Physics, The Univer-
sity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Japan.
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