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ABSTRACT

Technologies that function at room temperature often require magnets with a high Curie temperature, TC, and can be improved with better
materials. Discovering magnetic materials with a substantial TC is challenging because of the large number of candidates and the cost of
fabricating and testing them. Using the two largest known datasets of experimental Curie temperatures, we develop machine-learning models
to make rapid TC predictions solely based on the chemical composition of a material. We train a random-forest model and a k-NN one and
predict on an initial dataset of over 2500 materials and then validate the model on a new dataset containing over 3000 entries. The accuracy
is compared for multiple compounds’ representations (“descriptors”) and regression approaches. A random-forest model provides the most
accurate predictions and is not improved by dimensionality reduction or by using more complex descriptors based on atomic properties. A
random-forest model trained on a combination of both datasets shows that cobalt-rich and iron-rich materials have the highest Curie
temperatures for all binary and ternary compounds. An analysis of the model reveals systematic error that causes the model to over-predict
low-TC materials and under-predict high-TC materials. For exhaustive searches to find new high-TC materials, analysis of the learning rate
suggests either that much more data is needed or that more efficient descriptors are necessary.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156377

Ferromagnetic materials are essential in modern technologies
especially in energy production and data storage. The threshold tem-
perature where magnetism disappears is called the Curie temperature,
TC. Searches for high-TC materials typically look for magnets with a
TC of at least 550–600K, which is required for reliably running an
application at room temperature.1,2 High-TC magnets are valuable but
rare,1,3,4 in particular when other electronic structure properties are
required.5 Although some empirical rules for the design of new mag-
nets exist,6 rapid predictions of Curie temperatures could assist in
identifying candidate high-TC magnets in large-scale screening exer-
cises. Thousands of known ferromagnetic materials exist,7 and while
high-throughput computation can help in identifying hundreds of
thousands of potential magnets, experience suggests that only a frac-
tion of them can actually be realized.3,8–10

Measuring the Curie temperature of a compound is a relatively
standard and accurate procedure, but of course needs the material to
be made first. In contrast, in a computational design process, the TC

must be predicted ahead of experiments, only using physical and

chemical information. This is a complex task prone to large errors. In
fact, one needs to compute the elementary magnetic excitations of a
compound, most typically from density functional theory (DFT), map
these on a simple model, usually a Heisenberg-type one, and then per-
form thermodynamic sampling with Monte Carlo methods.11–26

Then, the choice of DFT functional, the quality and appropriateness of
the mapping, and subtleties in the Monte Carlo algorithms, all contrib-
ute to a large uncertainty on the predictions. Often this uncertainty is
so severe that blind predictions of TC for unknown compounds are
almost impossible to make.

Machine-learning algorithms capture complex relationships in
data that may be difficult to recognize or understand.27 Even though
machine-learning models often have low interpretability, they can pro-
vide cheap Curie temperature predictions. Rapid predictions can be a
first step in screening computer-suggested materials so that experi-
mental efforts can be more selective.

Algorithms, such as ridge regression, kernel ridge regression, neu-
ral networks, and random forest, have been trained on experimental
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data and used to predict Curie temperatures.1,8,10,28–33 Most of these
studies were limited to specific structural or chemical families and used
a relatively small dataset (<1800) for training which limited the ability
to generalize the results to other less known families. In this work, a
random-forest model is trained on an initial dataset of the chemical
compositions of over 2500 ferromagnetic materials.1 We then used a
larger dataset of �31007 for a “blind test,” which shows our model to
have good generalization. Then, we built a model using the combined
dataset. This is, by far, the largest dataset to be used in this kind of
study.

In general, the crystal structure affects the Curie temperature and
there have been attempts to incorporate structural information into
different machine-learning models with varying degrees of success. In
some cases, Curie temperature predictions that utilize known struc-
tural data are more accurate, in particular, when the structural diver-
sity present in the dataset is limited.7,8,28,30,35–37 However, the use of
structural information in a larger and more diverse set of data may
have an adverse effect on the TC predictions.1 Furthermore, the lack of
available structural information excludes a large portion of experimen-
tal data, which weakens the model’s predictive power. The use of
structural data in training a machine learning model also limits predic-
tions to materials with known structure. In this work, we avoid these
problems and exploit our large corpus of magnetic data in DS1 and
DS2 by using models and data that do not include structural
information.

In Ref. 1, a random-forest model was used to predict the Curie
temperature based solely on chemical composition. In this work, we
first use the same data (DS1) and attempt to improve the predictions
by trying different machine-learning models and alternate descriptors.
Using the random-forest model trained on DS1 to make predictions
on a new set of experimental data (DS2),7 we find that the model gen-
eralizes quite well but the prediction errors are 90K (MAE) as com-
pared to 69K (MAE). Next, we combine DS1 and DS2 to build a new
model and scan over hundreds of thousands of potential new magnets.
In the process, we find that the errors between the experimental and
predicted Curie temperatures reveal a previously unnoticed systematic
error.

We cleaned both DS1 and DS2 according to the methods out-
lined in Ref. 1. Both datasets had many duplicate compounds often
with different reported experimental Curie temperatures. The dupli-
cates were eliminated by selecting only the median Curie temperature
in order to retain an actual measured value of the TC. In DS1, we also
added entries for each of the non-magnetic elements found in the data
and set the Curie temperature to zero. After cleaning the raw data,
DS1 contains the Curie temperatures of 2557 unique compounds and
DS2 contains 3194. There is an overlap of 1189 compounds between
DS1 and DS2. Our feature vector has 85 features, each one describing
a distinct element found in the data. Each compound is characterized
by placing the percentage that each element occupies in the compound
in the appropriate feature. For each machine-learning prediction, a
randomly selected third of the compounds in DS1 was used as the test
data and the other two thirds were used to train the models.

It is not possible to visualize the data in 85 dimensions. However,
a t-distributed stochastic neighbor embedding34 (t-SNE) projection
reduces the data to two dimensions and may reveal data clustering.
Figure 1(a) shows the t-SNE plot for DS1, where each point is colored
by the majority element in the compound. The red circles show areas

where compounds with the same majority element cluster together.
Figure 1(b) shows the same t-SNE plot but with the colors correspond-
ing to the Curie temperatures of each compound. Each point in these
plots represents a magnetic compound in the dataset. A comparison of
the two plots reveals that most of the high-TC materials have a major-
ity element of either cobalt or iron. It also shows that there are occa-
sional high-TC spikes in clusters, where the TC is typically very low
(for example, FeNi3 and Cr2Pt3). Figure 2 shows similar plots for DS2.

In Ref. 1, ridge regression, kernel ridge regression, neural net-
works, and random-forest machine-learning methods were all tested
and the random-forest model made the most accurate predictions. We
used DS1 in a k-nearest neighbors model and compared its perfor-
mance to the accuracy of the random-forest model. The k-NN
algorithm was varied for 1–20 neighbors to determine the optimal k.
A k-NN model with 2 neighbors provided best prediction accuracy
but was not as good as the random forest (see Fig. 3).

To see how well the DS1 random-forest model generalizes on
unseen data, we did a “blind” test on all the data in DS2 (see Fig. 4).
54% of the predicted Curie temperatures were within 50K and 70%
within 100K. The mean absolute error was 90K. This is a larger error
than the prediction error using DS1 data; however, the model still
makes relatively accurate predictions on around 2000 previously
unseen magnets. We also used k-fold cross validation to show how the
addition of DS2 data affects our predictive accuracy. 50 iterations of
threefold cross validation show that DS1 averages an MAE of 73K
and a standard deviation of 3.2. A combination of DS1 and DS2 aver-
ages an MAE of 71K and a standard deviation of 2.3.

While the random-forest results are encouraging, a few different
strategies were tried to improve the random-forest predictions. One of
these strategies is to reduce the number of dimensions in the DS1
design matrix. A random forest was made for a range (5–85) of fea-
tures using principal component analysis (PCA). PCA is not helpful to
our model because, although noisy, the change in mean absolute error
for each dataset shows that the accuracy improves up to about 60 fea-
tures and stops improving after that as already observed in Ref. 1.

Another improvement strategy is designing better features. The
MAST-ML38 Python library can generate descriptors based on about
one hundred atomic properties (such as ionic radius and electronega-
tivity). Using MAST-ML, we generated 428 features for the compounds
in DS1 and selected the top 20 most meaningful ones identified
through MAST-ML’s EnsembleModelFeatureSelector
method, which uses a random-forest model to rank feature importance.
Figure 5 shows these features used in a random forest and the compari-
son between these predictions and our random-forest-model predic-
tions in Fig. 3. The MAST-ML features yield practically the same
accuracy as with the original features. This is somewhat surprising
because the MAST-ML descriptors incorporate many atomic proper-
ties, not merely the composition. However, Ref. 39 shows that the
domain knowledge in the generated features is not expected to improve
prediction accuracy over simple fractional features when using large
amounts of data. Our results suggest that DS1 is large enough to make
an accurate model using our original fractional features. While the size
of ML model using the MAST-ML descriptors is significantly smaller
than the size of the model using the composition-only descriptors,
both models have the same accuracy and both are efficient enough to
be used in the large searches below. Our final models used the
composition-only descriptors.
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Getting more balanced training data may be another way to
improve the model. An analysis of DS1 shows a significant imbalance,
38% of the magnetic materials have a TC 0–100 K, while only 15%
have a TC 600–1400 K. This could lead the model to reduce the predic-
tion error at low temperatures at the expense of making larger errors
at high temperatures. This is counter to the purpose of the model,
which is to discover candidate high-TC magnets. Thus, we down-
sampled the low-TC compounds to more evenly distribute DS1. The
resulting model is shown in Fig. 6. Even though there is a high density
of low-TC compounds, apparently they are necessary for accurate pre-
dictions of higher-TC compounds. The balanced data predictions for
high-TC materials are not as good as with the original model, with an
accuracy of 10% less within 50K, 14% less within 100K, and the mean
absolute error 14K higher.

Let us make one final comment before using the ML model to
search for new high-TC materials. With this unprecedented large data-
base of magnetic compounds, a large range of training set sizes are
possible so that the learning rate of the model can be estimated. Figure

7 shows the MAE on a test set of 850 compounds (approximately 1/3
the size of DS1, similar to the predictions in Fig. 3) while the training
set is increased, using the remaining data. The process was repeated
100 times and averaged. A linear fit reveals a slope of ��0:22. This
learning rate is not particularly fast, but a better learning rate is proba-
bly not possible with composition-only descriptors. To reduce the
MAE to 50K in the current model, class would require a near tripling
of the data.

The purpose of the ML model is to enable identification of candi-
date high-TC materials. Our first attempt was to sweep over composi-
tions of binary materials, but this revealed a systematic error.
The error persists independent of the training data (DS1 or DS2), the
particular ML method (random forest, k-NN), or the descriptors.
Figure 8 compares the predictions with the experimental TC of eight
different sets of binary systems. The top four red subplots analyze four
different high-TC materials, and the four lower blue subplots analyze
four different low-TC materials. Each subplot shows the actual TC

value (red points) compared to the ML prediction (black line). A clear

FIG. 1. (a) Experimental data (DS1) pro-
jected from the 85-dimensional feature
space to two dimensions in a t-SNE34

plot. Colors were assigned based on the
majority element in each compound. (b)
DS1 represented as a two-dimensional t-
SNE plot. Colors were assigned based on
the Curie temperature. Two compounds,
Fe1Ni3 and Cr2Pt3, have anomalously high
Curie temperatures, relative to others in
the same cluster.
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FIG. 2. (a) Experimental data (DS2) pro-
jected from the 85-dimensional feature
space to two dimensions in a t-SNE34

plot. Colors were assigned based on the
majority element in each compound. (b)
DS2 represented as a two-dimensional t-
SNE plot. Colors were assigned based on
the Curie temperature.

FIG. 3. k-nearest neighbor and random-
forest predictions. (Left) prediction with the
k-NN model with k¼ 2. 44% of the TC
predictions were within 50 K of the actual
values and 64% were within 100 K. The
mean absolute error was 109 K. (A 2-NN
model with randomly shuffled TC values
gives a MAE of 270 K). (Right) random-
forest prediction. 62% of the TC predic-
tions were within 50 K of the actual values
and 78% were within 100 K. The mean
absolute error was 69 K. (A random-forest
model with randomly shuffled TC values
gives a MAE of 240 K.)
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pattern emerges: between experimental data points, the ML model,
instead of interpolating smoothly, drifts toward the average TC of the
training data (293K). In the case of high-TC materials, deep “valleys”
occur in the absence of nearby experimental data. For low-TC materi-
als, the model tends to overestimate between training points. In a

pattern reminiscent of Gaussian processes, the model tends to “regress
toward the mean.”

This systematic drift toward the mean can be seen across all the
test data in Fig. 9 (left), which shows the difference between the pre-
dicted and the experimental TC for the test data as a function of the
experimental TC (the random-forest model using DS1). Intuition sug-
gests that this systematic error could be mitigated simply by shifting
and re-scaling according to the black line in the figure. However, Fig. 9
(right) demonstrates that this does not work. The errors and the pre-
dicted TC’s are not correlated. The reader should remember that corre-
lation is not transitive in general. Although the errors are correlated

FIG. 4. Random-forest model trained on DS1 and validated with DS2. 54% of the
TC predictions for DS2 were within 50 K of the actual values and 70% were within
100 K. The mean absolute error was 90 K.

FIG. 5. Random-forest prediction using features based on the composition and 20
of the features generated by the MAST-ML38 Python library. 62% of the TC predic-
tions for DS1 were within 50 K of the actual values, and 78% were within 100 K The
mean absolute error was 69 K. 57% of the TC predictions for the MAST-ML data
were within 50 K of the actual values, and 77% were within 100 K. The mean abso-
lute error was 70 K.

FIG. 6. Random-forest prediction with a balanced dataset. The Curie temperatures
of the test data above 600 K were predicted with an accuracy of 37% of the data
within 50 K and 49% within 100 K. The mean absolute error for those points was
141 K.

FIG. 7. MAE vs the amount of training data in a combined set of DS1 and DS2. For
each iteration, the test data were a new random sample of 850 compounds while
the training data were randomly sampled from the remaining data.
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with the experimental TC’s and the experimental and predicted TC’s
are correlated, the errors and the predicted TC’s are not necessarily
correlated.

Recognizing the systematic error in predictions and being more
interested in the accuracy of high-TC predictions, we trained a

random-forest model on a combined set of DS1 and DS2 but only
included the 967 compounds with TC > 600 K, thus boosting the
mean of the training data from 293 to 825K and mitigating the regres-
sion to the mean. Obviously this new model cannot be used to predict
low-TC materials but as we are primarily concerned with high-TC

FIG. 8. Eight plots showing the Curie tem-
peratures for eight different binary com-
pounds. Horizontal rows share the same
scale on the y axis. The black lines show
the random-forest-predicted Curie temper-
atures across the entire composition
range (step size: þ1 at. %). The red dots
are experimental data.
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materials, this new model with a higher average protects the predic-
tions from straying too far in data-deficient areas.

This new high-TC-only model was used to search composition
space for all binary and ternary candidate compounds with exception-
ally high-TC’s. The high-TC-only model used only 71 features,
restricted to elements that appear in compounds with TC > 600 K.
Figures 1 and 2 show that most of the highest-TC compounds contain
either cobalt, iron, or both. Using these elements, we generated every
possible ternary combination containing iron, cobalt, and one of the
other 69 elements (X1) in 1% increments. The random-forest model
can rapidly predict TC for this entire set. Figure 10 displays the maxi-
mum predicted TC of each combination of cobalt, iron, and X1. While
cobalt clearly dominates the high-TC compounds, materials with a
high iron concentration also are predicted to have a high TC and are
worth exploring because iron is much cheaper than cobalt.41 Figure 11
shows similar predictions but for iron-rich ternary and binary candi-
dates, which are inexpensive. These predictions suggest that, at least in
general, for maximizing TC, it is difficult to beat cobalt-rich materials,

and that for minimizing materials cost for a relatively high TC, iron-
rich materials are difficult to beat. Other searches excluding cobalt and
iron were also performed but no competitive materials emerged.

Unsuspected high-TC materials sometimes appear. For example,
see FeNi3 and Cr2Pt3 in Fig. 1—these turn up in clusters with very low
Curie temperatures. However, atomic structure, not merely composi-
tion, evidently plays an essential role in such materials. Devoid of
explicit structure in the training data or the model, our predictions
cannot be expected to include such candidates. Our models can learn
a major portion of the relationship between chemical composition and
Curie temperature and, thus, generally predict quite accurately.
However, it seems that finding exceptional cases will require data that
includes structural information and a model that incorporates explicit
relationships between magnetism and structure. As discussed at the
beginning, the reliability of such models remains challenging, and cor-
responding data are limited, so computational discovery of new high-
TC materials remains an outstanding challenge.

FIG. 9. Prediction error of the random-
forest model (experimental minus predic-
tion). (Left) error vs experimental TC val-
ues. (Right) error vs predicted TC values.
The black line is the line of best fit. The
errors are correlated with the experimental
TC but not with the predicted TC.

FIG. 10. Heat map showing the maximum predicted TC of each combination of
cobalt, iron, and X1, where X1 can be any element in materials with a TC over
600 K found in DS1 and DS2 (excluding cobalt and iron). TC is measured in
Kelvins. Plot created using Python–Ternary.40

FIG. 11. Heat map showing the maximum predicted TC of each combination of
iron, X1 and X2 where X1 and X2 can be any element in materials with a TC over
600 K found in DS1 and DS2 excluding cobalt and iron. Each compound is com-
posed of a minimum of 80% iron. TC is measured in Kelvins. Plot created using
Python–Ternary.40 (This plot should not be directly compared with Fig. 10 because
of the difference in color scales.)
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See the supplementary material for the details of two error plots
from the 2-NN predictions shown in the left plot of Fig. 3, including a
plot of the number of features reduced by PCA vs the MAE of the pre-
dictions made by a random-forest model using that number of
features.
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