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We report the observation of narrower structures in the yellow luminescence of bulk and thin-film
n-type GaN, using the technique of selective excitation. These fine structures exhibit thermal
quenching associated with an activated behavior. We attribute these fine structures to phonons and
electronic excitations of a shallow donor-deep acceptor complex, and determine its activation
energy for delocalization. Our results suggest that in addition to distant donor-acceptor pairs, the
yellow luminescence can also involve emission complexes of shallow donors and deep acceptors.
© 1999 American Institute of PhysidsS0003-695(99)04347-§

Recently, GaN and related compounds have become thexcited peaks also differ from the above band-gap-excited
subject of much interest as a result of their many application¥L in their thermal behavior. They exhibit strong thermal
in optical displays and optical data stordg@oom tempera- quenching at temperatures abovéd50 K. Our results are
ture GaN-based laser diodend light-emitting diodeshave  consistent with a model in which the YL contains contribu-
become commercially available. However, many basic quesions from donor-acceptor complexes.
tions remain unanswered, such as the origin of the broadband Our experiment was performed on three GaN samples: a
emission centered around 2.2—-2.3 eV, known as yellow lu2.65 um film grown on sapphire by metalorganic chemical
minescencdYL). Many models have been advanced to ex-vapor deposition, and two bulk samples grown under high
plain its origin, including transitions from shallow donor to pressure. The film was heavily doped with Si. The carrier
deep acceptdt;® shallow donor to deep dondt*and deep concentration from Hall-effect measurements was 5
donor to shallow acceptdf. Even within these competing x 10cm 3. The bulk samples also had high carrier concen-
models, there are disagreements, for example whether theations (~5x10*cm %), most likely due to oxygen do-

YL emission comes from distant donor-acceptor pdirs nors. Details on their preparation have been reported
(DAPs), or from localized DAP complexe¥. elsewheré® The temperature of the samples was controlled

The large linewidth(~0.5 eV) of the YL has made it via a closed-cycle refrigerator. The photoluminescefitie
difficult to discern features related to the microscopic strucspectra were excited by three lasers: a 50 mW HeCd laser at
tures of the defects involved. To overcome this difficulty, we3.814 eV/(3.814 eV for above the band-gap excitation stud-
have employed the technique of selective laser excitation tfes, an Ar-ion laser with many discrete lines between 2.4
study YL in n-type GaN samples. This technique is a well-and 2.7 eV, and a Coumarin 540 dye laser with a tunable
established method to resolve fine structures within an inhoputput between 2.1 and 2.35 eV. The PL signal was analyzed
mogeneously broadened emission spectra, and has been us@th a SPEX double spectrometer and detected with a cooled
with many materials, including ZnS8,CdSe;® porous Si”  GaAs photomultiplier tube connected to a photon-counting
Ge microcrystal$® and most recently Galnk¥. system.

By using Ar'-ion and tunable dye lasers, we have = The above-band-gap-excited PL showed band-edge
achieved an excitation range of 2.1-2.7 eV. We have foun@missjon around 3.4-3.5 eV, as well as a strong YL peak
that several narrower peaks appear within the broad YL linezentered around 2.25 eV. When the samples are excited by
width when the YL is excited resonantly. These selectivelyyhotons with energy below the band gap, the YL intensity
decreases considerably and its line shape also changes sig-
dElectronic mail: colton@socrates.berkeley.edu nificantly. The insets of Figs.(&) and Xb) show, respec-
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FIG. 2. Arrhenius plot of the temperature dependence of the PL intensity of
 (b) GaN film, 12K peaks A, B, and C in the second bulk sample, wit{dished curves
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= Figs. 1@ and Xb) agree within experimental uncertainties.
In the second bulk sampl@ot shown, peak A has a slightly
larger energy separation, 5.0 meV.

Peaks A, B, and C in the bulk samples show strong
thermal quenching effects as shown by the Arrhenius plot in
Fig. 2. Similar effects are more difficult to observe in the thin
film sample because of the sensitivity of the interference

: 3 fringes to temperature change. In addition to thermal quench-

20 st Enaray (o) ing, all the peaks exhibit broadening so that the fine struc-

T T T T T T tures are difficult to discern at room temperature. Note that

2.2 2‘3, .2'4 25 26 27 these results contrast with published above-the-gap excita-

Excitation Energy (eV) tion of the YL, which displays little dependence on

FIG. 1. Summary of the emission peak energies observed in the (P2LK temperaturé?*zi The data can be fit with the formula:
spectra ofa) a bulk GaN sample anb) a GaN film, when excited between = | o/ 1+ ae("E" k8T " with three adjustable parametets;
2.2 and 2.7 eV. Inset: examples of typical below band-gap PL spectra iny, andE* (a thermal activation energyyThe fittedE*s for

both bulk and thin f|IrT_1 GaN(excited qt 2.471_ e\ The broken curves peaks A, B, and C, are respectively 67, 65, and 73 meV
represent a deconvolution of the experimersalid curve spectrum into a

sum of Lorentzians. The peaks labeled “IF” in the insetlof are caused by (10 me_\b. ) )
interference fringes and are not plotted in the peak energy summary. In trying to explain our data we find these three features

noteworthy:(1) given the high donor concentrations in our
. L . samples (above the Mott critical density the electrons
tively, the PL of a bulk_an_d thin film _sample for a typical should be free and one might wonder why the YL exhibits
below the band-gap excitatid@.471 eV in both casgsat 12 any narrowing;(2) the selectively excited peaks still have a
K. Several peaks are now observable !nstead of one broa‘iiéther large amount of broadeningresumably homoge-
band. By deconvoluting the PL spectra into a sum of Lore”t'neous,~0.1 e\); and(3) the temperature dependence of the
zians, we have extracted the positions of several peaks whicp depends on if it is excited resonantly.
contribute to the PL. These pealtabeled as A, B, B, B", Spectral narrowing of DAP emission has been observed
and Q, are shown as the broken curves in the insets of Figi, 7nsd5 and Cds& by exciting donors and acceptors
1. The second bulk sample displays similar results, exceRjithin a narrow range of spatial separation. However, in de-
the finer structures in peak B are not resolved. The deconVQjeneratm-type samples, such as the GaN used in our study,
lution process in the thin film sample is complicated by thethe electrons are free and therefore can recombine with all
presence of interference fringglgbeled as IF in Fig. ®)  photoexcited holes localized at the acceptors. As a result, the
insef. We have been able to distinguish these fringes fromemission process would not necessarily involve the same do-
the YL peaks by noting that the IF peak energi&s not  nor as in the absorption process, and there would be no
change with excitation photon energl;, while the YL sharpening of the YL when selectively excited. However,
peak energieszary linearly with E;. The dependence of some theorids™ and experimenté?® have suggested that
peaks A, B, onE; etc., is plotted in Fig. @), for the bulk  the YL of GaN originates fromcomplexesor clusters, of
GaN sample, and Fig.(8), for the film. The similarities in  shallow donor and deep acceptor pairs rather than fsom
these results for GaN samples grown by two completely difcorrelatedpairs. Thus, the selectively excited YL with width
ferent methods is a strong indication that similar defects aref ~0.1 eV we observe at low temperatures most likely
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involved in their emission. originates from electrons and holes trapped at such DAP
Note that the fine structures’ energiés,, , “follow” complexes.

the excitation photon energyE;, so that E,—Ey, The observation of peaks following the excitation line

=constant. The values d&;—Ey, for peaks A, B, B, B, implies the existence of a continuous or quasi-continuous

and C in Fig. 1a) are, respectively, 40, 170, 200, 240, anddensity of state¢DOS). With DAP emission in the ZnSe and
370 meV (=10 meV). The energies determined from both CdSe, for example, such a DOS exists due to the variations
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in the spatial separation between donor and acceptor. In @ ~40 meV for this peak lies in the gap between the acous-
DAP complex, such a DOS could arise from fluctuation intic and optical phonon branches in G&Nand is where gap
energy levels due to variations in the distance or arrangememtodes are expected. The peaks B and C, however, have
between the donor and acceptor, or from variations in thenuch higher energy shifts than expected for phonon modes;
surroundings. Neugebauer and Van de Waller instance, therefore, we have tentatively attributed them to excited elec-
note that the inhomogeneous broadening of such defect contronic states of the donor-acceptor complexes.

plexes may be large since defect levels can be broadened and In conclusion, we have observed fine structures and
shifted when the complexes are located near extended dstrong thermal quenching in selectively excited YL of GaN
fects. The remaining homogeneous broadening-6f1 eV ~ samples. Our results suggest that in addition to distant pairs,
we observe has to be attributed to a strong electron-phonathe YL can also involve emission occurring at complexes of
interaction which is often present in such localized com-shallow donors and deep acceptors.

plexes. Although electron-phonon interaction has been used
to explain the entire low temperature linewidth of Y{.pur
results suggest that only0.1 eV out of a total width of
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