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The cluster expansion method provides a standard framework to map first-principles generated energies for
a few selected configurations of a binary alloy onto a finite set of pair and many-body interactions between the
alloyed elements. These interactions describe the energetics of all possible configurations of the same alloy,
which can hence be readily used to identify ground state structures and, through statistical mechanics solutions,
find finite-temperature properties. In practice, the biggest challenge is to identify the types of interactions
which are most important for a given alloy out of the many possibilities. We describe a genetic algorithm
which automates this task. To avoid a possible trapping in a locally optimal interaction set, we periodically
“lock out” persistent near-optimal cluster expansions. In this way, we identify not only the best possible
combination of interaction types but also any near-optimal cluster expansions. Our strategy is not restricted to
the cluster expansion method alone, and can be applied to select the qualitative parameter types of any other
class of complex model Hamiltonians.
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I. INTRODUCTION: THE DILEMMA
OF SELECTING INTERACTION TYPES
IN CONFIGURATIONAL EXPANSIONS

The cluster expansion �CE� method1–6 provides today’s
state-of-the-art framework to parametrize the energetics of
multicomponent systems as a functional of configurational
variables on an underlying lattice. It is routinely applied to
binary alloys which form on an underlying primitive Bravais
lattice �e.g., bcc or fcc�, with applications to more demand-
ing problems �complex basic lattices,7–9 multicomponent
systems,10–15 and surfaces16–24� rapidly growing in number
and success. The basic premise of the CE method is that the
energetics of different configurations � of a given element
combination A-B can be described by an Ising-like frame-
work of pair and multisite interactions J:

ECE��� = J0 + �
sites

JiŜi + �
pairs

JijŜiŜj + �
triplets

JijkŜiŜjŜk + ¯

�1�

�Ŝi=−1�+1� if lattice site i is occupied by A�B��. In principle,
this expansion is exact1—that is, if all inequivalent pair and
many-body interaction types �MBIT� on the lattice are taken
into account. In practice, the method relies on there being
only a finite number of non-negligible interactions. For each
given alloy A-B, Eq. �1� can then be truncated to the system-
specific relevant interactions only. Their numerical values
can be determined by a fit to a finite number of ab initio
calculated formation enthalpies for different configurations.
The result is a simple formula which describes the energetics
of any configuration of A-B with the accuracy of the under-
lying ab initio method. This formula can then be used to
scan many configurations � in search for ground states25 or

configurational thermodynamic properties26,27 such as phase
transitions, short-range order, etc.

Establishing Eq. �1� requires addressing the following
general issues.

A. Concentration-dependent or concentration-independent J’s

A successful cluster expansion ECE��� is expected to re-
produce the features of a direct quantum-mechanical energy
EQM���= ���H���. We thus have a choice of considering an
equation-of-state EQM�� ,V� description, where the energy is
calculated at each volume. In this case the ensuing 	J�V�

will be volume dependent, and therefore also composition
�x� dependent J�V�x��. This approach was used extensively
early on.28–31 Alternatively, one may want to focus on the
equilibrium quantum-mechanical energy EQM�� ,Veq����
�EQM���, deducing the corresponding volume-independent
interaction energies J. This is our choice here, and in earlier
papers.2,5,26,32–38 The set of volume-independent interactions
is in principle complete:1 since there are 2N types of figures
�=MBITs� on a lattice of N points, and 2N possible configu-
rations �, the set of 2N algebraic equations �1� uniquely de-
fines a set of volume-independent J, and there is no math-
ematical need to add other variables. Indeed, the choice of
representation is a matter of convenience. The two represen-
tations have different convergence properties, as discussed
by Ferreira et al.,39 and could be renormalized into each
other.40 Whichever representation is used, one must naturally
demonstrate the series convergence to a give tolerance, e.g.,
by predicting the energies ECE��� of additional input struc-
tures � and verifying them against their directly calculated
counterparts EQM��� until the desired predictive accuracy is
achieved. Indeed, this situation is analogous to a basis set
expansion in electronic structure theory, where different
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bases �plane waves; Gaussians; muffin-tin orbitals� do not
have any particular physical meaning, have different conver-
gence properties, but in the limit all produce the same varia-
tional total energy.

B. Obtain J directly or from a set of total energies EQM„�…?

Our approach is based on the Connolly-Williams41 sug-
gestion to derive 	J
 from a set of quantum-mechanically
calculated total energies 	EQM�� ,V��
 of some ordered or
disordered configurations 	�
. In principle, it is also possible
to calculate the required interaction energies J directly,42–46

rather than extracting them from the total energies of some
configurations. The main advantage of the former approach
is that presently it is possible to compute total energies of
ordered structures EQM��� without invoking computational
approximations that characterize methods that obtain 	J
 di-
rectly. Indeed, in practice, the latter often necessitate addi-
tional approximations at the electronic and/or structural
level. For instance, linear response theory43,47 gives pair in-
teractions in SiGe43 and GaInP47 alloys, but higher-body in-
teractions require higher-order linear response, which is
much less tractable, and is often neglected. Similarly, the
generalized perturbation method �GPM�42,48 allows extrac-
tion of interaction values in lowest-order scattering theory
from the coherent potential approximation �CPA�. However,
a number of computational compromises need to be made.
For example, �i� because of the specific use of site-
representation Green’s functions, the underlying electronic
structure approach must be restricted to a site-anchored rep-
resentation such as the tight-binding atomic-sphere approxi-
mation in Korringa-Kohn-Rostoker �KKR� theory or the lin-
ear muffin tin orbital �LMTO� method. Thus, the variational
flexibility and shape approximation of the basis set is re-
stricted relative to more general bases �e.g., plane waves�
used efficiently in contemporary methods for calculating
EQM. �ii� Until recently,49–51 the existence of an electrostatic
Madelung term in the energy of a random alloy was over-
looked. This was pointed out in 1990.52 As a result, the J’s
extracted before �2000 by the GPM for systems exhibiting
some charge transfer are suspect. Recent remedies49,50 fix the
problem at the cost of introducing a parameter that cannot be
determined by this theory itself, but must be borrowed from
other types of calculations �e.g., supercells�. �iii� The long-
range strain field created by size mismatch in AnBm
superstructures6 has been neglected in the GPM. This “con-
stituent strain” is included in our approach. �iv� The short-
range relaxation is included via a model,53 rather than by
direct optimization of EQM with respect to atomic positions.
This model has been examined recently for Mo-Ta and found
to be significantly deficient.38 �v� The extraction of J from
the total energy of the CPA is done fully for the sum of
eigenvalues �i�i part of the total energy, but only approxi-
mately for the interelectronic Coulomb and exchange
term,45,49,54 leading to unknown and uncontrolled errors. �vi�
Finally, since in this approach the J’s are extracted from a
fictitious medium without configurational degrees of free-
dom, it remains unclear whether perturbation theory suffices
to obtain J’s that are appropriate for the description of con-

figurationally ordered phases. Also, the number of relevant
interactions can be underestimated in the perturbational limit
to the random alloy, because all three- and higher-body con-
tributions in Eq. �1� are weighted by third- and higher-order
spin products.55 For instance, Turchi et al.56,57 conclude that
only two pair interactions are needed to describe the configu-
rational energetics of Mo-Ta and Ta-W, in stark contrast to
our own results, based on O�50� first-principles configura-
tional energies.37,58,59 The interactions of Turchi et al. fail to
predict almost all ground state configurations of Mo-Ta37

and Ta-W,58,59 and yield overestimated order-disorder tran-
sition temperatures in contradiction to calculations based on
direct first-principles configurational energies38,59 and
experiment.60–62

We conclude that obtaining 	J
 from a set of 	EQM���

values is a more robust approach since such calculations can
be done with �i� variationally unrestricted basis representa-
tions, �ii� full and unfitted Madelung energies, including both
�iii� long-range strain6 and �iv� accurate short-range atomic
relaxation, while �v� keeping both the one-electron and the
two-electron terms in the total energy on equal footing, and
�vi� extracting 	J
 nonperturbatively from reference systems
which incorporate various explicit degrees of configurational
order. Significantly, during the construction of a full CE �Sec.
II�, the expansion can be simply and directly tested to accu-
rately reproduce EQM��� for additional configurations not
used in the fit, leaving no more doubt about convergence
issues or numerical issues.

C. Truncating the expansion in J: Hierarchical approach
vs selective approach

For practical use, in all CE approaches one must truncate
Eq. �1� to a finite number of interaction types, but choosing
exactly those MBIT which must be retained is not easy. For
example, certain distant pairs or three-body figures may be
more important than intimate pairs, and the set of “signifi-
cant” MBIT varies for each different alloy. Essentially, two
different approaches to this problem have been suggested in
the literature.

1. Hierarchical approaches

Since, intuitively, the figures of smallest spatial range
could be the most important, one might suggest to order all
figures by their size, and declare a cutoff radius below which
all figures will be included in the expansion. The simplest
example is the nearest-neighbor fcc approximation widely
used in early Ising Hamiltonians �Ref. 63 and references
therein�, the early cluster-variation method,64 and the
“Connolly-Williams” approximation.41,65–68 Zarkevich and
Johnson69 have recently extended a hierarchical approach,
legislating that if a given figure F is included, all other fig-
ures of same extent and vertex number as F and all subfig-
ures of F should also be included. However, it is not clear,
nor was it proven, that this restriction leads to better conver-
gence or better predictions, and it is impractical to include all
subfigures of a figure unless the series converges after very
few terms. As an example, consider the fcc lattice and figures
up to six vertices: There is a well-known group of only five
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inequivalent figures that extend over a nearest-neighbor
distance,41 but already eleven if the maximum distance is
second nearest-neighbors, and a total of 60 inequivalent fig-
ures that span a third-nearest-neighbor distance at most. In
practice, it is well known that even third-nearest-neighbor
distances may not be enough to capture the energetics of a
binary alloy qualitatively,37,70,71 and we have ourselves en-
countered many systems in the past where a hierarchy is not
followed.32,33,35,37,38

Early truncation can be grossly inaccurate,6,14,38 missing
most �long-range� atomic relaxation effects and even quali-
tative features of a ground state hull and phase diagram. One
may still attempt to fit all necessary figures impartially by
including enough ab initio calculated input energies E���,
but this would lead to a brute-force approach of slow con-
vergence. Van de Walle and Ceder4 have shown how to make
an automated hierarchy-based approach manageable by in-
troducing leave-one-out cross-validation as a systematic cri-
terion to assess the predictive power of a CE, but some com-
putational overhead will be the price.

2. Selective approaches

An alternative approach, pursued, e.g., by Zunger
et al.,2,5,25,32,33,38 is to attempt to identify the leading interac-
tions of Eq. �1� independent of hierarchical constraints,
simply by comparing the predictive power of many different
CE truncations for a given alloy system. In earlier papers,
this was done by fitting the numerical values of J to only a
subset of the input data and then predicting the rest, an ap-
proach more recently extended to leave-many-out cross-
validation.38,72,73 The set of input structures is split into two
parts, one for fitting numerical values of J, and one to check
predictions made with these numerical values. The procedure
is repeated for different choices of fitting or prediction sets,
and the average prediction error is the cross-validation score
Scv. In selective approaches, one sets up a pool of MBIT
from which the leading interactions are selected without hi-
erarchical constraints. We show in Fig. 1 some inequivalent
MBIT �beyond pairs, as pairs can be reliably accounted for
by a constrained fit method5,6� which we use as a standard
pool of MBIT candidates on the body-centered cubic �bcc�
lattice. Only a fraction of these MBIT are typically required,
but it is not a priori clear which few must be kept. The
overall pool is not designed according to any special prin-
ciples. Instead, it is simply an exhaustive list of all MBIT up
to a reasonable number of vertices and vertex distance, in-
cluding all three-vertex MBIT up to fifth-nearest-neighbor
distance, four-vertex MBIT up to fourth-nearest-neighbor
distance, and five- and six-vertex MBIT up to third-nearest-
neighbor distance. To ensure that the relevant physics of a
given alloy system is not limited by the chosen pool of
MBIT, the sufficient extent of the pool can be routinely
tested by including additional figures as a convergence test,
e.g., all three-body figures up to eighth-nearest-neighbor dis-
tance. Figure 1 also shows that the number of possible fig-
ures increases dramatically as longer distances and more ver-
tices are added—for instance, there are only two bcc MBIT
with a maximum vertex separation of 2, but already 14 bcc
MBIT with a maximum vertex separation of three. In the

past, the relevant MBIT were selected manually from the
pool by minimizing the prediction error, but an exhaustive
search is not feasible; e.g., searching for only five out of a
pool of 45 possible MBIT leads to as many as 1.22 million
different possibilities—a task beyond a brute-force search.

We have recently pointed out58 that the search for the
“leading terms” of a model Hamiltonian can be efficiently
performed using a genetic algorithm �GA�.74 In the present
work, we show how this is done in particular for the choice
of the MBIT which are relevant to reproduce local density
approximation �LDA� energies in the approach �ii� above.
The input information for a given alloy system is a set of
first-principles calculated energies 	EQM���
 for selected
configurations �. The GA must then find the combination of
MBIT with minimal cross-validation score, satisfying three
criteria:

�1� It should converge significantly faster than a manual
search.

�2� It should not get trapped in local minima.
�3� If there are multiple sets of MBIT which are almost

equivalent to the best possible CE, the method should iden-
tify them all; a seemingly ambiguous CE for a given input
set can then be unraveled by calculating selected additional
input energies EQM���.

II. DETERMINISTIC CONSTRUCTION
OF A MIXED-BASIS CLUSTER EXPANSION

We employ the mixed-basis cluster expansion �MBCE�
formalism5,6 to determine the interaction types in Eq. �1�,
and their numerical values. Since the generality of Eq. �1� is
fully preserved if different configuration-dependent reference
terms are added to or subtracted from the total energy of a
given alloy configuration, in the MBCE one improves the

FIG. 1. �Color online� Pool of 45 MBIT on the bcc lattice.
Figures are grouped by increasing number of vertices, and the larg-
est vertex-vertex distance within a given figure �2NN, …, 5NN
denote second- through fifth-nearest-neighbor separation�.
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convergence of the cluster expansion by treating certain
long-range contributions analytically.6 The MBCE-expanded
energy is written as

E��� = �Hf��� − ECS��� , �2�

where �Hf denotes the enthalpy of formation of a given,
fully relaxed alloy configuration � �A1−xBx� from the elemen-
tal solids A and B,

�Hf��� = Etot��;A1−xBx� − �1 − x�Etot�A� − xEtot�B� �3�

�all total energies are per atom�. ECS��� is the configuration-
dependent “constituent strain energy”,6 which can be calcu-
lated analytically from LDA data, and which removes a sin-
gularity from the Fourier transform of the real-space pair
interactions, J�k�. Without subtracting ECS, this singularity
would arise because �Hf of a fully phase-separated configu-
ration �A1−xBx�phs on the same coherent underlying lattice is
nonzero: Etot��A1−xBx�phs�� �1−x�Etot�A�−xEtot�B�, since the
lattices of elemental A and B may relax independently while
the coherent phase-separated limit remains constrained.

The construction of a verifiably predictive cluster expan-
sion for E��� consists of two iterative loops, as visualized in
Fig. 2. The inner loop identifies the most predictive set of
interaction types to describe a given set of first-principles
calculated energies 	ELDA���
 for Ns input structures. The
measure for the predictive power of a given set of interaction
types is a leave-many-out cross-validation score72,73 Scv, as
defined in Ref. 38. The Ns input structures are subdivided
into a group of Nf �Ns structures to fit the numerical values
of the selected interaction types, and a group of Nv=Ns−Nf
structures which are not fitted, so that their predicted ener-
gies ECE��� can be compared to the known energy ELDA���
after the fit. This process is then repeated for b independent
subdivisions into Nf fitting and Nv prediction structures, until
each of the Ns input energies 	ELDA���
 was predicted at
least twice. The average overall prediction errors from this
process define

Scv =
1

bNv
�

�b sets�
�

�Nv � in set�
�ECE��� − ELDA����2. �4�

The goal of the inner loop, then, is to identify the combina-
tion�s� of interaction types �candidate CEs� with minimal Scv.

The outer loop acts as a feedback loop to ensure that a
CE, identified in the inner loop for the fixed subset of NS
structures, really possesses good predictive power for all 2N

configurations. Each candidate CE is used to search all 2N

structures for additional ground states or near-ground-state
structures �new. Their energies ELDA��new� are then evaluated
by direct LDA calculations and compared to the predicted
ECE��new�, giving an objective estimate of the predictive
power of each candidate cluster expansion. The newly calcu-
lated 	ELDA��new�
 are added to the previous input set, and
the inner loop is repeated. The outer loop iterations are con-
verged when no more significant new ground-state structures
are predicted, and all verified predicted energies agree with
their direct LDA counterparts to within a few meV. For bulk
alloys, �50 LDA input structures38,59 are usually enough to
achieve convergence. The complete iterative procedure guar-
antees the identification of a well-converged truncated ex-
pansion Eq. �1�, and additionally acts as a prediction engine
for important candidate structures for ground states whose
energy must be calculated directly in LDA.

The inner loop is where the difficult search problem for
the most relevant interaction types arises, as outlined in the
introduction. This problem is manageable for pairs, whose
number increases relatively slowly with distance, and which
can therefore be treated by the constrained fit method of Ref.
6, but the number of MBIT with three or more vertices in-
creases much more rapidly with distance. The present paper
concentrates on the selection of MBIT. We thus assume a
fixed set of input structures, and always use the constrained
fit method for pair interactions. Our goal is to select the best
set of MBIT to minimize Scv using a genetic algorithm. The
rest of the paper explains how this task is done.

III. GENETIC ALGORITHM SELECTION OF MBIT

Genetic algorithms74 use the biological idea of “survival
of the fittest” to find the optimum solution to a given prob-
lem. GA’s are particularly helpful when faced with strongly
correlated search spaces, where other algorithms such as the
sequential optimization of individual parameters, or methods
based on individual, random parameter “flips” �Monte Carlo�
would end up in local minima, or even fail to converge at all.
GA’s have been applied in many different settings, e.g., in
computational condensed matter physics to find the optimal
numerical values of given physical parameters such as geo-
metric structure75–78 or tight-binding parameters.79 Our
present application is different in that we aim to find the
actual shape of a cluster expansion Hamiltonian, i.e., its in-
teraction types rather than only their numerical values.

Generally, the trial solutions in a GA are encoded as
binary sequences �the “genomes”� of 0’s and 1’s �the
“genes”�. Here, the objective is to pick, from a large pool, a
handful5–10 of MBIT to be included in a trial CE, i.e., a
truncation of Eq. �1�. A natural encoding of trial CE is a

FIG. 2. Construction algorithm for a converged mixed-basis
cluster expansion.
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genome “…01110100011…” with one gene for each candi-
date MBIT in the pool, and a one �zero� denoting whether
that figure is �is not� included. Over the course of the GA, a
set of genomes is monitored over many iterations �“genera-
tions”�. From one iteration to the next, “child” genomes are
created by a cross-over �“mating”� of two selected “parent”
genomes of the earlier iteration. Each gene of a child genome
takes on the value of that gene in either the first or the second
parent. If this strategy were strictly implemented, only pre-
existing “genetic” information could be proliferated in a mat-
ing step. So, if a certain MBIT �or combination� were elimi-
nated from the entire population of trial CE’s in any one
generation, this MBIT could never return later. A GA might
lose a vital piece of the optimal solution at an early stage by
accident and would later be doomed to remain stuck in a
local �but not global� optimum forever. Nature’s solution to
this dilemma is mutation. To prevent a starvation of the di-
versity of possible trial solutions, individual genes can ran-
domly be turned on or off in a newly created child genome,
similar to the random mutations of evolutionary biology. We
make the following choices �Sec. III A–III F below� to con-
trol the convergence of our particular GA.

A. Maximum number of “active” genes per genome

The “genomes” in our problem represent sets of MBIT
�i.e., figure types as opposed to numerical values J� which
are used to construct a CE. The optimized quantity is the
cross-validation score Scv, which measures the ability of a
given CE to predict EQM for structures not used in the fit.
One additional measure is taken as a safeguard against over-
optimization of Scv: we impose a deliberate limit on the num-
ber NMB of active MBIT per CE, i.e., we cap the number of
active genes �“ones”� in each genome. The development of
Scv as a function of NMB may be studied to determine to what
degree an increase in the number of CE parameters still helps
improve predictive accuracy significantly.

B. Population size

The number of genomes per generation, Npop, determines
the amount of “genetic diversity” which is available to
spawn subsequent generations. For optimum genetic diver-
sity, we choose Npop based on the number of MBIT in each
CE, NMB, with the requirement that each MBIT appear at
least twice �possibly more often� in the initial generation.

C. Survival rate

A fraction rs of the original Npop candidate genomes with
the momentary optimum fitness is retained from one genera-
tion to the next. The other genomes are replaced with chil-
dren mated from the preceding generation. For instance,
from a generation of 20 genomes with a survival rate rs
=1/2, the ten best individuals would be carried over unmodi-
fied. Ten children would be created to fill the remaining slots.

D. Mating favoritism

To create a child, two parents are randomly selected from
the existing generation. Then, one by one the genes �zeroes

and ones� of the child genome are selected from parent 1 or
parent 2. The parent with better fitness has a higher probabil-
ity of passing its genes on to the child than the less fit parent.
In this way, the preferred proliferation of “better” genetic
information is ensured.

E. Mutation rate

After each mating step, we allow each gene to be
“flipped” from zero to one or vice versa with a certain �rela-
tively low� probability. In fact, we choose this probability so
as to obtain a certain number of flips Nflips per genome on
average. Of course, we might accidentally end up with more
MBIT in a CE than allowed by the maximum number NMB
after this step. In that case, we randomly pick some of these
“ones” and turn them off �i.e., we remove figures from the
corresponding truncation of Eq. �1��, until their number is
reduced to the prescribed target number.

F. “Lock-out” strategy

Even with significant initial genetic diversity and muta-
tions, the problem of local optima—which exists in any glo-
bal optimization scheme, not just a GA—is not fully re-
solved. If the GA first reaches a locally optimal CE that
differs from the global one by several MBIT, the probability
to progress by random mutations alone may become hope-
lessly small. As a result, the prospective alloy researcher may
easily spend thousands of generations waiting for the correct
minimum to be found. Even worse, in an actual application
the best answer is not known, and hence it is impossible to
be sure whether or not a persistent solution is already the
best possible CE or not. To overcome this “locking” of the
algorithm into a local minimum, we implement the idea of
“locking out” any persistent solutions after progress has
stopped for a certain number of generations �50–100�. The
persistent CE is recorded on a blacklist, and barred from ever
occurring again. The algorithm is then reinitialized with a
momentarily increased mutation rate in the next generation.
The benefit is twofold. First, the algorithm is forced to look
for another CE, which may or may not be better than the
first. Second, the result of a GA run is a list of several near-
optimal CEs in addition to the actual optimum. This gives
direct insight into the degree of degeneracy of the search
space explored.

IV. APPLICATION TO MO-TA

The criteria Sec. III A–III F determine our algorithm com-
pletely. Once the key parameters are set, the mating process
can be repeated for an arbitrary number of generations until a
target value of Scv has been achieved.

A. Successful retrieval of the leading interactions

We first demonstrate the GA’s ability to successfully re-
trieve the leading interactions from an input set 	Eexact���

whose underlying interactions are exactly known. To that
end, we use Eq. �1� itself to calculate Eexact��� for 60 bcc
input configurations �, inserting the set interactions retrieved
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in an earlier study of the alloy system Mo-Ta.37,38 �for details
see Appendix A�. This choice is advantageous because the
underlying cluster expansion describes a real alloy system. In
Refs. 37 and 38, the cluster expansion was constructed
manually and tested thoroughly, predicting physical ground
states, order-disorder transition temperatures Tc, short-range
order, and the random alloy enthalpy of mixing of Mo-Ta.

Figure 3�a� shows the development of Scv as a function of
generation number in a typical GA run. The GA picks the
optimum five MBIT out of a pool of 45 candidates �Fig. 1�,
using Npop=27 trial CEs to truncate Eq. �1�. The 13 fittest
CEs of each generation are allowed to survive into the next
generation. The mutation rate is chosen to flip one gene per
newly mated child on average, meaning that the mutation
probability is 1 /45 to switch a particular MBIT off or on at
random. Since the input energies Eexact��� are constructed
from the known interactions of Table I, the search must se-
lect these precise MBIT, with Scv=0. This optimum solution
is indeed obtained after 46 generations. To arrive at this re-
sult, only 657 individual combinations of MBIT were
probed, less than 1/1000 of the total space which contains of
� 45

5
�
1.22 million distinct possible CEs.
After the optimum CE is identified, it persists through the

subsequent iterations of the GA, and is therefore “locked
out” after 96 generations. The algorithm then continues to
probe the search space for a next best CE, and so forth.
Figure 3�b� lists the six CE’s which were locked out within
600 GA generations of this run. All six candidates share two
specific MBIT, but differ in the remaining three. In terms of
Scv, the best solution is clearly separated from the competing
possible truncations of Eq. �1�. It is noteworthy that for the
selected lock-out criterion �exclude persistent solutions after

FIG. 3. Identification of the
five optimum MBIT out of a pool
of 45 for the input set 	Eexact���
.
�a� Development of Scv as a func-
tion of GA generation number for
all trial CEs. Persistent solutions
are locked out after 50 genera-
tions. The optimum combination
of MBIT is locked out in genera-
tion 97. �b� List of the first six
locked-out “persistent” CEs, en-
coded as genomes.

TABLE I. Interaction types and �symmetry-weighted� numerical
interaction values for bcc Mo-Ta according to Refs. 37 and 38, used
here to generate the set of configurational energies 	Eexact���
.

Figure Vertices �excl. �0,0,0�� Numerical value �meV�

Empty and point interaction

J0 −144.7

J1 +12.8

Pair interactions

1 �0.5,0.5,0.5� +108.1

2 �1,0,0� −15.7

3 �1,1,0� +23.0

4 �1.5,0.5,0.5� −3.7

5 �1,1,1� +12.0

6 �2,0,0� +3.7

7 �1.5,1.5,0.5� +6.3

8 �2,1,0� +21.2

Three-body interactions

M1 �0.5,0.5,0.5�, �1,1,0� −3.7

M2 �0.5,0.5,0.5�, �1.5,0.5,0.5� −21.8

M3 �0,1,1�,�1.5,0.5,0.5� −5.2

M4 �1,0,0�,�1,1,1� +18.1

Four-body interactions

M5 �0.5,0.5,0.5�,�1,1,0�,
�1.5,0.5,0.5�

−9.8
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50 generations�, the six optimum CE’s are not found pre-
cisely in order of increasing Scv. Without locking out, the
third and fourth identified CEs �in generations 264 and 350�
could have significantly delayed the algorithm’s convergence
to the actual third-best solution �Scv=1.09 meV, locked out
in generation 443�.

Next, we show that the GA performs just as well for ac-
tual LDA input data for Mo-Ta. The input set 	ELDA���


consists of the 56 structures used in Refs. 37 and 38, and is
described in Appendix B. To construct the optimum CE for
	ELDA���
, we again pick the five MBIT out of the pool of 45
candidates �Fig. 1�, using the same basic GA settings as for
	Eexact���
. The GA run shown in Fig. 4�a� demonstrates a
case where the algorithm is first trapped in a local minimum,
which is then locked out after 96 generations total �50 gen-
erations after it first appears� according to criterion in Sec. III

FIG. 5. Number of trial CEs evaluated by the GA as a function of �a� population size of each generation, �b� survival rate between two
generations, and �c� mutation rate in the mating step. Ten different GA runs were evaluated in each step �open symbols�. The full line
represents the average number trial solutions for each setting of GA parameters, including their standard deviation �error bars�.

FIG. 4. Identification of the
five optimum MBIT out of a pool
of 45 for 	ELDA���
 of bcc Mo
-Ta. �a� Development of Scv of all
trial solutions as a function of GA
generation number. Persistent so-
lutions are locked out after 50
generations. The optimum CE is
found second, in generation 209,
after a persistent local minimum
has been removed. �b� List of the
first eight locked-out “persistent”
CEs, encoded as genomes.

USING GENETIC ALGORITHMS TO MAP FIRST-… PHYSICAL REVIEW B 72, 165113 �2005�

165113-7



F above. �That these numbers are the same as for the first
lock-out in Fig. 3 is pure coincidence.� The actual optimum
solution is found second, after 159 generations, and locked
out in generation 209. Compared to the total space of � 5

45�

1.22 million possibilities, again only 
1/1000 of the so-
lution space was explored.

Figure 4�b� shows the list of locked-out trial CEs after
600 generations. Since, for actual LDA input data, there is no
exact solution, the optimum selected individuals are much
closer together in terms of Scv than in the case of 	Eexact���

�Fig. 3�. Still, the best solution is relatively clearly separated
from the competing possible CEs. Indeed, it coincides with
the result of our previous, much more tedious search “by
hand”38 �Table I�, yet this time with certainty that no corre-
lations between the MBIT are missed. All further locked-out
CEs share three of the optimum MBIT. It is instructive to
note that the nonoptimal solution which was locked out first
differs from the actual optimum in both remaining MBIT. Its
relative persistence is thus explained by the lower probability
of a correlated switch of two MBIT, required to reach the
actual best solution.

B. Optimizing the algorithm’s efficiency

We examine the impact of the three major scalable param-
eters, population size, survival rate, and mutation rate, on the
convergence efficiency of our algorithm. This first set of tests
is based on the input set 	Eexact���
 as described in Appendix
A. For clarity, the lock-out criterion was not applied when
generating these results.

Figures 5�a�–5�c� show the performance of the GA as a
function of �a� population size Npop, �b� survival rate rs, and
�c� mutation rate in the mating step. As we aim to visualize
the actual computational effort, we plot the total number of
trial CEs that the GA explored before the solution was found,
i.e., the number of child CEs per generation Npop�rs multi-
plied by the number of generations needed to find the correct
solution. For each choice of parameters, ten different GA
runs were evaluated, shown as small open circles. Also plot-
ted are their averages and standard deviations, represented by

larger symbols including lines and error bars. It is obvious
that the scatter of results is relatively large, but several trends
are nevertheless apparent.

�a� The effect of population size. We use a probability of
one mutation on average per newly mated child and rs
=1/2. The impact of Npop on the overall computational effort
of our algorithm is relatively small. As we increase Npop, the
number of new trial CEs per generation increases. However,
the average number of generations needed to find the actual

FIG. 6. �a� Number of trial
CEs evaluated by the GA as a
function of mutation rate in the
mating step to find the optimum
five MBIT for 	ELDA���
. All set-
tings are the same as for Fig. 5�c�.
�b� Same input data and param-
eters, except persistent candidate
CEs are now locked out after 50
generations without improvement.

FIG. 7. Configurational heat capacity Cv�T� from Monte Carlo
simulations of the A2-B2 phase transition in Mo0.5Ta0.5 by stepwise
cooling. Cv�T� is shown for the optimum CE selected in Fig. 4�b�,
three near-optimal CE candidates, and an ad hoc hierarchy-based
expansion which contains the five shortest-ranged MBIT of Fig. 1.
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solution decreases almost as fast with Npop, leaving the total
number of required trial CEs almost constant. So, while it
seems slightly beneficial to sample fewer rather than more
new trial solutions per generation, the overall effect is not
dramatic.

�b� The effect of the survival rate. We set a probability of
one mutation on average per newly mated child, and Npop
=27. The scatter of results is again larger than any actual
trend, but it does seem that high survival rates �down to only
one newly created CE per generation� give somewhat better
results. The GA then makes the most efficient use of the
previously acquired genetic information, since each child is
generated almost exclusively from previously accepted sur-
vivors, rather than from a parent which was itself a child in
the preceding generation, with potentially high Scv.

�c� The effect of the mutation rate. This governs the child-
mating process, and shows the clearly strongest effect of all
the adjustable quantities. Tested for Npop=27 and rs=13/27,
a logarithmic plot is needed to display the full results. It is
evident that the fastest results are reached for 0.5–2 muta-
tions per mating step. Lower mutation rates slow down the
algorithm because not enough fresh genetic information is
introduced, causing the algorithm to dwell in local minima
over many generations. In contrast, mutation rates that are
too high lead to an almost random search pattern, drowning
out the useful information that the algorithm has already col-
lected in preceding search generations.

For the simple test case only around 1/1000 of the avail-
able search space must be scanned to find the best possible
CE. While the algorithm does not fail for any of the tested
settings, an appropriate mutation rate is the key to its effi-
cient functioning.

C. Impact of the lock-out criterion

Figure 6 shows the performance �number of trial CEs re-
quired to find the actual optimum set of MBIT, as previously

determined in a tedious search by hand38� of the GA as a
function of mutation rate for actual LDA data 	ELDA���
 of
Mo-Ta �Appendix B�. In Fig. 6�a�, all settings are exactly the
same as for Fig. 5�c�; in particular, persistent solutions were
never locked out. Again, we averaged over ten GA runs for
each setting, and also show the scatter of individual runs.
The scatter of the number of required trial CE evaluations is
much larger for 	ELDA���
 than for 	Eexact���
 in Fig. 5�c�.
Moreover, a minimum develops only at two mutations per
child genome on average, which appears as a sharp spike.
The reason for this behavior can also be seen in Fig. 6�a�. A
number of individual test runs shows exactly the same be-
havior as observed for 	Eexact���
 in Fig. 5�c�, namely a pa-
rabolalike distribution with a minimum around 0.5–2 muta-
tions per genome. However, another group of runs takes
disproportionately longer �data points between 10 000 and
100 000 trial solutions�, driving up both the average and the
standard deviation of our search. The origin of this popula-
tion of outliers is that, in these cases, the GA encounters a
local optimum CE that differs by several MBIT from the
actual one. The actual optimum can now only be reached by
several random mutations in the same step, which must all be
simultaneously correct. The probability for this correlated
switch is low, and the algorithm remains trapped for some
time. This problem is particularly grave for small mutation
rates, where a large number of test runs do not find the cor-
rect CE at all within 5000 generations, as shown by the suc-
cess rate in the upper panel of Fig. 6�a�.

This behavior is mended by the “lock-out” strategy de-
scribed in the preceding section. In Fig. 6�b�, the lock-out
threshold is set to 50 generations, with otherwise the same
parameters as Fig. 6�a�. The success of this strategy is con-
vincing; the outlier population is eliminated entirely, and the
qualitative behavior is now the same as that of Fig. 5. In
particular, the success rate is now 100% even in the previ-
ously difficult cases of very low mutation rates. It is also
worth noting that the lock-out strategy does not improve the

FIG. 8. Physical data E��� as a function of composition x of each configuration �, based on which the GA selects the optimum MBIT
in the present work. Dashed lines serve as guides to the eye. �a� Eexact��� for 60 bcc configurations, calculated directly from Eq. �1� using
the interaction parameters tabulated in Table I. �b� LDA-calculated input set ELDA���=�HLDA���−ECS��� for 56 configurations of bcc
Mo-Ta.
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behavior for unreasonably high mutation rates �e.g., 10 mu-
tations per genome in Fig. 6�b��. Here, the convergence is
slowed down not by trapping in local minima but by the
noise of random mutations drowning out the valuable genetic
information—the lock-out solution does not apply. For rea-
sonable mutation rates, the algorithm is now completely re-
liable.

V. PHYSICAL IMPACT

We have shown how a GA can be employed to solve a
decisive step in the construction of a CE Hamiltonian of the
form Eq. �1�. Based on a set of sufficiently many configura-
tional energies 	E���
, identify those interaction types which
promise the greatest power to predict energies of further, as
yet unknown energies for the same alloy system. During the
construction process of a CE, one may test predictions made
with these MBIT after the fact, and increase the number of
structures � for which first-principles input is available. A

completed CE then provides the ability to assess the energies
of literally millions of configurations within minutes, en-
abling both the identification of ground-state structures by
exhaustive search,25 and the evaluation of configurational av-
erages, e.g., in Monte Carlo simulations,26,27 for finite-T ther-
modynamics.

In addition, the rigorous application of the lock-out crite-
rion provides physical information beyond that contained in
the optimum set of MBIT alone. With a rigorous list of near-
optimal cluster expansions, it is now possible to assess how
sensitive the physical target quantities of a cluster expansion
are against the final choice of MBIT, i.e., how reliable the
information is that we can extract from a given set of input
structures 	�
input. As an example, we examine the A2-B2
phase transition in bcc Mo0.5Ta0.5 using canonical Monte
Carlo simulations �cell size: 16�16�16, 4000 flips per lat-
tice site and T step�. Figure 7 shows the development of the
configurational heat capacity Cv with decreasing simulation
temperature for the optimum selected set of MBIT in Fig.

TABLE II. Eexact��� for 60 input configurations, generated from Eq. �1� using the interactions of
Table I. See text for details of the structure notation used.

Composition Structure E��� �meV� Composition Structure E��� �meV�

Mo A2 0.9 MoTa �310� A2B2 SL −211.7

Mo11Ta �211� A11B SL −46.1 �311� A3B3 SL −218.4

Mo9Ta �521� A9B SL −55.6 �221� A4B3A2B3 SL −120.4

Mo8Ta “A8B” −66.8 �221� A3B2A3B4 SL −127.7

Mo6Ta �111� A6B SL −81.9 SQS-16 −144.3

Mo5Ta �332� A5B SL −93.2 Mo3Ta4 �111� A2B�AB�2 SL −203.4

Mo4Ta �100� A4B SL −120.8 SQS-14 −143.9

�310� A4B SL −113.0 Mo2Ta3 �100� A2BAB SL −201.3

�332� A6BA2B −115.5 �111� A2BAB −191.3

Mo3Ta D03 −139.9 Mo3Ta5 “A5B3” −128.4

L60 −136.8 MoTa2 C11b −176.5

�100� A3B SL −143.0 �110� A−2B SL −100.5

�110� A3B SL −92.2 �111� A2B SL −124.3

“A4B12” −146.2 Mo2Ta5 �111� A5B2 SL −87.8

SQS-16 −111.7 Mo3Ta8 �111� �A3B�2A2B SL −109.3

Mo8Ta3 �111� �A3B�2A2B SL −140.4 MoTa3 D03 −96.2

Mo5Ta2 �111� A5B2 SL −102.4 L60 −95.7

Mo2Ta C11b −192.4 �100� A3B SL −116.4

�110� A2B SL −117.1 �110� A3B SL −79.7

�111� A2B SL −133.8 “A4B12” −139.5

Mo5Ta3 “A5B3” −137.2 SQS-16 −105.8

Mo3Ta2 �100� A2BAB SL −210.8 MoTa4 �100� A4B SL −99.6

�111� A2BAB SL −195.8 �310� A4B SL −111.8

Mo4Ta3 �111� A2B�AB�2 SL −211.8 �332� A6BA2B −106.1

SQS-14 −148.9 MoTa5 �332� A5B SL −76.9

MoTa A1 −135.2 MoTa6 �111� A6B SL −62.0

B2 −221.9 MoTa8 “A8B” −56.5

B11 −162.1 MoTa9 �521� A9B SL −49.6

B32 −125.6 MoTa11 �211� A11B SL −39.3

�110� A2B2 SL −104.7 Ta A2 1.1
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4�b�, and the three best near-optimal candidates of Fig. 4�b�.
As a contrast, the result for an ad hoc hierarchy-based CE is
also shown; this CE also contains five MBIT, but they are
now the four shortest-ranged three-body interaction types
and the shortest-ranged four-body interaction type of Fig. 1.
As shown in Ref. 38 for the optimum CE, the A2-B2 transi-
tion occurs for Tc
600–1000 K. Cv�T� is quantitatively
very similar to the optimum CE for all three near-optimal
CE’s, as expected at the end of a well-converged CE con-
struction process, which is based on a large enough input
database 	�
input. In contrast, Cv�T� from the shorter-ranged
ad hoc CE differs clearly from the other four curves, and
would falsely suggest a clearly higher Tc than all others,
close to 1000 K. However, this ad hoc CE is safely ruled out
by the GA, since it is characterized by Scv
7.0 meV, more
than twice the prediction error estimated for the GA-
determined near-optimal MBIT combinations.

VI. CONCLUSION

We show how a genetic algorithm removes most human
guesswork from the construction of a cluster expansion,
where otherwise a select few combinations of MBIT �e.g.,
the shortest� would have to be favored over millions of other
possible combinations by some intuition. The algorithm con-
verges fast both for the test case where the correct solution is
known analytically, and for realistic first-principles input
data to a cluster expansion. The algorithm is easy to use,
since its performance is almost exclusively controlled by the
mutation rate alone, and it is robust against getting stuck in
apparent local optima by strictly “locking out” persistent so-
lutions. The resulting list of near-optimal solutions can be
used to verify directly the reliability of all CE-predicted
physical alloy properties �ground states, phase transitions,
short-range order�. The procedure is not restricted to the
cluster expansion method which we emphasize here, and we

TABLE III. Full input set 	ELDA���
 �Eq. �2�� for 56 bcc Mo-Ta input configurations. See Ref. 38 for
details.

Composition Structure E��� �meV� Composition Structure E��� �meV�

Mo A2 0.0 MoTa A1 −135.4

Mo8Ta “A8B” −69.2 B2 −222.4

Mo7Ta �210� A7B SL −69.8 B11 −165.1

“A7B” −71.9 B32 −127.3

Mo6Ta �100� A6B SL −84.9 �110� A2B2 SL −103.8

�111� A6B SL −81.6 �310� A2B2 SL −209.8

Mo5Ta �433� A8BA2B SL −94.8 “A8B8” −152.6

Mo4Ta �111� A4B SL −112.9 Mo3Ta4 �100� A2B�AB�2 SL −201.6

�100� A4B SL −120.4 �111� A2B�AB�2 SL −203.8

�310� A4B SL −116.9 Mo2Ta3 �100� A2BAB SL −198.0

Mo3Ta D03 −140.3 MoTa2 C11b −174.8

L60 −140.8 �110� AB2 SL −103.0

�100� A3B SL −145.8 �111� AB2 SL −121.7

�110� A3B SL −90.0 Mo4Ta9 “A4B9” −170.1

�310� A3B SL −144.1 MoTa3 D03 −93.4

“A12B4-I” −137.8 L60 −94.9

“A4B12” −142.6 �100� AB3 SL −120.7

“A12B4-II” −139.7 �110� AB3 SL −77.9

Mo5Ta2 �100� A3BA2B SL −163.3 �310� AB3 SL −127.7

�111� A4BAB SL −161.6 “A4B12” −140.5

Mo2Ta C11b −193.1 “A12B4-II” −112.6

�110� A2B SL −116.2 MoTa4 �100� A4B SL −97.6

�111� A2B SL −134.1 �310� A4B SL −105.5

Mo9Ta5 �710� A4B3A4BAB SL −190.4 MoTa7 �210� A7B SL −60.2

Mo5Ta3 �210� A3B�AB�2 SL −195.9 MoTa8 “A8B” −51.9

Mo3Ta2 �210� A3B�AB�3 SL −197.8 Ta A2 0.0

�111� A2BAB SL −193.6

�100� A2BAB SL −211.3

Mo4Ta3 �100� A2B�AB�2 SL −212.4

�111� A2B�AB�2 SL −210.4
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expect the same benefits in the construction of any general
model Hamiltonian where a system-dependent choice of pa-
rameter types must be made.
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APPENDIX A: INPUT SET ˆEexact„�…‰ FOR MA-TA:
CONFIGURATIONS AND ENERGIES

To test our algorithm using an input database for which an
exact solution is known, we selected 60 bcc-based configu-
rations �. We calculated 	Eexact���
 for each � according to
Eq. �1� using the interactions of Table I, which were found to
describe the Mo-Ta alloy system in Refs. 37 and 38. It is
evident that the MBIT do not follow from a simple scheme
of selection among the 45 interactions displayed in Fig. 1:
they include four three-body-figures, one of them extending
to the fifth-nearest-neighbor vertex �1,1,1�, and one four-
body figure with a fourth-nearest-neighbor vertex
�1.5,0.5,0.5�. In a hierarchy-based approach, this choice
would mandate a large number of additional unrelated
figures.

The distribution of 	Eexact���
 is shown in Fig. 8�a� as a
function of the atomic concentration x of each configuration
�. There is some energetic asymmetry with regard to equi-
atomic composition, with lower E��� towards the Mo-rich
side, and it is precisely this asymmetry which is captured by
three-body MBIT �pair interactions alone would produce a
symmetric distribution of configurations�. The chosen input

configurations include the bcc configurations of elemental
Mo and Ta, the “usual suspect” configurations B2 MoTa,
B32 Mo2Ta2, D03 Mo3Ta and MoTa3, and C11b Mo2Ta and
MoTa2, as well as 14 other structures with four or fewer
atoms per unit cell, and five special quasirandom structures
with 14 or 16 atoms per unit cell �as described in the appen-
dix of Ref. 38�. The remaining 33 structures are all relatively
low in energy, spanning unit cell sizes between 5 and 16
atoms across a broad range of intermediate concentration
values; a full listing is given in Table II. Wherever possible,
the structures are described in a short way as superlattices
�SLs� of pure atomic planes �e.g., the “�100� A2BAB SL” is a
sequence of two pure �100� planes of element A, followed by
one pure B plane, another A and another B plane�. Where
such a notation is not possible, a description of the structure
is referred to Ref. 38. There is one structure which neither
fits a superlattice notation nor has been described
previously—this is the structure labeled “A5B3.” It is a
sequence of three mixed �100� planes of
c�2�2� type AB occupation, followed by one plane of
pure A.

APPENDIX B: INPUT SET ˆELDA„�…‰ FOR MO-TA:
CONFIGURATIONS AND ENERGIES

A description of all Mo-Ta input structures � and a listing
of their formation enthalpies �HLDA��� can be found in Ref.
38. In the application of the GA above, we do not use
�HLDA��� directly, but rather ELDA���=�HLDA���−ECS���
�Eq. �2��. ECS��� denotes the constituent strain energy, cal-
culated according to Eq. �5� and Fig. 5 of Ref. 38. We tabu-
late ELDA��� for all 56 Mo-Ta input structures in Table III.
ELDA��� as a function of a configuration’s concentration x is
also displayed in Fig. 8�b�.
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