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Boron alloying in GaN
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Using first-principles calculations in the local density approximation, we studied effects of adding
up to 6% boron to zinc-blende GaN. We found that the band gap increases monotonically with boron
incorporation, in agreement with experiment. A composition-independent band-gap bowing
parameter of 4.30 eV was determined, and proved to be large compared to bowing for other mixed
cation systems. The formation enthalpy of mixingH, was determined for Ea _N,

B,Ga _,As, and GaAs (N,. A comparison of enthalpies indicates that the production of
B,Ga _,N films with boron concentrations of at least 5% may be possible.2004 American
Institute of Physics.[DOI: 10.1063/1.1644910

Alloying in the group-lll nitrides has diversified the wz-B,Ga _,N are higher than for the zinc-blende alloy. This
properties of semiconductor materials, enabling the producresult implies that the zinc-blende structure will have a
tion of commercially important light emitting devices cover- greater boron solubility than the wurtzite structure.
ing many regions of the visible spectrimngoing efforts to Band-gap energy calculations were used to determine the
expand the range of available materials for 1lI-V semicon-B,Ga_,N bowing parameter, a key factor in ternary semi-
ductor applications include advancing epitaxial growth tech-conductor energy band-gap engineefinGalculation and
niques and engineering energy band gaps. comparison of formation enthalpies for ,Ba _,N,

A potential candidate for band-gap modification in theB,Ga, _,As, and GaAs_,N, predict that BGa,_,N films
nitrides is boror?~? It has been reported that the nitride bi- with boron concentrations of at least 5% are possible, a result
nary compound, GaN, alloyed with boron is a potential ma-that should encourage efforts to overcome the limitations of
terial for UV laser devices, in part since adding boron tocurrent growth techniques.

GaN increases the band gap from the blue to the UV spectral Calculations employed the gallium pseudopotential with
region® While prospects are positive for,8a _N alloys  Ga3d states treated as valence states. More recent articles
as viable IlI-V semiconductor materials, single phasereport that these states must be included in the pseudopoten-
BxGa «N has not been achieved for boron concentrationsial since total energy characteristics are influenced by cou-
necessary to effect significant change in structural and elegling of high energy gallium states to nitrogen valence
tronic properties of GaN.Experimental work shows that states®'°Earlier work treats the GaBstates as core states
phase separation occurs for boron content in excess of 2%,th?® and without® correction. We find that including the
consequence of the large lattice mismatch between BN anda 3d states diminishes energy band gaps overall, an effect
GaN that causes internal strain during proces8iny.*® arising from Gal and Np coupling that raises the VB

Experimental studies of high concentration, single-phasve also note that formation enthalpies are qualitatively dif-
BxGa 4N rely on advances in growth techniques that areferent when Ga @8 states are pseudized away.
expected with sustained interest in these material systems. Supercells chosen for the study maximize nearest neigh-
Computational simulations can complement experimental efhor distances between alloying elements, with substitution at
forts to expedite research. In this work, structural and elecpne gallium site. To test how well these supercells mimic
tronic propel’ties calculations for ZinC-blendm,xN with true random Systems’ we calculated band gam:gﬁ% for
boron concentrations as high as 6% were carried out in thgne boron atom in a 32-atom cell and for two boron atoms in
local density approximatioiiLDA) using the supercell ap- 3 64-atom cell. The latter configuration models a random
proach and first principles pseudopotentials cO#&SP)."®  system with more accuracy and effort than the single site
Zinc-blende (zb) structures are utilized for computational sypstitution cell since a boron pair may occupy lattice sites
convenience, but also serve as a model system for the wurtzy one of five symmetrically inequivalent pair configurations.
ite (Wz) phase. We performed preliminary calculations usingpajr coordinategfrom Ref. 23 are listed with corresponding
wurtzite supercells and found that wz®a, N band gaps  cajculated band gaps in Table I, with the total band-gap en-
are slightly larger than those for the zinc-blende alloy, a%rgy given as the weighted average of the five ga?qgé.(A
expected, since the reduced symmetry of wurtzite structurgggng gap of 2.7 eV was obtained for the one boron in a
leads to coupling between conduction band minimi@BM)  32_atom cell, a mere 15 meV larger than the weighted aver-
and valence band maximuitBM) states that raises the age pand gap for the 64-atom cell. This minor discrepancy
CO”dUCt'O”.b‘?‘”a- Bowing parameters for the two Structures jpgjcates that for small alloy concentrations, single impurity
are also similar. We found that formation enthalpies forghercells in this study represent random alloys sufficiently.
Determination of the band-gap bowing parameter,
@E|ectronic mail: escalanti@hotmail.com b=4.30, follows from the definition:
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TABLE I. Boron pair locations and band-gap energies forxke6%, 64- TABLE II. Zinc-blende BGa, N energy band gapfg (eV), at concen-
atom supercell. Similar band gaps for configurations indicate that supercellgation x are used to determine the bowing parameier,
are sufficient approximations of random systems.

Eg (€V) vsx Bowing, b (eV)
Boron coordinates Weight E4 (eV)
0% 1.5% 3% 6.25%

0,00, 033 12 2.2432 2.0922 2.1381 2.1830 2.2579 4.30

(0,0,0, (1,0,0 3 2.2874

0,00, (1,53 12 2.2694

(0,00, (1,1,0 3 2.2348 . 997 . .

(0,00, (1,1, 1 29767 dependent bowing?’ These results indicate that alloying

E,=2.2579 with boron will affect the band gap energy of llI-V com-
pounds significantly with adequate boron content. Also evi-
dent from Table IIl is the rough proportionality between
— bowing and lattice constant mismatch. When the alloy con-
Eg(_x): Eg(x)=bx(x=1), @ stituents suffer a large lattice mismatch, the coupling {)oten-
where E4 is the weighted linear average of the individual tial introduced during alloy formation is large. The resulting
band gaps of the pure constituents &gag(x) is the alloy level repulsion drives the CBM and VBM closer together,
band gap at concentration The pure constituents linear effectively reducing the alloy band gap relative to the linear
average band gafsolid line) and a quadratic fit to the alloy average band gap of the constituents. Positive bowing char-
band-gap energie@lashed lingare plotted in Fig. 1. Band- acterizes this effect, with greater reductions corresponding to
gap energies used in the bowing calculatidable 1)) repre-  larger bowing?’+?8
sent the energy difference at the gamma p(ﬁ‘ét, For direct In the case of cubic GaN alloyed with boron, there is a
band-gap materials, this is the energy difference between th&4% lattice mismatch between BN and GaN that leads to
VBM and the CBM. Forx=6%, the weighted average band internal strain, driving the alloy toward phase separation. For
gap of the five different configurations was used. The bandthis reason, high crystalline quality,8a _,N for boron
gaps are direct and increase monotonically with increasingoncentrations exceeding 2% are presently unattaifalble.
concentration, in agreement with previously estimated trends possible that with continued effort,8a, ,N films with
that were verified through photoluminescence spéctta. 5% boron could be produced. This assessment follows from
Band gaps for the pure constituents were also calculated at comparison of formation enthalpies of mixing for
the gamma point. For BN, an indirect band-gap material, thé8,Ga; _,N, B,Ga _,As, and GaAs (N,. Figure 2 illus-
energy gap at gamma is not the energy difference betwednates trends for calculated formation enthalpies that were
the VBM and the CBM. The indirect band gap of BN is not determined by taking the difference in energy between the
relevant to t?ge bowing effects of the alloy, and is not reportedalloy and the weighted sum of the constitueAtand B:
in this work=> The calculated band gaps were 8.87 and 2.09 _
eV for BN and GaN, respectively, compared to accepted ex- AHO)=Eaioy~[(1=X)EatXEg]. @
perimental values, 8.5-10 and 3.2 #° Theoretical band With increasing concentration, each of the alloys exhibits
gaps are~1-2 eV smaller than experimental due to LDA increasing formation enthalpy. Higher formation enthalpies
error?® This does not affect the accuracy of bowing calcula-imply a strain energy contribution associated with deforming
tions in which, to lowest order, LDA errors canéal.
As seen in Table Ill, BGa _,N exhibits the highest TABLEIIl Comparison of bowing parameters for zinc-blende Ill-V semi-
bowing relative to other mixed-cation systems, which tend tdg?onductor alloys demonsirates tha(i# _,N, with its large bowing param-
. . . _eter, is a potential candidate for band-gap engineering applications. The data
have low bowing. Band-gap bowing for the boron alloy is

g : also indicates a rough proportionality between bowing and lattice misfit.
large, even compared to mixed-anion systems, such as

GaAs _,N,, which demonstrates giant and composition- Ternary Bowing Lattice
alloy parametéer mismatch
T T T T T ) Mixed cations
25t
B,Ga 4N 4.30 249%
245} A Calculated EjT, BGay N : B,Ga _,As 3.50 15%
— - Bowing (b=4.30 eV) Galn; 4N 3.00 10%
E 24 | Linear average band gap J Alxlnl_xAS 0.70 7%
e 0 | Galn,_,P 0.65 7%
< Galn,_,As 0.48 7%
2 .3l ] AlLGa ,N 0.00 3%
S Al,Ga _,As —0.127-1.183 0.02%
g 2osf P Mixed anions
3 T GaAs_,N, 5-20 20%
8 22} N T INPy Ny 15 15%
1 b T ” | INAs; N, 4.22 18%
I R Ao GaP,_ N, 3.90 17%
2.1 Ll - ) . , . A GaAs _,P, 0.19 4%
o 1 2 3 4 5 6
Boron concentration (%) 3Bowing parameters and lattice constants used to obtain mismatch are given

in Ref. 2 unless noted.
FIG. 1. Band gaps calculated for,®a_,N deviate from the linear average P°Reference 9.
of the calculated band gaps for BN and GaN to give a relatively large andReference 23.
composition-independent bowing parameter for the alloy. 9References 27, 31, and 32.
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FIG. 2. Comparison of formation enthalpies of mixing shows similar trends g
and magnitudes between®a, _,N and GaAs ,N,, indicating that high

quality B,Ga, _N films with boron concentrations of at least 5% could be o
achieved. Lines between data points are meant only as guides for the eye.
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