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The loss of Fe due to oxidation or diffusion into the substrate can prevent the successful preparation
of well-ordered, stoichiometric, FePt nanoparticles. In this work we report the composition changes
during annealing observed for small ��10 nm� FePt nanoparticles on thermally grown SiO2 layers
on Si wafer substrates. Additionally, we describe the use of a controlled reducing gas mixture,
Ar+H2+H2O, to reduce the loss of Fe. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2170064�
I. INTRODUCTION

FePt alloys consisting of the chemically ordered L10

phase are of interest for ultrahigh magnetic recording media
applications due to the high magnetocrystalline anisotropy
��107–108 ergs/cm3� of this tetragonal crystal structure.
Typically, the synthesis of ordered L10 FePt nanoscale mate-
rials involves the preparation of A1 �fcc� phase FePt thin film
or nanoparticle samples, and subsequent annealing to allow
the fcc to L10 phase transformation. During this process,
control of the chemical stoichiometry should be maintained
because of the strong dependence of the chemical order and
uniaxial magnetic anisotropy on stoichiometry.1–4 However,
few reports have been published on the compositional stabil-
ity during annealing of FePt nanoscale samples. Thomson
et al. reported the formation of Fe silicides due to the high-
temperature annealing for FePt thin films on a Si substrate,
which caused a substantial drop in magnetization.5 While
thermally grown SiO2 layers are commonly used with Si
wafer substrates to prevent silicide formation, quantitative
reports on the effectiveness of the SiO2 layer to maintain
sample stoichiometry are absent.

In this paper we report the compositional stability of
FePt nanoparticles on SiO2/Si substrates during annealing in
a reducing gas, consider possible mechanisms of Fe loss, and
describe a controlled reducing gas annealing that improves
compositional stability. Analytical transmission electron mi-
croscopy �TEM� was used to quantify the compositions of
FePt nanoparticles prepared on thin �31 nm� SiO2 layers. A
loss of Fe during annealing at 750 °C in 97% Ar+3% H2

was observed. The diffusion of Fe into the SiO2 layer and
chemical reaction of Fe with the SiO2/Si substrate were con-
sidered to be likely mechanisms for the Fe loss. The diffu-
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sion of Fe across the thermally grown SiO2 layer was ob-
served for a relatively thick �8 nm� FePt deposit on a thin
SiO2 layer. Annealing with a controlled reducing gas mixture
of Ar+H2+H2O was explored to reduce the loss of Fe during
annealing. In the presence of the uncontrolled trace levels of
water vapor expected during annealing, a high H2 partial
pressure can favor the formation of iron silicide, while a low
H2 partial pressure may allow the formation of iron oxide.
Based on simple thermodynamic considerations, a ratio of
H2 partial pressure to that of H2O between 1.0 and 2.4
should be maintained for maximum stability of FePt in the
presence of SiO2. FePt nanoparticles on thin SiO2 �31 nm�
have been so annealed and the stability of the stoichiometry
confirmed by analytical TEM. We conclude that the loss of
Fe into SiO2/Si is a concern for the compositional stability
of single layers of FePt nanoparticles during high-
temperature annealing and that control of the annealing gas
ambient can significantly improve compositional stability.

II. EXPERIMENT

The Fe50Pt50 deposits were prepared at room temperature
by DC co-sputtering of Fe and Pt from elemental targets. The
initial deposit was not a continuous film, rather a collection
of nanoparticles and/or a discontinuous thin film. The base
pressure of the sputtering system was in the 10−8 Torr range
prior to the introduction of the Ar sputtering gas at a pressure
of 3 mTorr and a flow rate of 20 SCCM �standard cubic
centimeter per minute�. The amounts of FePt deposited cor-
responded to thicknesses of 0.25, 2, and 8 nm. The
0.25-nm- and 8-nm-thick films were deposited onto oxidized
Si�100� wafers with an oxide thickness of 31 nm, while that
for 2-nm-thick film was more than 100 nm. Film composi-
tions were calibrated by Rutherford backscattering spectrom-
etry �RBS�. The uncertainties in elemental concentrations

were ±0.5 at. % for both the Fe and Pt.
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As is commonly done,6 FePt nanoparticle samples were
annealed at atmospheric pressure with a reducing gas flow to
prevent the film from oxidizing. In our experiments a reduc-
ing gas of 97% Ar+3% H2 was used for annealing of
750 °C for 20 h. While some trace levels of water vapor are
expected to be present, the H2O vapor pressure is not con-
trolled and concentration in the gas flow is very low, and this
procedure is referred to as an uncontrolled reducing gas an-
nealing. For this annealing condition a loss of Fe can be
observed for FePt nanoparticles, as described below.

Experiments using a more controlled reducing gas an-
nealing condition were also performed. For these experi-
ments, an intentionally higher and controlled H2O vapor
pressure was used in conjunction with the 97% Ar+3% H2

reducing gas to reduce the possible formation of silicides, as
well as oxides, during high-temperature annealing.

A thermodynamic model of the chemical reactions of Fe,
Si, H, and O is described below to illustrate the advantages
of a controlled reducing gas annealing for FePt nanoparticle
processing. This very simplified model assumes that the Pt
does not participate, that the Fe present is available as el-
emental Fe, that the available bulk thermodynamic data are
representative of thin films, and that mixtures �e.g.,
Si1FexOy� and other phases do not form. The reactions that
are considered are the formation of an iron silicide with the
reduction of SiO2, Eqs. �1� and �2�, and the formation of iron
oxide by reaction with water vapor, Eq. �3�. Qualitatively, in
a strongly reducing ambient, the reduction of SiO2 makes Si
available and promotes the formation of FeSi, while in a
nonreducing ambient water vapor is able to oxidize Fe and
form FeO.

Fe + SiO2 + 2H2 ↔ FeSi + 2H2O, �1�

Fe + 2SiO2 + 4H2 ↔ FeSi2 + 4H2O, �2�

TABLE I. FePt sample list, with as-deposited composition of Fe50Pt50.

Nominal FePt
thickness �nm�

SiO2

thickness
�nm�

Annealing condition

Temperature
�°C�

Time
�h� Gas

Sample A 4 31 N/A N/A N/A
Sample B 0.25 31 750 20 Ar/H2

Sample C 0.25 31 750 20 Ar/H2/H2O
Sample D 8 31 750 20 Ar/H2

Sample E 2 �100 750 20 Ar/H2

FIG. 1. TEM image and EDX spectrum of sample A. �a� HAADF image
indicating region sampled and �b� EDX spectrum.
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Fe + H2O ↔ FeO + H2. �3�

Quantitative thermodynamic calculations using the data
from Ref. 7 suggest that a ratio of H2 partial pressure to that
of H2O between 1.0 and 2.4 should be maintained to prevent
both silicide formation �reactions �1� and �2�� and oxide for-
mation �reaction �3��. Higher H2 partial pressure favors the
formation of iron silicide, while a lower H2 partial pressure
favors iron oxide formation. The possible reactions in our
real FePt nanoparticle/substrate system are much more com-
plex than allowed for by the simple model above. However,
the ratio of H2/H2O calculated should represent a value ap-
propriate for minimizing reactions between the nanoparticles
and the substrate. For an annealing gas of Ar+3% H2 gas at
1 atm, the desired range of H2O partial pressure conve-
niently corresponds to the saturated vapor pressure of H2O
between 25 and 13 °C. Thus, a suitable H2/H2O partial pres-
sure ratio is readily obtained by the use of a room-
temperature water bubbler.

We have used both controlled and uncontrolled reducing
gas annealing in our laboratory for a variety of investigations
of FePt nanoparticles and report here on the characterization
of five samples �identified as A, B, C, D, and E� by analytical
TEM. The nominal FePt deposit thicknesses, SiO2 mem-
brane layer thicknesses, and annealing conditions for these
samples are listed in Table I. The samples were analyzed
using a Tecnai F30 TEM. Its energy dispersive x-ray �EDX�
detector was used to determine the compositions of indi-
vidual particles, and another detector, high-angle annular
dark field �HAADF�, was used for Z-contrast images.

III. RESULTS AND DISCUSSION

Figure 1 shows the HAADF image and EDX spectrum
of the as-deposited 4-nm-thick Fe50Pt50 thin film �sample A�.
The integrated intensities of Fe K� and Pt L� peaks were
used to determine the K factor of these two elements accord-
ing to Cliff-Lorimer equation,8 which gives a value of

FIG. 2. TEM image and EDX spectrum of indicated individual FePt nano-

particle for sample B.
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1.226±0.007. Based on this reference value, compositions of
individual nanoparticles in annealed samples can be esti-
mated from the corresponding EDX spectra.

The TEM images and EDX spectrum of FePt nanopar-
ticles of sample B, a 0.25-nm-thick Fe50Pt50 thin film an-
nealed in an uncontrolled reducing gas flow, are shown in
Fig. 2. Well-isolated particles were achieved, as illustrated by
Figs. 2�a� and 2�b�. A typical EDX spectrum of one indi-
vidual nanoparticle is exhibited in Fig. 2�c�. The data fit re-
sults give a composition of Fe33Pt67, with uncertainties of
±5 at. % for Fe and ±6 at. % for Pt, respectively. More than
ten particles with different sizes were examined. The compo-
sitions ranged from Fe24Pt76 to Fe51Pt49, with an average
value of Fe32Pt68, and standard deviation of 9 at. % for both
Fe and Pt.

To prevent the formation of iron silicides and oxides,
annealing in a controlled reducing gas flow was performed
on sample C, which was prepared in the same deposition
experiment as sample B. Its HAADF image and a typical
EDX spectrum are shown in Fig. 3. The data fit gives a
composition of Fe51Pt49, with uncertainties of ±4 at. % for
Fe and ±4 at. % for Pt. The range of compositions was found
from Fe47Pt53 to Fe52Pt48 with an average value of Fe51Pt49,
and a standard value of 2.1 at. % for both Fe and Pt.

To determine the mechanisms responsible for the loss
of Fe during annealing in an uncontrolled reducing gas, an
8-nm-thick FePt film �sample D� was annealed under the
same condition as sample B. The appearance of Fe-rich pre-
cipitates in the SiO2/Si substrate layer, as shown in Fig. 4,
suggested that the diffusion of Fe and chemical reaction of
Fe with SiO2/Si substrate can be considered as a likely
mechanism for the loss of Fe from the FePt nanoparticles.

To examine the influence of SiO2 thickness on the FePt
composition stability, 2 nm FePt was deposited on a very
thick SiO2 ��100 nm� layer and was annealed in an uncon-
trolled reducing gas flow �sample E�. In comparison to
sample B, a similar loss of Fe was not detected in sample E.
According to thermodynamic calculations, it is possible that
Fe will react directly with SiO2 in the presence of H2 during
high-temperature annealing. However, the reaction may be
kinetically unfavorable due to a very low diffusivity or solu-
bility of Fe in SiO2.

IV. CONCLUSIONS

The loss of Fe due to oxidation or diffusion into the

FIG. 3. TEM image and EDX spectrum of indicated individual FePt nano-
particle for sample C.
substrate can prevent the successful preparation of well-
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ordered, stoichiometric, FePt nanoparticles. In this work we
report the composition changes observed for small
��10 nm� FePt nanoparticles on thermally grown SiO2 lay-
ers on Si wafer substrates. For nanoparticles prepared on thin
�31 nm� SiO2 layers, a loss of Fe during annealing at 750 °C
in Ar+3% H2 was observed by analytical transmission elec-
tron microscopy �TEM�. Probable factors contributing to this
composition change were carefully examined. It was found
that diffusions and chemical reactions of Fe and Si/SiO2

substrates may be responsible for this change. A similar loss
for nanoparticles on thicker ��100 nm� SiO2 was not de-
tected by EDX, but should not be presumed negligible. The
diffusion of Fe across SiO2 was confirmed for a relatively
thick �8 nm� FePt deposit on the thinner SiO2 by the obser-
vation of iron-rich precipitates within the Si wafer.

Wet annealing was explored to prevent the loss of Fe
during annealing. Based on thermodynamic considerations, a
ratio of H2 partial pressure to that of H2O between 1.0 and
2.4 should be maintained. FePt nanoparticles on thin SiO2

�31 nm� have been so annealed and an improved stability of
the stoichiometry was confirmed by analytical TEM. We
conclude that the loss of Fe into SiO2/Si is a concern for the
compositional stability of single layers of FePt nanoparticles
during high-temperature annealing and that control of the
annealing gas ambient may improve compositional stability.
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