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ARTICLES I . ..“i 

Exponential growth of an unstable I= 1 diocotron mode for a hollow 
electron column in a warm-fluid model 

S. N. Rasband, Ross L: Spencer, and Richard R. Vanfleet 
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

(Received 17 June 1992; accepted 2 December 1992) .* 

Numerical investigations of a warm-fluid model with an isothermal equation of state for the 
perpendicular dynamics of an axisymmetric, magnetically confined pure electron 
plasma predict an exponentially unstable, I= 1, diocotron mode for hollow density profiles. , 
The unstable mode can be identified with a stable, nonsmooth mode that exists in 
cold drift models but which is destabilized-by finite temperature ~&ects. The unstable mode 
has many properties similar to the experimental results reported by l&co11 [Phys. 

m.. , .,a. . 

Rev. Lett. 64, 645 (1990)]. 

I. INTRODUCTION 

In a recent letter Driscoll’ discussed experimental ob- 
servations of an I= 1 exponentially unstable diocotron 
mode in a hollow electron column. In a conveutional two- 
dimensional (2-D) drift model (no inertia and zero tem- 
perature), linear theory predicts that there are no I=1 
exponentially unstable modes. In a -companion article, 
Smith and Rosenbluth’ described analytic and numerical 
investigations of the same system with the same 2-D drift 
model. They iind algebraic growth of I== 1 perturbations 
a 4, but no exponentially growing instabilities like those 

seen in the experiment.’ In a subsequent letter Smith3 ex- 
plored the effects of finite gyroradius and, in a phenome- 
nological way, the effects of finite axial length on exponen- 
tial growth. The purpose of this paper is to present results 
from a numerical investigation of linear stability in a 2-D 
fluid model with finite temperature. We find that an I= 1 
exponentially unstable mode exists with frequency, growth 
rate, and mode structure comparable with experimental 
values. The dependence of the growth rate on temperature 
and on the hello-wness of the density profile is explored. 

explicitly do not assume the plasma to be cold and take the, 
perpendicular pressure to be kTn (r, 8, t) with T constant 
and we do not discard the inertial terms as being small. The’ 
assumption of constant temperature in the scalar pressure 
is a very strong simplifying assumption which is known to 
give poor results in at least some cases. However, it does 
introduce an important:feature that will persist in more 
correct models, but which is missing from Smith’s calcu- 
lation, namely, the raising of the spatial order of the dif- 
ferential equations from second to fourth. (Some models 
may give even higher order.) This effect has a strong in- 
fluence on the dynamics of our model (see the oscillations 
in Figs. 3 and 4) and is presumably also important in 
better models which also raise the order. Before proceeding 
to the study of these better, and more complicated models, 
we feel it is important to understand the predictions of the 
simple constant-temperature model. 

II. EQUILIBRIUM AND STABILITY 

The simplified physical model we adopt for the plasma 
is that of a collection of electrons confined axially by elec- 
trostatic forces in a cylindrical, conducting container and 
confined radially by a strong axial magnetic field. To de: 
scribe the electrons, with charge -e, we adopt a collision- 
less fluid model. The resulting equations represent one of 
the simplest models for a plasma and may be found in most 
standard text books.4 We adopt cylindrical coordinates 
(r, 8, z) and further assume that the electron column is 
long so that we can ignore the axial coordinate Z. The 
magnetic field is assumed to consist simply of the applied 
field aligned along z, since for nonrelativistic motion of the 
electrons the magnetic fields generated by their motions are 
negligible.5 We further assume a scalar pressure in the per- 
pendicular directions and focus on the fields n(r, 8, t), 
V(r, 8, f), and @(P, 8, t) representing the electron number 
density, velocity, and electrostatic potential, respectively. 
We assume that there is no axial Sow, i.e., V,=O. We 

In the usual way we consider a perturbation away from 
an equilibrium configuration and examine the linear stabil- 
ity of the perturbation. For an equilibrium flow .of .the 
electron fluid that is axisymmetric and only azimuthal, the 
continuity equation is identically satisfied for any given 
equilibrium density profile nO( r). Momentum balance for 
the fluid is contained in the equilibrium equation. 

m,V~.VV,+~Vn,=eV~,-~V~~B, (1) 

wherein -centrifugal forces, pressure forces, and electro- 
static repulsion are all balanced by the magnetic force. The 
electrostatic potential follows from the chos.en number 
density..na(r> through Poisson’s equation. Once n,(r) is 
specified, Eq. ( 1) is used simply to obtain the equilibrium 
flow V,(r) . In a cold-plasma approximation with zero elec- 
tron mass, the left-hand side of ( 1) is set equal to zero 
resulting in simple EXB drift motion for, the equilibrium 
electron column. The inclusion of the centrifugal and pres- 

. 
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sure forces in ( 1) leads to a more general expression for the 
equilibrium fluid velocity. With Q=eB/m, c and 
w)(r) = V&h 

dr)=~(l-/~), (2) 

where wE( r) = (c/rB)&+/dr and w&9 
= - (ckT/eBrno)dna/dr are the familiar ExB and dia- 
magnetic drifts, respectively. It is the presence of the dia- 
magnetic drift in the rotation profile and the retention of 
the inertial terms in the perturbation equations that lead to 
the temperature effects reported here. 

In the fluid model there are four coupled equations for 
the four perturbation fields: 6n(r, 8, t), SV& r, 8, t), 
SV,( r, 8, t), and S@( r, 8, t). Since the azimuthal modes 
separate, we Fourier decompose these fields by assuming 
an angular dependence of the form exp(zY6). The stability 
of each 1 mode can then be examined separately and we 
focus on the linearized dynamics for the field perturbations 
Snl(r, t), SVto(r, f), SVl,(r, f), S@,(r, t) for each 1 mode: 

astt, i a 
dt+; 5 (rn&Vd +c noSV~~+ilw,Snl=O, 

& (no6Vd + (n-2wo)n,6vre+iroonoSv~~ 

kT& kT d6nl en0 a&D1 
- m--&t,+,,a,=-- 

e m, ar ’ 

la a 
-- r--S@, - 

i 1 rar dr s S*,=4reSnl. 

(3) 

(4) 

(5) 

(6) 

Derivatives with respect to r of equilibrium quantities are 
denoted with primes. 

Boundary conditions follow from imposing regularity 
at r=O and requiring the perturbations to vanish at 
r=rWall. Equations (3)-( 6) for the perturbed fields recog- 
nizably stem from mass balance, momentum balance, and 
Poisson’s equation. 

Because the initial results were surprising, i.e., expo- 
nentially growing solutions in a plasma model that differs 
from previous studies only by T#O and the inclusion of 
inertial effects, and because the differential equations are 
stiff and singular as T-0, we have labored to obtain nu- 
merical solutions to the linearized perturbation equations 
in three substantially different ways. 

However, before discussing our various numerical ap- 
proaches, we note that Eqs. (3)-(6) lead to a fourth-order 
differential equation for either the perturbed density 6n or 
the perturbed potential SQ. This is in contrast to the 

second-order equations obtained in cold drift theory, Eq. 
( 1) in Ref. 2, or the finite Larmor radius (FLR) modified 
version of this equation given by Smith, Eq. ( 10) of Ref. 3. 
This fourth-order equation has as a singular limit the fa- 
miliar second-order equation and results only when inertial 
terms are kept as well as nonzero temperature. To simply 
augment the electric drift WE by the diamagnetic drift wg in 
the second-order equation wouId be inconsistent and lead 
to unreliable results. We have also briefly studied the equa- 
tions that result from including off-diagonal contributions 
from FLR effects in the electron pressure tensor. The re- 
sulting mode equation for say the perturbed density is fifth 
order. The increased complexity and degree of the mode 
equation is very likely a feature of any physical model that 
is an improvement over the simple cold drift theory. We 
now describe briefly the three methods used for obtaining 
numerical solutions to Eqs. (3)-(6) with the appropriate 
boundary conditions. 

Ill. NUMERICAL SOLUTIONS 

( 1) We first developed an eigenvalue code to solve 
Eqs. (3)-(6). The radial interval [O,r,,,J was divided into 
N finite elements and then the perturbed fields for each I 
mode were expanded in terms of a set of cubic B splines 
that appropriately satisfy the boundary conditions at r=O 
and r= rwall. We then followed a standard GaIerkin proce- 
dure to reduce the partial differential equations to a set of 
four, coupled, ordinary differential equations. In this man- 
ner we obtained a linear system tl=Dpl, where the vector 
x1 is a composite vector made up of the spline expansion 
coefficients for the perturbed fields. The matrix operator DI 
has elements that consist of integrals of spline functions 
with equilibrium profiles nc( r),we( r), and their deriva- 
tives. Thus, once the equilibrium density profile has been 
specified, all elements of D, can be computed. The stability 
of the specified profile was then determined by computing 
the eigenvalues of the matrix Dk The matrix DI is generally 
complex without symmetry. It is comprised of submatrix 
blocks that are typically symmetric, banded, and either real 
or imaginary. We computed the complex eigenvalues and 
eigenvectors of this matrix using a double precision version 
of a routine for finding eigenvalues and eigenvectors of 
complex matrices from the SLATEC library.6 We deter- 
mined the physically meaningful eigenvalues by examining 
the radial dependence of the eigenfunctions. 

(2) For the next two codes we assumed a time depen- 
dence of the form exp(-iwt), which then leads to the 
replacement of a/at by -iw in Eqs. (3 )-( 6). The object 
then became the following: find the perturbed fields and w 
such that Eqs. (3)-( 6) along with the boundary condi- 
tions are satisfied. The radial interval was divided into fi- 
nite elements and the perturbed fields SQl and Snl were 
expanded in spline functions as described under method 
( 1) . Through the usual Galerkin procedure of multiplying 
Eq. (6) by an expansion function $i( r) and then integrat- 
ing over the interval (O,r,,,,), we obtained a relationship 
between the spline expansion coefficients for 6@, in terms 
of those for 6nl. Equations (4) and (5) were solved for SFJ’,~ 
and SV, in terms of Sal and Snj and their derivatives. 
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Equation (3) was subjected to the same Galerkin proce- 
dure and the term involving r-‘d(ma~~~,)/dr was inte- 
grated by parts. The homogeneous boundary conditions on 
the spline functions eliminate the integrated term. Upon 
substitution of the equations obtained for S V, and S V,, we 
were left with a so-called weak formulation of the eigen- 
value problem involving the spline expansion coefficients of 
Sq that was then solved in a straightforward way. 

(3) Our third method of solution was based on -an 
inertial expansion of the drift velocities using the balance 
equations for mass and momentum: 

FIG. 1. The no(r) and oE(r) profiles for the parameter values given in 

(8) 
the text. The number density, with asterisks on the curve, is normalized to 
the peak value of 5.00~ 10 cme3 and the frequency is normalized to its peak value of 1 097X10b szc-, 

Assuming the inertial terms on the left in (8) are small, for 
V=@+V’, we obtain 

v”=c 
( 

-W kTVn 
B-+2; x% 

) 
(9) 

This self-shielding mode is precisely that mode which 
we calculate to be unstable with the inclusion of finite tem- 
perature. We consider the identification of this I= 1 insta- 
bility with that seen in experiment as likely based on the 

vL+ ~-Y+vo.vv 

following discussion. 

( 1 
x4. (10) 

IV. DEPENDENCE OF GROWTH RATE ON 
Substituting +=Q>a+ScP and n=na+Sn into Eqs. (7), TEMPERATURE AND HOLLOWNESS 
(9), and (10) leads, after a somewhat lengthy calculation, 
to a second-order differential equation for &. involving For this study we used a density function of the form 
SQ, dS@/dr, the equilibrium density and rotation profiles, 
and derivatives of these profiles. This expression for 
d2Sn/d? in a twice differentiated form of Poisson’s equa- 
tion, leads to a fourth-order differential equation in S<p 
involving the eigenvalue o. This eigenvalue problem is 
solved by “shooting” outward from r=O and inward 
r=r,,,,l with matching conditions at some interior point. 

The results of all three codes were compared and 
checked against each other. Also in the T=O limit they 
were checked against analytic results for flat profiles7 and 
the results from an earlier code for cold drift dynamics.s 
For I= 1 modes in cold, hollow profiles the codes correctly 
identify the fundamental I= 1 diocotron mode with 
w=wE(rw,d =I and a second stable mode with 
w =oE max=~z, where I+ max and r,,, correspond to the 
values of WE(r) and r where dw,/dr=O. In the cold drift 
model the first of these stable modes has an analytic solu- 
tion for the perturbed potential proportional to 
r[ol-uE(r)].g The second stable mode has a nonsmooth 
perturbed potential: it is proportional to r[w2-WE(r)] for 
O<r<r,,, and is identically zero for rmax<r<rWan. This is 
the same mode that Smith and Rosenbluth tind leading to 
algebraic instability.2 Since the perturbed potential for this 
second mode vanishes over a finite interval including rwall, 
the mode makes no electric field at the wall and is hence 
invisible to sectored wall detectors used in experiments to 
detect image charges in the conducting wall. Such a mode 
has been referred to as self-shielding.* 

no(r) -n^[l+/-Q(r/rp)2]exp[ - (r/rpP], (11) 
where n^ is the central density, p1 controls the hollowness of 
the profile, ,u2 controls the steepness of the cutoff, and rp 
controls the position of the cutoff. Figure 1 displays n,(r) 
and wE(r) for the values n^=3.6x106 cmm3, ,ui=O.95, 
rp/rWall=0.47, ,u2=8, r,,l,=3.8 1 cm. These values were 
chosen with the aim of giving a comparable profile to the 
graph given in Fig. 3 of Ref. 1. In situations with high 
temperatures ( 2 28 eV> where d In no( r)/dr can become 
large and consequently mD become large enough so that the 
argument under the square root sign in Fq. (2) becomes 
negative, we have matched the profile of E?q. ( 11) to one of 
the form A ( 1 + Cx + Dx’) exp ( - Bx) , where the constants 
are chosen so as to match up through three derivatives. To 
within a few percent, mode frequencies and growth rates 
are insensitive to such details in the density profile. In 
other words, the complex mode frequencies are insensitive 
to the behavior of wD in the tail of the density profile. 

Using no(r) from Eq. (11) with T=1.2 eV and the 
values of the parameters as given, we find a mode fre- 
quency of fu= 175 kHz and a growth rate yu=2.9X lo3 
SC-‘. These values are to be compared with the experi- 
mental measurements reported in Ref. 1: f,= 143.4 kHz 
and y,=23.3 x lo3 set-*. The growth rate is lower than 
that observed experimentally by a factor -8. However, it 
is difficult to assess the significance of this discrepancy be- 
cause the growth rate is strongly temperature and profile 
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FIG. 2. Perturbed eigenfunctions for the potential and the density show- 
ing the real and imaginary parts. The imaginary parts are indicated with 
the asterisks. The functions are normalized to the maximum absoIute 
value in the real part of the eigenfunction. The equilibrium profiles for 
these perturbed functions are given in Fig. 1. 

1 

1 

;’ Ul 
kz Y 
3‘1 

1.0000 . 
TemperatureCeV) Xl01 

‘O-l1 

t-9 

10-3 10-Z 10-i 
p/rwall 

FIG. 3. A plot of the real part of the eigenvalue o, as a function of 
temperature and a plot of the imaginary part y, scaled by (central plasma 
frequency)*/(gyrofrequency) = 1.74X lo6 (see-‘), as a function of the 
scaled gyroradius. The gaps in the trace of o, are over temperature inter- 
vals where the mode frequency has zero growth rate. The lower traces in 
these plots are the results from using the model in Eq. ( 10) of Ref. 3 and 
any differences in the values from those shown in Fig. 3 of that paper are 
fully accounted for by differences in the density profiles and the scaling. 
We use the density profile shown in Fig. 1. 

dependent. For comparison cold drift codes for I= 2, hol- 
low profile instabilities give growth rates typically low by a 
factor - 2.* 

The eigenfunctions for the unstable mode at T= 1.2 eV 
and for the profile given in Fig. 1 are plotted in Fig. 2. The 
fact that this mode is self-shielding is evident from the 
vanishing of the perturbed potential over a finite interval, 
implying zero perturbed electric field at the wall. The 
imaginary part of the density perturbation begins at the r 
value where o,,[ = wo( r) and oscillates while going to zero 
at r/rW,,,-0.7. The reason for the appearance of an imag- 
inary part for Sn at this point in the profile is that the 
zero-temperature, second-order, radial differential equa- 
tion with continuous spectrum w,(r) has here been re- 
placed by a fourth-order radial differential equation with a 
new continuous spectrum we(r) =wE(r) +wD(r). It is the 
resonance of the mode near WE max with the new continuum 
that gives rise to instability and the appearance of oscilla- 
tions in Fig. 2. The number of visible oscillations between 
the “birth’” and “death” of the imaginary part of the den- 
sity eigenfunction depends on the value of the temperature, 
with the number of oscillations increasing as T decreases 
toward zero. The maximum absolute value in the plots of 
the eigenfunctions in Fig. 2 is set equal to 1.0. 

Figure 3 shows a plot of the eigenvalue for the unstable 
I= 1 diocotron mode as a function of the temperature. For 
purposes of comparison we have included in Fig. 3 the 
curves resulting from Eq. (10) of Ref. 3. These are the 
lower traces in the figure, without oscillations, and agree 

Xl08 
I I I I 

I 

lwo!oo 
1 f I I 
.25 .!a .75 1.00 

xw 
)"l 

4.0 

FIG. 4. A plot of the eigenvalue (real part w, and imaginary part 0,) as 
a function of the hollowness of the profile as determined by the parameter 
CL, defined in Eq. (11). The parameter ri is also adjusted to keep the total 
number of particles per unit length a constant. The remaining parameters 
of the profile are held constant and T= 1.2 eV. 
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with the results of Ref. 3 when appropriately adjusted for 
scaling and profile differences. Figure 4 is a similar plot of 
the eigenvalue at T= 1.2 eV as a function of the parameter 
,ul determining the hollowness of the profile. The real part 
of the eigenvalue o is denoted as w, and the imaginary part, 
or growth rate, is denoted as O+ The last two of the codes 
previously described were used to check on the agreement 
between the positions of the peaks and valleys in these 
figures as well as the actual values and were found to be 
typically within 1% or better. 

Given the uncertainties in the profile, the approxima- 
tions inherent in a finite temperature fluid code that in- 
cludes only perpendicular dynamics and constant temper- 
ature, and the usual experimental uncertainties in 
measured values, we find the evidence suggestive that a 
significant contribution to the growth of the I= 1 unstable 
mode observed by Driscoll’ results from the fluid diamag- 
netic drift and the inclusion of inertia. Furthermore, the 
mode is tentatively identified as the stable I= 1 mode with 
frequency w2 and with nonsmooth potential perturbation 
that exists in the 2-D cold drift approximation for hollow 
profiles.g A subsequent theoretical investigation of the un- 

stable I= 1 diocotron mode should proceed from a more 
detailed model including not only finite temperature but 
also involving dynamics along the magnetic field lines so 
that the importance of finite length effects can be explored 
self-consistently. 
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