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Coherent x-ray imaging andscattering fromaccelerator based sources suchassynchrotrons continue
to impact biology, medicine, technology, andmaterials science. Many synchrotrons around the world
are currently undergoing major upgrades to increase their available coherent x-ray flux by
approximately two orders of magnitude. The improvement of synchrotrons may enable imaging of
materials in operando at the atomic scale whichmay revolutionize battery and catalysis technologies.
Current algorithms used for phase retrieval in coherent x-ray imaging are based on the projection onto
sets method. These traditional iterative phase retrieval methods will become more computationally
expensive as they push towards atomic resolution and may struggle to converge. Additionally, these
methods do not incorporate physical information that may additionally constrain the solution. In this
work,we present an algorithmwhich incorporatesmolecular dynamics into Bragg coherent diffraction
imaging (BCDI). This algorithm, which we call PRAMMol (Phase Retrieval with Atomic Modeling and
Molecular Dynamics) combines statistical techniques with molecular dynamics to solve the phase
retrieval problem. We present several examples where our algorithm is applied to simulated coherent
diffraction from 3D crystals and show convergence to the correct solution at the atomic scale.

Coherent diffraction imaging (CDI) is a lens-less imaging technique that
uses diffracted x-rays, electrons, or visible light to image a sample1–3. To
successfully image a sample, CDImust obtain both the phase and amplitude
of the measured photons. During measurement, however, only the signal is
recovered and the phase information of the photons is lost4–6. This problem,
called the phase problem, is not unique to CDI, and occurs in several other
areas of physics, imaging, and signal processing7,8.

A particular application of CDI that has potential for near-atomic reso-
lution is Bragg CDI (BCDI)9–11. In BCDI, the coherent x-rays scattered from
smallmicron-sized crystals aremeasured in a three dimensional region around
one or more Bragg peaks in reciprocal space. An iterative phase retrieval algo-
rithm can then reconstruct the 3D strain field of the micro-crystal or metallic
grain from the measured diffraction intensities12–16. Furthermore, recent
advances in BCDI have enabled measurements of multiple Bragg peaks which
allows reconstruction of the full strain tensor inside the crystal14,16–18. Much of
thiswork has been enabled by complimentary Laue diffractionmicroscopy that
enables the nanocrystal or sample in question to have its crystalline orientation
determined and multiple Bragg peaks easily measured19,20.

Most state-of-the-art phase retrieval algorithms use an iterative com-
bination of several methods to solve the phase problem2,21,22. The most

fundamental of these methods is an alternating projection method called
error reduction (ER)22–24. BecauseER is equivalent to gradient descentwith a
sub-optimal step size22 and the phase problem is naturally non-convex22, ER
alone tends to stagnate in local minima. Several global optimization
methods have been developed that allow phase retrieval algorithms to
escape local minima, such as hybrid input/output (HIO), charge flipping,
and shrinkwrap25–27. These phase retrieval methods have been used suc-
cessfully in recent years to studymaterials in operando, yielding insights into
failure mechanisms of battery materials28–32 and imaging strain in platinum
nanoparticles during reduction of carbonmonoxide for automotive exhaust
reduction33–35.

While many successful phase retrieval algorithms exist, few phase
retrieval algorithms incorporate materials models. Materials models,
such as density functional theory,molecular dynamics (MD),mesoscale
modeling, and finite element models, contain a large amount of infor-
mation about the materials they imitate. If implemented correctly,
adding information from materials models to phase retrieval algo-
rithms would constrain the solution to be physically reasonable and
significantly restrict the search space of the phase problem. Recent work
has indirectly incorporated materials models through physics-aware
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algorithms based on machine learning principles36,37. These physics-
aware algorithms trainmachine learningmodels on data obtained from
MD simulations and their corresponding simulated diffraction pat-
terns. However, these algorithms do not explicitly incorporate a phy-
sical model during the solving process.

Here, we present a phase retrieval algorithm, called PRAMMol
for Phase Retrieval with Atomic Modeling and Molecular Dynamics
(see Fig. 1). PRAMMol directly incorporates a physical model during
the solving process and was designed with expected diffraction limited
storage rings (DLSR) synchrotron upgrades in mind. These syn-
chrotron upgrades will allow for an increase of up to 200 times
brightness in coherent x-rays, and may enable sub-Ångstrom
resolution10,11. While atomic resolution has routinely been demon-
strated with coherent electron sources38,39, atomic resolution from
CDI has been more challenging to achieve. Because upgraded syn-
chrotrons could enable atomic scale in operando BCDI, PRAMMol
was designed to work at the atomic scale and uses MD as its physical

model (All LAMMPS40–42 calculations are run with an Al potential42.
However, the methodology presented here is agnostic to the specific
potential used and any monoatomic interatomic potential should
achieve similar results.).

Results
Time integrated photon flux trials
To demonstrate the power of physics-based phase retrieval and estimate the
achieved resolution of PRAMMol across a large range of available photon
fluxes, 10 trials were run across 20 values of time integrated photon flux
(TIPF)10 for a total of 200 trials. As described in “Grain Creation”, a 4679
atom face centered cubic (FCC) crystal of ~6 nm diameter was created with
a single vacancy at its center (see Fig. 2). For each trial, three diffraction
patterns were simulated at the (−1,1,1),(1,−1,1) and (1,1,−1) peaks (see
“Diffraction Pattern Simulation” and Fig. 3). While this choice of peaks is
arbitrary, three linearly independent peaks are required to successfully
reconstruct any three dimensional sample. To decrease the total

Fig. 1 | Proposed PRAMMol method. (left) A
coherent x-ray beam in focused on a small nano-
crystal or grain of metal, and the intensity around
several Bragg peaks (3 in this work) is measured,
(right) PRAMMol reconstructs the atom positions
using an iterative procedure consisting of three
steps, maximum likelihood estimation, cross vali-
dation, and molecular dynamics energy minimiza-
tion. The Bragg peak measurements are
incorporated into the algorithm during several dif-
ferent steps, but mainly the Maximum Likelihood
Estimation (MLE) optimization and Cross Valida-
tion as described in the “PRAMMol Algorithm”.

Fig. 2 | A simulated FCC crystalline sample of 4679 atomswas createdwithatomskwith a single vacancy at the center. a Shows the full 3D grain.b, c,d are slices through
the center of the object with the vacancy visible in each of them.
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computational cost, the initial guess of each reconstruction was a low-
resolution reconstruction which can be determined through ER/HIO
methods. For this work, we accomplished this by creating a coarse grain
model of the true object with a resolution of 5 Å. This low-resolution
solution was filled with atoms with an FCC lattice with a lattice constant of
4 Å, which on purpose was initiated to not be the exact correct lattice
constant. These atoms were placed randomly (i.e., with respect to the true
atom positions) but with the correct orientation. The relative lattice angular
orientation and lattice spacing can be ascertained from the locations of the
Bragg peaks in reciprocal space.

After all 200 trials were complete, the resolution was calculated as
described in “Resolution Calculation”. Figure 4 shows that PRAMMol is
able to achieve atomic reolution at a TIPF of about 1018 ph μm−2. Addi-
tionally, once atomic resolution is achieved, PRAMMol reconstructs at
nearly picometer resolution and continues to improve resolution as TIPF
increases.

Material defect trials
This analysis required the lattice information of the crystal to be
known in advance. While this information can be easily determined
from themeasured diffraction pattern, we also show that PRAMMol is
able to successfully reconstruct samples without the lattice informa-
tion. As described in “Grain Creation”, three FCC crystal samples
were created: a 4791 atom sample with no defects, a 4679 atom sample
with a single vacancy, and an 8777 atom sample with a screw dis-
location. For each sample, a diffraction pattern was simulated with a
TIPF of ~1020 ph μm−2 (see “Diffraction Pattern Simulation” and
Fig. 3).

PRAMMol started the reconstruction with a random number of
atoms and random atom positions. PRAMMol then reconstructed
the atom positions of the samples from their simulated diffraction
patterns (modulus squared) and a low-resolution reconstruction of
the sample. For the crystal with a single vacancy, PRAMMol

Fig. 3 | Three peaks are simulated from the 6 nm
sample with a single vacancy at its center. a Shows
the locations of these peaks in reciprocal space.
b shows anH-K slice through the �1; 1; 1ð Þ peak at the
slice with the brightest point in the diffraction pat-
tern. c shows this same slice with Poisson noise
added to the diffraction pattern.

Fig. 4 | To evaluate the PRAMMol method, 10
trials were run across 20 values of TIPF, for a total
of 200 trials. These studies were conducted on the
grain with a void from Fig. 2. The atomic position
error and resolution are shown as a function of TIPF.
PRAMMol achieves atomic resolution at a TIPF of
~1018 ph μm−2. This results in resolution and mean
average error (MAE) of much less than 1 pm and
maximum error (ME) of ~1 pm after atomic reso-
lution is achieved.
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converged to the correct atomic positions in ~30 iterations.
PRAMMol was also able to find the correct number of atoms in the
original object and an unknown scaling constant that encompasses
the TIPF and several other experimental factors (Fig. 5). For any
single atom in the reconstruction the position error was less than
1 pm (see Fig. 6).

Similarly, for the defect-free sample and the screw dislocation, recon-
structions resulted in position errors of less than 1 pm for any single atom.
The number of iterations to convergence varied based on how complex the
samples were (see Fig. 6 and Supplementary Videos). The reconstruction of
the bulk crystal converged to the correct object in around40 iterations,while
the sample with the screw dislocation required 200 iterations to converge.

Fig. 5 | Reconstruction of sample with a vacancy takes a little more than 30
iterations to converge to the correct scaling constant and number of atoms.After
this, the algorithm iterates tominimize error of specific atompositions. During these

last few iterations, only error minimization of the diffraction pattern is occurring
rather than resampling atom positions.

Fig. 6 | Results of PRAMMol reconstructions of
disjoint diffraction patterns with atomic resolu-
tion. PRAMMol effectively reconstructs the grains
to extremely high fidelity. Shown here are the X-Y
slice (left column), the Y-Z slice (center column),
and the X-Z slice (right column) of three different
crystals: bulk with no defects (top row), a single
vacancy (middle row), and a screw dislocation
(bottom row). Also shown is that the atomic posi-
tions were retrieved with errors less than 0.01 Å.
This shows that the accuracy of PRAMMol relies
more on the accuracy of the interatomic potential
and noise in the diffraction pattern rather than pixel
size or aliasing effects that traditional phase retrieval
encounters.
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Temperature trials
In these simulations, x-rayswere assumed to scatter off of point particles at a
well defined position. For the grains shown in Figs. 2–6, this is a valid
assumption because the grains were relaxed and had no temperature
dependence (i.e., at 0 K). Experimentally, however, picometer resolution is
very unlikely to be achieved for several reasons, one of which is lattice
vibrations due to finite temperature. To test the effectiveness of PRAMMol
in more realistic experimental conditions, we completed a temperature
studywith 10 independent reconstruction trials across 10 temperatures for a
total of 100 trials. More details can be found in “Temperature-Dependent
Diffraction Pattern”. As described in “Grain Creation”, an 8777 atom
sample with no defects was created. For each trial, a diffraction pattern with
a TIPF of ~1020 ph μm−2 was created for the sample at the desired tem-
perature as described in “Temperature-Dependent Diffraction Pattern”.
Again, the initial guess of each reconstruction was a low-resolution
approximation filled with FCC atoms with a lattice constant of 4 Å.

As shown in Fig. 7, PRAMMol was able to reconstruct at sub-
Angstrom resolution at or below 400 K. Additionally, the mean average
error of the positions of these reconstructions was beneath 0.1 Å. From
Fig. 8, we see that PRAMMol is able to successfully reconstruct the interior
of the sample, but has some difficulty reconstructing the surface at room
temperature. This, however, is somewhat unsurprising because of the
unphysical nature of the simulation used to create the diffraction pattern.
Because the object is in free space and energy is being continuously added
and removed to preserve the correct temperature, there is no guarantee that
a nonzero total angular or linear momentum is not introduced. While the
object was centered at every iteration, negating the linear momentum, the
total angular momentum was allowed to fluctuate, causing the object to
rotate more than a sample fixed to a substrate would.

Discussion
While atomic resolution BCDI has yet to be demonstrated experimentally,
we have shown through simulation that PRAMMol can achieve atomic
resolution on small particles at values of TIPF that will be theoretically
possible with synchrotron upgrades. Furthermore, we have shown that the
only requirements to achieve atomic resolution besides the necessary
photon flux is a low-resolution reconstruction found through traditional
BCDI methods and an accurate interatomic potential.

Additionally, we have shown that PRAMMol is still able to
achieve atomic resolution at ambient temperatures. This temperature
study has shown that PRAMMol is proficient well above room tem-
perature. Additionally, rather than lose fidelity completely at

temperatures near melting, PRAMMol effectively returns a recon-
struction that resembles the output of traditional phase-retrieval with
nanometer resolution.

These results are not exhaustive, but they do give compelling evi-
dence to investigate BCDI methods that directly incorporate a physical
model. We have shown that PRAMMol, paired with a low-resolution
reconstruction found through traditional BCDI methods, has the
potential to achieve atomic resolution with less photon flux than tra-
ditional BCDI methods alone and that PRAMMol continues to out-
perform these methods as photon flux increases. Additionally,
PRAMMol has several properties that allow it to perform better than
projection based methods in certain situations and could extend BCDI
to atomic resolution without the need to measure the small angle x-ray
scattering signal.

Traditional reconstructions require a regular grid, not allowing for
electron density to be defined between them. PRAMMol, on the other hand,
defines atomic positions and allows these to be placed anywhere in space,
removing any pixel resolution limit that is inherent in traditional BCDI
algorithms. Additionally, because atom positions are well-defined point
particles, it is straightforward to solve using multiple, disjoint peaks during
the reconstruction. While current multi-peak BCDI algorithms are cur-
rently used14,16,17, thesemethods arenotdesigned for atomic resolution.Also,
these algorithms must preprocess the measured data to ensure that the
Bragg peaks are centered and that the frame of reference of the data is the
same as the frame of reference of the object, introducing errors in the
reconstruction.

However, because PRAMMol calculates the discrete Fourier
transform explicitly, the computational cost increases toOðn2Þ. Because
of this restriction, the current implementation would have difficulty
scaling to larger objects with more than a few hundred thousand atoms.
A focus of ongoing work is to combine projection-based iterative phase
retrieval methods with PRAMMol. This would allow low-resolution
reconstructions to be enhanced at certain voxels with atomic-resolution
reconstructions.

Additionally, PRAMMol’s accuracy is highly reliant on the accuracy of
the interatomic potential used. Often, embedded atom model (EAM)
interatomic potentials have difficulty modeling material properties to high
fidelity. Because of this, these potentials may be insufficient to accurately
reconstruct samples with PRAMMol. In these cases, machine-learned
interatomic potentials (MLIPs) are an effective replacement because they
canmodelmaterial properties to arbitrary precision, albeit with a penalty to
computation time.

Fig. 7 | To assess the PRAMMol in experimental
conditions, 10 trials were run accross 10 tem-
peratures, for a total of 100 trials. For temperatures
up to 500 K, PRAMMol effectively reconstructs the
object at sub-Angstrom resolution. Above 700 K,
PRAMMol loses the ability to reconstruct at near-
atomic resolution.
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In summary, this work presents the first practical CDI algorithm
that can achieve atomic resolution from a diffraction pattern alone. The
previous work by Dietze et al. started with the known phases from their
simulated samples and then added noise to determine the effect of
limited photon flux10. However, as we show here, PRAMMol is capable
of retrieving the correct atomic positions, number of atoms, and scaling
factor from the diffraction intensities alone. Additionally, PRAMMol
can obtain the atom positions to extreme accuracy (limited by Poisson
noise and numerical precision). Physics-based iterative phase retrieval
opens the possibilities of imaging materials at the atomic scale at
upgraded synchrotron facilities, substantially advancing our ability to
take advantage of their unprecedented photon flux inmore efficient and
powerful ways.

Methods
PRAMMol algorithm
PRAMMol assumes that themeasured intensity, I, of the diffractionpattern,
at the position described by the Miller indices hkl in reciprocal space, is a
random variable such that

Ihkl ∼
ind PoisðλhklðC; x!; y!; z!ÞÞ; ð1Þ

where

λhklðC; x!; y!; z!Þ ¼ jFhklj2 ¼
Xn
j¼1

Ce�2πiðhxjþkyjþlzjÞ
�����

�����
2

ð2Þ

wheren is the number of atoms in the sample,Fhkl is the structure factor and
is proportional to the electric field at the detector, C is an unknown scaling
constant that describes the TIPF and several other experimental factors, and
(xj, yj, zj) is the j

th of n atomic positions in the material being imaged. In this
formulation, the atomic positions and scaling constant become parameters
of a family of probability density functions (Table 1).

The simulated diffraction patterns have ignored experimental sam-
pling conditions involvingEwald sphere curvature and the errors that canbe
introduced in BCDI due to the Fourier slice theorem that have been dis-
cussed extensively in the literature43–45. We also assume the kinematic dif-
fraction limit, which we feel is a good approximation for such small crystals

Fig. 8 | At 100 and 300 K, PRAMMol effectively
reconstructs the entire object at atomic resolution
except for a few locations on the surface. At 700 K,
PRAMMol is still able to reconstruct the original
object to high fidelity, but occasionally loses atoms.
At 1000 K, the object resembles a low-resolution
reconstruction that traditional phase retrieval algo-
rithms would output.

Table 1 | Common notation used throughout the paper

Notation Definition

I Intensity measurement random variable distributed as a Poisson
distribution

hkl Miller indices of an arbitrary point in reciprocal space

(hkl) Miller indices of a reciprocal lattice point

C Scaling constant

xj, yj, zj Fractional atomic coordinates

n Number of atoms

λ Forward model of diffraction pattern

ι Actual intensity measurement

Fhkl Structure factor
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as simulatedhere. Because of their size,we donot expectmultiple scattering,
absorption, or dynamical diffraction effects to havemuch of an effect on the
simulations. We have also neglected effects such as detector pixel size and
orientation. While these experimental challenges will need to be addressed
in further application of the work, these issues and methods to model and
account for them have been discussed extensively in the literature17,18,44.

In conjunction with a low-resolution reconstruction, PRAMMol uses
maximum likelihood estimation (MLE), cross validation and MD to find
estimated atompositions. PRAMMolfirstfinds estimates for atompositions
bymaximizing the likelihood function (Parameter Estimation: MLE). After
maximizing the likelihood, cross validation selects a validmodel that results
in the highest likelihood on a validation set (Model Selection: Cross Vali-
dation). Valid models include any subset of the current atom positions and
new atom positions that are generated with MD (Atom Generation). In
general, MLE and cross validation alone are not enough to constrain the
search space and arrive at the true solution, so this process is performed in
conjunction with MD energy minimization (MD Energy Minimization).
This three-step process is shown in Fig. 1 and pseudocode is laid out in
Algorithm 1. These methods are performed iteratively until no newmodels
are selected during cross validation across 100 iterations.

Algorithm 1. PRAMMol Algorithm
1: for i in 1:NumIter do
2: tDiffract← 0.5% of Diffraction Pattern
3: vDiffract← 99.5% of Diffraction Pattern
4: x,y,z← BFGS(x,y,z,tDiffract) ⊳ 10 iters. of BFGS maximizing

Eqtn. (6)
5: C← getScaling ⊳ “Scaling Constant Optimization”
6: newX,newY,newZ←GenerateAtoms ⊳ “Atom Generation”
7:whileObject Changes do ⊳ Loop until the object doesn’t change
8: ⊳ “Model Selection: Cross Validation”
9: Sort(x,y,z,vDiffract) ⊳ Sort object atoms by likelihood
10: Sort(newX,newY,newZ,vDiffract) ⊳ Sort new atoms by

likelihood
11: while Likelihood Increases do
12: AddRemoveAtoms(x,y,z,newX,newY,newZ,vDiffract) ⊳ Fig. 9
13: end while
14: end while
15 RunLammps(x,y,z) ⊳ Fix 50% of object and relax the rest
16: end for

Parameter estimation: maximum likelihood estimation
In statistical theory, point estimation methods are a class of methods that
estimate the values of parameters given data that has been sampled. MLE is
one such point estimation method that has several useful properties.
Maximum likelihood estimates (MLEs) are both consistent and efficient
estimators, meaning that they are asymptotically unbiased with a variance
that matches the Cramer-Rao lower bound46. Because the distribution we
wish to estimate is an exponential family and the parameter space contains

an open set, the MLE is the minimum variance unbiased estimator. When
applied to phase retrieval problems, MLE has been successfully imple-
mented with ptychography47,48, holography49, and speckle imaging50.

Assuming the data is sampled independently and the likelihood
function is continuous, the definition of the MLE θ̂ is

θ̂ ¼ max
θ2Θ

Lðθj ι!Þ; ð3Þ

where Θ is the full parameter space and ‘ðθj ι!Þ is the likelihood function
defined by

L θj~ιð Þ ¼
Yn
j¼1

fIj ιjjθ
� �

; ð4Þ

where fIj ðιj∣θÞ is the probability density function of the jth data point.
Intuitively, the likelihood function quantifies how likely one parameter
choice is to fully describe. The supremum of the likelihood is then the most
likely value of the parameters given themeasured data. In practice, it is often
easier to solve the equivalent problem

θ̂ ¼ max
θ2Θ

‘ðθj ι!Þ; ð5Þ

where ‘ðθj ι!Þ is the log of the likelihood.
From equations (1) and (2), it follows that the log-likelihood for our

problem is

‘~IðC;~x;~y;~z∣~ιÞ ¼
X
hkl

ιhkl ln λhklðC;~x;~y;~zÞ � λhklðC;~x;~y;~zÞ: ð6Þ

Note here that ιhkl is an intensity measurement and λhkl is a theoretical
value of the intensity at a position described by the Miller indices (h, k, l) in
reciprocal space. While it is impossible to find the global maximum of
‘
I
!ðC; x!; y!; z!j ι!Þ analytically, numerical methods can be used to find
maximizers of the log-likelihood. PRAMMol uses BFGS51, a quasi-newton
minimization technique to maximize the likelihood function.

However, the likelihood function has many local maxima and BFGS
will in general fail to find the global maximum. Additionally, this MLE
algorithm does not allow for a changing number of atoms. To overcome
local maxima and find the correct number of atoms, PRAMMol uses cross
validation as amodel selection technique. Thus, BFGSwill only be used on a
portion of the diffraction pattern and the rest will be held out to be used as a
validation set in model selection. Empirically, we have found that the ideal
portion of the diffraction pattern to use in the MLE search is around 0.5%,
with 99.5% of the diffraction pattern used in cross-validation.

Fig. 9 | During cross validation, PRAMMol uses
two lists of atomic positions, the atoms in the
current object and new potential atom positions.
These two are ordered according to their effect on
the likelihood, and the cross-validation grid search
attempts to find the best point to split the two lists.
a Shows one possible split of the two lists, with the
indicator showing where to split in both lists. The
grid search then has nine choices, three for each list.
b Shows a possible move from (a).
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Model selection: cross-validation
Model selection can be viewed as a complement problem to parameter
estimation. In parameter estimation, parameters are selected that are
most likely to have generated the data. Model selection attempts to
select the most likely model to have generated the data, rather than
which parameters. Some common model selection procedures are
cross-validation, the likelihood-ratio test, and information criterion,
such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC)52. For PRAMMol, cross-validation is the
most applicable model selectionmethod because of the complexity and
self-regularization of the models under consideration29.

The specific cross-validation fitness metric PRAMMol uses is
again the likelihood. For every model under consideration, the one
considered the most optimal has the largest likelihood over the vali-
dation set. To create multiple possible models for cross-validation to
consider, new atom positions are generated with MD as described in
the Atom Generation (Atom Generation). These new atom positions
are combined with the atom positions found via MLE. The set of
models that PRAMMol considers during cross-validation is then any
subset of this combined set of atom positions. This is an extremely large
set of models that grows exponentially as the number of atoms
increases, so cross-validation is only able to compare a subset of all
models. To effectively search the space of possible models, PRAMMol
uses a grid search algorithm.

The grid search method used in PRAMMol considers two sets, the
atompositions in the current object and the atompositions out of the object.
The set of atom positions in the object are ordered according to their effect
on the likelihood when removed from the object and the set of atom posi-
tions out of the object are ordered according to their effect on the likelihood
when added to the object. This gives an estimate of which atoms lead to a
larger likelihood.

The grid search then attempts to increase the likelihood by removing
the worst performing atom in the object, adding the highest performing
atom, doing both, or doing nothing. The option with the highest likelihood
is chosen and the process is repeated, except that the grid search allows for
previous options to be undone. As Fig. 9 shows, this can be thought of as
moving across a two dimensional grid and the position is allowed to move
one space in any direction. The position on one axis is where to split the set
of atoms in the object, with one side of the split staying in the object and the
other being removed. The position on the other axis is where to split the
atomsout of the object,with one side of the split staying out of the object and
the other being added.

When the grid searchfinds that the best option changesnothingduring
the search, the grid search terminates and atoms are removed from and
added to the object. Then, the new sets of atoms in the object are again
ordered by their individual effect on the likelihood, and the grid search is
performed again. This process is repeated until the grid search cannot find
any improvements after restarting.

MD energy minimization
While the combination of cross-validation and MLE is an effective way
to search the parameter space for the correct atomic positions, addi-
tional knowledge about the physical system can be added to make the
search more effective. To do this, energy minimization using
LAMMPS40–42 is applied to a portion of the object keeping all other atoms
constant. To choose atoms for energy minimization, PRAMMol first
selects all atoms above a user defined energy cutoff. Specific values of an
energy cutoff are relative and subject to experimental conditions. For
our examples, the cutoff energy used is half the energy per atom of a
tetrahedron in free space.

After the high energy atoms are selected, PRAMMol then randomly
selects a large fraction of the total number of atoms. A good fraction to
choose is around 50% of the object. These atoms then have their energies
minimized with MD. This energy minimization process ensures that the
current set of atoms remains physically reasonable, but does not enforce this

condition too strongly by operating only on a portion of the object. This
allows the algorithm to escape local maxima in the likelihood landscape.

Atom generation
The purpose of atom generation in PRAMMol is to generate all possible
atom positions that may increase the likelihood of the current atom
positions and be physically realistic. To generate atoms for use in cross-
validation, PRAMMol uses three methods: Delaunay triangulation,
force calculations, and random placement. After these three methods of
generation, the atoms are filtered, removing any that are too close to
each other or that do not fall in the support of a low-resolution
reconstruction. Then, one by one, these atoms are combined with the
current object and the energy of these atoms is minimized keeping the
current object fixed. After this, the atoms are again filtered for any that
are too close to each other or that do not fall in the support of a low-
resolution reconstruction.

PRAMMol uses Delaunay triangulation to test atoms positions to
potentially add. In a triangulation of threedimensions, each tetrahedronwill
connect four points. ADelaunay triangulation ensures that a sphere passing
through these four points will not encompass any other point of the tri-
angulation. For a given tetrahedron in aDelaunay triangulation, we are then
guaranteed that the distance between the sphere’s center and any point in
the triangulation is no smaller than the radius of the sphere.

For a metal with a predictably repeating pattern of atom locations, the
radius of the circumcenter can be used to locatemissing atoms or deviations
from the usual arrangement of atoms. For an infinitely large crystal with no
defects, the radius of every sphere in aDelaunay triangulationwill be exactly
the same. If, however, there is amissing atom, the radiuswill be significantly
larger. This gives an excellent way to locate empty spaces in the current
object and fill them with prospective new atom positions. Additionally, it
will effectively cover most of the object in atom positions without having to
search over a large space.

Another way to findmissing atoms inside or outside of the object is to
look at the atomic forces on each atom. After finding a local maximizer of
the likelihood, the atoms will generally not be in a physically realistic
locationbut ratherwillmove to locationswhere the atomswill bemost likely
to create the diffraction pattern. This means that there will be atomic forces
on the atoms, and in many cases, these forces will be in the direction of the
location of the missing atoms. For example, if one atom is missing from the
true object in the middle of a perfect crystal, then it is likely that the local
maximum of the likelihood will place atoms around the missing one on the
lattice positions themselves. This will then create a force on the atoms
pointing at the location of the missing one.

For both Delaunay triangulation and force calculation atom genera-
tion, the placement schemes are effective but not perfect. To supplement
this, atoms are placed randomly close to the object. This allows, over time,
for any locations that Delaunay triangulation and force calculations do not
reach to be sampled. The combination of these three methods efficiently
searches the full range of physically realistic locations for cross-validation.

Scaling constant optimization
Throughout this paper, the positions of the atoms have been thought of as
parameters in a probability density function fromwhich the intensity values
are sampled. While this is true of the scaling constant as well, an analytical
form of the optimal scaling constant can be found when attempting to
minimize the squared error of the simulated diffraction pattern rather than
maximize the likelihood. Because of this, we donot treat the scaling constant
as a parameter to be solved for in MLE and instead use an analytical form
that minimizes the mean squared error, E, which is defined as

E ¼
X
hkl

ffiffiffiffiffiffi
ιhkl

p � jFhklj
� �2

ð7Þ

where ιhkl, Fhkl, and h, k, l are all defined as in equation (2). E can then be
minimized with respect to the scaling constant by taking a derivative and
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setting this equal to zero, as follows.

dE
dC

¼
X
hkl

�2jΩhkljð
ffiffiffiffiffiffi
ιhkl

p � CjΩhkljÞ ¼ 0 ð8Þ

C ¼
P

hkl
ffiffiffiffiffiffi
ιhkl

p jΩhkljP
hkljΩhklj2

ð9Þ

where

Ωhkl ¼
Xn
j¼1

e�2πiðhxjþkyjþlzjÞ ð10Þ

The scaling constant is calculated onceper iteration after theMLE step.

Grain creation
In this work, three samples were generated, a sample with no defects, a
sample with a single vacancy, and a sample with a screw dislocation. All of
these samples were simulated with atomsk53 using the polycrystal tutorial
on the atomsk website and deleting all but one grain. The sample with a
single vacancy was then modified by removing one atom at the center and
the sample with the screw dislocation was created using the screw disloca-
tion tutorial on theatomskwebsite.After these grainswere created, energy
minimization was run in LAMMPS40–42 to bring the samples to an equili-
brium state (see Fig. 2).

Diffraction pattern simulation
For all reconstructions performed, the diffraction pattern was simulated
over threepeaks: the �1; 1; 1ð Þ, the 1; �1; 1ð Þ and the 1; 1; �1ð Þ peaks. For eachof
these peaks the absolute value of themiller indices sampled ranged from 0.4
to 1.6 in h, k and l with 50 measurement points in each direction. Each hkl
value sampledwasdrawn fromaPoissondistributionasdefined inEquation
(1) (see Fig. 3).

Resolution calculation
To assess the effectiveness of PRAMMol, the sample with one vacancy was
reconstructed 10 times across 20 values of TIPF. For one value of TIPF, the
reconstructed diffraction patterns of the 10 trials were averaged over con-
stant shells of ∣q∣. Similar to ref. 10, the resolution is defined asπ/qc, where qc
is the smallest value of q where the mean absolute error of the phase pre-
diction along the shell of constant ∣q∣ is greater than 0.5.

Temperature-dependent diffraction pattern
To simulate a diffraction pattern from a sample at a finite temperature, the
sample first underwent a canonical (NVT) ensemble simulation at the
temperature of interest for 110,000 iterations. After 10,000 iterations had
run, snapshots were collected every 100 iterations for a total of 1000 snap-
shots. After this, the measured intensity, I, is assumed to be a random
variable such that

Ihkl ∼
ind Poisð�λhklðC; x!; y!; z!ÞÞ; ð11Þ

where

�λhklðC; x!; y!; z!Þ ¼ 1
1000

X1000
s¼1

Xn
j¼1

Ce�2πiðhxsjþkysjþlzsjÞ
�����

�����
2

; ð12Þ

where s corresponds to one of the 1000 snapshots.

Data availability
All data that was simulated for this paper is available on the BYU CIG
https://github.com/byu-cig/AtomicResolutionBCDI in the “Examples”
directory of the AtomicResolutionBCDI.

Code availability
All code developed for this paper is available at the BYUCIG https://github.
com/byu-cig/AtomicResolutionBCDI in the src directory. Additional
scripts that simulate samples using atomsk are in the atomsk directory.
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