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Toward a dynamic national transportation noise map: Modeling
temporal variability of spectral traffic noise emission levels
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ABSTRACT:
The National Transportation Noise Map predicts time-averaged road traffic noise across the continental United

States (CONUS) based on annual average daily traffic counts. However, traffic noise can vary greatly with time.

This paper outlines a method for predicting nationwide hourly varying source traffic sound emissions called the

Vehicular Reduced-Order Observation-based Model (VROOM). The method incorporates three models that predict

temporal variability of traffic volume, predict temporal variability of different traffic classes, and use Traffic Noise

Model (TNM) 3.0 equations to give traffic noise emission levels based on vehicle numbers and class mix. Location-

specific features are used to predict average class mix across CONUS. VROOM then incorporates dynamic traffic

class mix data to obtain dynamic traffic class mix. TNM 3.0 equations then give estimated equivalent sound level

emission spectra near roads with up to hourly resolution. Important temporal traffic noise characteristics are mod-

eled, including diurnal traffic patterns, rush hours in urban locations, and weekly and yearly variation. Examples of

the temporal variability are depicted and possible types of uncertainties are identified. Altogether, VROOM can be

used to map national transportation noise with temporal and spectral variability.
VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0028627
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I. INTRODUCTION

Road traffic noise comprises a significant amount of

total anthropogenic noise in many developed areas and can

have a large impact on diverse acoustic environments.

Increased noise levels are correlated with anything from

mild annoyance to an increase in violent crime.1–3 Not only

humans are adversely affected by loud traffic noise,4,5 but

many other species are as well.6,7 Whereas studies typically

look at 24-h averaged overall sound pressure levels, traffic

noise exhibits significant spectro-temporal variability.

Traffic noise cannot be effectively measured along every

roadside in the country, and long-time-averaged levels are

seldom accurate for particular times of day, therefore, accu-

rate modeling of vehicular noise is necessary for improving

traffic noise characterization.

Because overall road traffic noise is directly related to

traffic volume—the number of vehicles per time period—

road traffic noise characterization depends heavily on the

characterization of traffic volume itself, along with other

parameters such as vehicle class mix, vehicle speed, pave-

ment type, and road inclination.8,9 The National

Transportation Noise Map (NTNM), published by the

Bureau of Transportation Statistics, uses annual average

daily traffic (AADT) counts to predict annually averaged

A-weighted 24-h equivalent sound levels near major roads

across the continental United States (CONUS), Alaska, and

Hawaii.10 Although this map is useful for determining

average sound levels, it lacks temporal and spectral vari-

ability and so may not reflect the actual sound level for a

particular time period.

Cook et al.11 recently outlined a method to represent

traffic volume dynamics. This traffic volume model is the

first part of the Vehicular Reduced-Order Observation-based

Model (VROOM), a flow chart of which is displayed in

Fig. 1. The traffic volume model used principal component

analysis on reported traffic volume to find a compact way to

represent traffic volume concisely. By using a combination

of road data (e.g., speed limit, through lanes, and road clas-

sification) and geospatial data (e.g., combinations of features

like nighttime light brightness, land cover, and population),

the VROOM traffic volume model enables prediction of

dynamic traffic volume across CONUS. Further develop-

ments of the traffic volume model with expected sound level

errors in decibels based on total traffic volume were pub-

lished alongside a comparison with expected errors when

using time-averaged traffic volume in Cook et al.12 The

VROOM-based predictions were revealed to have much

smaller errors than those obtained from time-averaged traf-

fic volume. This paper is a direct continuation of Cook

et al.12 on the traffic volume model and, hence, the inter-

ested reader is encouraged to consult that publication for

additional information.

The traffic volume model incorporated in VROOM is

an important step toward modeling characteristic dynamic

sound levels of road traffic. Another important step is toa)Email: mylan.cook@gmail.com
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characterize traffic class mix or the different types of

vehicles that compose the total traffic volume. Heavy trucks

generally produce much higher sound pressure levels than

smaller vehicles, and their characteristic sound spectra also

differ.13 This paper outlines the traffic class mix model and

traffic noise source model used by VROOM. As shown in

Fig. 1, these are the second and third models that, together

with the traffic volume model, comprise VROOM. By com-

bining modeled hourly class mix with modeled total traffic

volume, hourly vehicle numbers for each traffic class type

are modeled.

When vehicle class numbers are known, either reported

or modeled by VROOM, the Traffic Noise Model (TNM)

3.0 equations of the Federal Highway Administration

(FHWA) can be used to predict hourly spectral traffic noise

source levels.13 Spectral traffic noise source levels or traffic

noise emission levels are the predicted one-third octave

band A-weighted equivalent levels, or LAeq, produced by a

given number of vehicles of each traffic class type. As

defined by the TNM 3.0 equations,13 the traffic noise emis-

sions give an estimate of the spectral levels that would be

measured 15 m (50 ft) from a road segment at a height of

1.5 m (5 ft), dependent on vehicle traffic class numbers,

speed, and road type.

By incorporating the TNM 3.0 equations,13 VROOM

uses road data and geospatial data to predict traffic noise

source levels across CONUS. As depicted in Fig. 1, the

predicted traffic noise source levels can then be used in

conjunction with traffic noise propagation models to pre-

dict traffic noise across the continent with spatial, spectral,

and temporal variation. VROOM-predicted noise levels do

not include propagation of sound to acoustic receivers at

different distances from roadways but instead give pre-

dicted traffic noise source levels for individual road seg-

ments. Obtaining complete spatially varying traffic noise

maps requires propagating source levels from road loca-

tions, which remains a topic for future consideration and,

therefore, is not discussed in this paper.

FIG. 1. Flowchart outlining the steps toward creating a dynamic national road traffic noise map. For further information on the traffic volume model incor-

porated in VROOM, see Ref. 12. The traffic class mix model and traffic noise source model are presented in this paper. VROOM, which consists of all three

models, can then be used to create traffic noise maps that include spectro-temporal variability.
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VROOM can be useful for many different applications

beyond the noise applications mentioned previously. Urban

planning uses traffic congestion and, thus, can benefit from

additional insights into traffic dynamics.14,15 Similarly,

freight analysis framework forecasting could be aided by the

VROOM framework.16–18 Beyond characterizing noise

emissions, VROOM could also be helpful for traffic plan-

ning in reducing greenhouse gas emissions.19 Many health

and annoyance studies use daily average sound levels with

possible penalties for nighttime hours, but with VROOM,

hourly levels can be obtained directly from predicted traffic

volume and traffic class mixes. This enables predictions spe-

cific to the hour or hours of interest for such studies rather

than adjusting daily averages to target those hours.

II. GEOSPATIAL AND ROAD DATA

VROOM uses a combination of geospatial and road

data to predict temporal variability of traffic volume. In this

section, these input variables are considered. Although the

geospatial data values are available everywhere across

CONUS, road data may or may not be reported for all loca-

tions, hence, VROOM accounts for missing road data by

using default values employed by TNM based on road char-

acteristics and predicts AADT when it is not reported.

A. Geospatial data

The geospatial data used by VROOM comprise 13 val-

ues for each location and are available everywhere across

CONUS. One type is a Boolean value that indicates whether

a location is classified as urban (including suburban) or

rural. The other 12 values are known as diffusion coordi-

nates (DCs) and are further described in Pedersen20

Diffusion mapping, sometimes called geometric harmonics,

is a method used to reduce the dimensionality of high-

dimensional data or graphs.21 The DCs are a reduced-order

representation of a larger dataset of 51 geospatial features,

including brightness of nighttime lights, population density,

land use, etc. The DCs are ordered nonlinear combinations

of these 51 geospatial features, the details of which are

beyond the scope of this paper.22–25 The merits for the first

DC values are shown across CONUS at road locations in

Fig. 2. Values for the first DC are positively correlated with

more populated areas, which are positively correlated with a

higher traffic volume. The supplementary material includes

maps of these 13 geospatial values at roads across CONUS.

Important variations, such as constructing housing in land

previously used as farmland, cause changes in DC values

and, therefore, in VROOM predictions.

B. Road data

Whereas publicly available FHWA hourly traffic counts

are only reported at a few thousand locations across

CONUS (which will be discussed further in Sec. V), FHWA

road data are reported for millions of road segments across

CONUS.10 However, for locations where road data are

unknown, TNM default values can be used for the number

of through lanes, the f-system (which distinguishes inter-

states from highways or other types of roads), pavement

type, and speed limit. Additionally, VROOM limits these

values in computation to avoid unnecessary complexity,

such as limiting the maximum number of through lanes to

eight. To see the reported values alongside the values used

by VROOM, see the supplementary material.

1. AADT

Dealing with missing AADT values and also missing

average class mix data is more difficult because default val-

ues are not available. Instead, values must be predicted.

FIG. 2. (Color online) Values for the first DC are depicted geographically. For all 12 DC values used by VROOM, see the supplementary material.
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Several methods were investigated for predicting the

AADT. Ultimately, separate models were created for differ-

ent f-system values, urbanizations (urban or rural), and each

individual state because states tend to have very different

reported AADT values, even when other road and geospatial

values are similar. For each model, a least squares fit of the

logarithmic value of the AADT, with the DCs as the predic-

tive variables, was found to be more accurate than using

unscaled AADT values. Mathematically, let Dsi;ui;fi be the

DCs for all roads in a particular state with the same urbani-

zation and f-system values and Asi;ui;fi be the logarithm of

the known AADT. The predicted logarithmic AADT values,
~Asi;ui;fi , for other locations in the same state with the same

urbanization and f-system values can be found using the

DCs at those locations, ~Dsi;ui;fi , by

Xsi;ui;fi ¼min
X

Dsi;ui;fi X�Asi;ui;fij jj j

¼ DT
si;ui;fi

Dsi;ui;fi

� ��1

DT
si;ui;fi

Asi;ui;fi

� �
;

~Asi;ui;fi ¼ ~Dsi;ui;fi Xsi;ui;fi ;

u¼ urban; ruralf g; s¼ US statesf g ¼ AL;…;WYf g ;
f ¼ interstate;other freeway; principal arterial; otherf g:

(1)

Then, the matrix Xsi;ui;fi is the transformation from DCs to

the predicted logarithm of the AADT for a particular state,

urbanization, and f-system. Because a matrix Xsi;ui;fi is cre-

ated for every combination, a value for the AADT can be

predicted at every road across CONUS using the DCs.

The AADT for each reported location is shown along-

side the AADT used by VROOM in Fig. 3. By design, pre-

dictions are constrained to be nonnegative. Although many

locations do report AADT values, VROOM can predict the

AADT at locations where values are not given. In Fig. 3, the

locations with predicted AADT values are more easily

observed in the Western states, where road density is less

than that in Eastern states. Whereas the accuracy at small-

scale locations, such as individual cities, is not discussed

herein, this approach minimizes errors across CONUS.

Possible prediction biases are considered in Sec. V.

2. Average traffic class mix

Like the AADT values, average traffic class mix, which

gives the percentage of combination trucks, single-unit

trucks, and other vehicles, is not reported along all road seg-

ments. Before a dynamic class mix can be predicted, the

average class mix must be predicted when it is unknown. A

similar method to the AADT prediction method is used but

with a few additional constraints.

To be physically meaningful, individual traffic class

mix percentages must always be between 0% and 100%.

Additionally, the sum of all traffic class mix predictions

must be equal to 100%. Although these constraints can be

met in various ways, such as ensuring non-negativity and

regularizing predictions, another option is to consider traffic

class mix percentages as an n-dimensional spherical coordi-

nate on a hyperplane.26 For a particular traffic class mix of

the three main FHWA traffic class types (combination

trucks, single-unit trucks, and other vehicles), this can be

represented as a point on the plane xþ yþ z ¼ 1, which is

characterized by the two angular coordinates h1 and h2,

where 0 � hi � p=2. This approach is particularly useful as

it is generalizable to any number of traffic class types (e.g.,

buses and motorcycles) and not limited to just the main

three traffic class types.

Average traffic class mix is predicted in the same man-

ner as the AADT but by way of predicting angular coordi-

nates rather than values or percentages directly. The angular

coordinates predicted using the least squares approach out-

lined in Eq. (1) are then converted to percentages for each

traffic class type. Figure 4 shows the reported percentages of

single-unit and combination trucks alongside the percen-

tages used by VROOM. The stark differences observed at

state borders are a result of differences in traffic characteris-

tics reported by each state. A nationwide predictive model is

simple to implement, but as states can and do report very

different traffic characteristics, VROOM predicts missing

data using unique models for each state. This serves to make

results consistent within individual states such that disconti-

nuities occur at state borders instead of within a state at

locations where values are and are not reported.

FIG. 3. (Color online) Reported AADT values are displayed alongside AADT values used by VROOM. VROOM can predict logarithmic AADT values at

locations where the values are unknown.

1696 J. Acoust. Soc. Am. 156 (3), September 2024 Cook et al.

https://doi.org/10.1121/10.0028627

 13 Septem
ber 2024 16:40:52

https://doi.org/10.1121/10.0028627


III. TRAFFIC CLASS MIX MODEL

With either reported or predicted average traffic class

mix values, VROOM then models temporal variation in traf-

fic class mix numbers using a traffic class mix model (see

Fig. 1). In 1997, a FHWA report was published by

Hallenbeck et al.27 This report includes observed character-

istic temporal variation of the three main traffic class types

for urban and rural locations and, despite its age, is still used

by the FHWA for traffic volume by vehicle classification.

For improved fidelity, more modern traffic class mix studies

could be considered but are not publicly used by the FHWA

and, therefore, are not considered herein. The results of

Hallenbeck’s report can be used together with VROOM’s

traffic volume model12 to predict temporal variation in each

traffic class type on roadways across CONUS. Yearly varia-

tion is predicted separately from weekly variation as out-

lined below.

A. Yearly variation

Observed yearly traffic characteristics of different traf-

fic class types from Hallenbeck et al.27 are reported on a

month-by-month basis for urban and rural locations (see

Table 7 therein). The monthly resolution described is a dis-

crete representation of just 12 values. However, using

VROOM’s traffic volume model, smooth yearly traffic vari-

ation can be represented with just three values. For further

details, see Cook et al.11 The three coefficients to represent

the relative amount of combination trucks across a year (and

three to represent single-unit trucks, and three more to repre-

sent other vehicles) are found by using a least squares fitting

method, yielding the coefficients that create the yearly traf-

fic flow pattern which most closely matches the stepwise

reported yearly traffic variation of each traffic class type in

the Hallenbeck data.

The Hallenbeck data represent the compilation of traffic

counts at 99 geographic locations, and the reported values

are given for each month of a year. The VROOM represen-

tation was obtained from traffic count data at thousands of

geographic locations with values for each hour of a year. By

finding a VROOM representation to approximate the

Hallenbeck data, a smoothed traffic pattern based on nation-

wide reported traffic flow behavior is obtained. The

Hallenbeck data are shown together with the fitted pattern in

Fig. 5. Note that because the mean value is equal to one, the

fitted value can be used as a yearly traffic class multiplier.

When multiplied by the average traffic class percentage and

predicted total traffic volume, the product gives the pre-

dicted traffic volume for that particular traffic class type

(e.g., the number of combination trucks) at that time period.

B. Weekly variation

Observed weekly traffic characteristics of different traf-

fic class types from Hallenbeck et al.27 are reported on a

day-of-week basis and an hour-of-day basis for urban and

rural locations (see Table 3 and Fig. 6, respectively, in the

FIG. 4. (Color online) Reported percentage of traffic that is (a) combination or (b) single-unit trucks depicted alongside the percentages used by VROOM.

Predicted percentages are only needed at locations where traffic class mixes are not reported. Differences in reported values by different states, as observed

along state lines, explain the need for creating models for each state separately.
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report). By combining the two, a total hour-of-week charac-

teristic variation is obtained. Although this makes for a rela-

tively smoothly varying representation, there is some

discontinuity when transitioning to and from the weekends,

most notably for heavy/combination trucks. Further refine-

ments, such as accounting for the lack of rush hour traffic

for urban vehicles on weekends, are made in Hallenbeck

et al.27

Rather than refining each class type and time period,

the approach taken in this paper is to use VROOM’s traffic

volume model12 to find a similar VROOM representation

for weekly traffic patterns of each traffic class type. Just as

three coefficients were found by fitting the traffic pattern to

the reported yearly data for heavy trucks (and three other

coefficients for single-unit trucks and three coefficients for

vehicles), five coefficients are found to represent the weekly

variability for single-unit trucks and five coefficients are

found to represent the weekly variability for vehicles.

For combination trucks, the five-coefficient representa-

tion for weekly traffic variability used in the VROOM traffic

volume model does not accurately represent observed pat-

terns (see the supplementary material for temporal represen-

tations of the weekly principal components). This is because

the number of combination trucks reported in the

Hallenbeck data does not decrease significantly during

nighttime hours. This highlights a potential weakness of the

VROOM weekly representation; because observed total traf-

fic volume always decreases during nighttime hours, the

VROOM representation cannot accurately represent traffic

patterns that do not show diurnal variability. This is not a

significant issue in predicting total traffic volume but does

not work well for predicting combination truck numbers.

Instead of using the VROOM representation for combina-

tion trucks, the transition to and from weekend combination

truck numbers is simply smoothed by adjusting the hours

around midnight, which removes the large discontinuities in

reported numbers.

The reported and fitted weekly traffic patterns for each

traffic class type are displayed in Fig. 6. The fitted patterns

shown approximate the combined patterns of the

Hallenbeck data on weekdays for all traffic class types. On

weekends for single-unit trucks, and more obviously for

vehicles, a more smoothly varying pattern is found, which

does not include the artificial morning and evening rush

hours. Whereas the Hallenbeck data are further refined using

additional methods (to remove erroneous rush hour patterns

on weekends), the VROOM representation is automatically

able to remove such artifacts because the representation was

created using observed traffic counts. The smoothed pattern

exhibited for combination trucks does not entirely vary

smoothly but does account for the temporal variation and

removes discontinuities on weekday/weekend transitions.

Figure 4 shows time-averaged reported and modeled

traffic class mix percentages without accounting for tempo-

ral variation. VROOM predicts the dynamic class mix per-

centage at any location by multiplying the predicted

temporal variation with the average class mix at that loca-

tion, explained further in Sec. III C. Mm. 1 shows an exam-

ple of the temporal variability across the hours of a week by

showing the predicted percentage of trucks (the sum of com-

bination trucks and single-unit trucks). Urban locations

often have a low percentage of trucks during day and night

while freeways often have larger percentages, which is

expected.

FIG. 5. (Color online) Average relative amount of each traffic class type on urban and rural roads as observed in Hallenbeck et al. (Ref. 27) and the fitted

pattern using VROOM’s yearly traffic volume model representation.
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Mm. 1. The predicted percentage of trucks (combination

and single-unit trucks) for hours across a week.

Averaged hourly predictions across time match reported

time-averaged percentages by design.

C. Combining with average predictions

Because the weekly and yearly traffic class predictions

are normalized, combining them with the average traffic

class for any time period desired requires only simple multi-

plication. The predicted number of heavy trucks for a partic-

ular time is calculated by multiplying the relative weekly

prediction for that time, the relative yearly prediction for

that time, the average percentage of combination trucks at

that location, and the average predicted traffic volume at

that location (the AADT divided by 24). Due to the con-

straints, the predicted number of vehicles of each class type

is always nonnegative, and the sum of vehicles of each class

type for any hour is the total number of vehicles predicted

for that hour. In this manner, AADT values are maintained.

IV. SOUND EMISSION SPECTRA

With the predicted number of vehicles of each class

type for any time period, calculating the predicted sound

emission spectra requires use of the TNM 3.0 equations [see

Appendix A in the technical manual, particularly Eq. (5)].13

This is the traffic noise source model, which is displayed in

Fig. 1. With these equations, the predicted number of

vehicles of each class, the speed limit (whether this is a

good indication of actual vehicle speed is beyond the scope

of this paper), and pavement type at each location, sound

emission spectral levels can be predicted for any time period

with up to hourly resolution. The predicted overall sound

pressure levels give a predicted 1-h A-weighted equivalent

sound level, LAeq, at a distance 15 m (50 ft) from each road

at a height of 1.5 m (5 ft), which is the predicted traffic noise

source level.

Figure 7 shows the time-averaged predicted 1-h LAeq

across CONUS. Interstates and other freeways are observed

to be the dominant sources of traffic noise across the coun-

try, and on several freeways, sound levels exceed 85 dBA

while smaller roads are much quieter, some with sound lev-

els below 35 dBA.

Although the VROOM-predicted average sound levels

are useful, the NTNM already gives time-averaged levels

for geographic locations.10 The utility of VROOM is that it

can predict source levels for any time period and frequency

of interest. Dynamic sound levels are more easily under-

stood using multimedia such that results can be noticed spa-

tially and temporally. Section IV A shows the weekly and

yearly temporal variability of predicted sound levels across

CONUS using multimedia. Section IV B shows predictions

for two specific time periods, and Sec. IV C explains spec-

tral variability of VROOM predictions.

A. Temporal variability

Mm. 2 shows the predicted levels for each hour across a

week, where the time given is the local time for each loca-

tion (traffic volume is reported in local time, therefore, all

predictions are also in local time). Most locations, especially

FIG. 6. (Color online) Observed and fitted hour-of-week traffic patterns for each of the three major traffic class types.
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more rural locations, have a significant decrease in sound

level during nighttime hours (see Sec. IV B for specific

examples). For most locations, weekends show smooth

increases and decreases in overall levels. Rural weekday

locations show a similar pattern while urban weekdays show

rush hours morning and afternoon, rather than smooth

increases and decreases over the day. Friday evenings also

show a more protracted decrease in sound levels.

Mm. 2. Predicted sound levels at locations across CONUS

for each hour across a week in local time for each

location.

In general, sound levels do not change as drastically

across days of a year as they do across the hours of week.

Instead of showing the predicted sound levels across the days

of a year, Mm. 3 shows the predicted yearly levels relative to

the time-averaged sound level for each location. A value of

3 dBA means that for that particular location, the noise level

for that time period is 3 dBA larger than the time-averaged

level at that location. Note that because some locations have

higher sound levels than others, on average, a location with a

value of –5 dBA may still have a higher overall level than a

location with a value of –2 dBA. The differences revealed

should not be confused with absolute levels. The changes

across the year in different parts of the country are more easily

seen in this manner. In the West, especially in locations where

national and state parks are common, large changes can be

observed from the summer to the winter. In more urban loca-

tions, there is less variation across the year. Adjacent locations

show similar trends with smooth spatiotemporal variation.

Mm. 3. Predicted sound levels at locations across CONUS

for each day across a year, shown relative to the

average sound level for each location.

B. Examples of specific time periods

Predictions across CONUS for two different time peri-

ods are given in this subsection. Note again that in all

results, local time is used. Additionally, as was performed in

Mm. 3, levels are shown relative to the time-averaged LAeq

(which was given in Fig. 7) and, hence, two locations with

the same difference value do not necessarily have the same

total level.

For the first example, Fig. 8 shows relative predicted

levels for a weekday nighttime in December. Results, there-

fore, show a combination of the weekly behavior and yearly

behavior for a location. Sound levels are observed to be

lower than average for all locations, which is expected as

nighttime hours are generally less busy than daytime hours

and, therefore, lower than average. In many places in the

Western states, levels are much quieter for this time period

than on average, which is a result of the greater variation in

yearly traffic for these locations, as noticed in Mm. 3.

Although some urban areas show more variation at this time

period than the surrounding areas, cities generally still have

overall higher total sound levels at all times as they have

much higher time-averaged levels. This shows that sound

levels do not change in the same ways at all locations; some

locations exhibit large changes in sound level while others

show only small changes.

For the second example, Fig. 9 shows the relative pre-

dicted levels for a weekend afternoon in July. For many

locations, sound levels are higher than average, most nota-

bly in the Rocky Mountain areas from Montana to New

Mexico, as the mountainous areas are much more popular

destinations during summer weekends than during winter-

time. For some of the larger cities, sound levels are lower

than on average. This could be a result of less traffic in cities

because more people are outside of cities for summer

FIG. 7. (Color online) Time-averaged predicted traffic noise source levels across CONUS.
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vacations, although this would have to be validated by cor-

relating with other studies on human movement.

C. Spectral variation

While consideration has been given, thus far, primarily to

the spatiotemporal variability of traffic noise, its spectral vari-

ability is also important to consider. Not only do combination

trucks produce higher sound levels than smaller vehicles, but

they also have fundamentally different spectral characteristics.

Predicted time-averaged spectral characteristics are observed

in Mm. 4, which shows differences from the overall sound

pressure level for each location and frequency. Differences

in spectral characteristics noticed between interstates and

small roads are mainly a result of different percentages of

the vehicle class types, although the speed limit does con-

tribute to spectral differences as well. This primarily shows

that the spectral shape of noise near interstates differs from

the spectral shape of noise near smaller roads. Mm. 4

shows only the time-averaged spectral characteristics while

VROOM predicts spectral characteristics in a dynamic

manner.

FIG. 8. (Color online) VROOM-predicted sound levels for a weekday nighttime in December relative to the time-averaged levels for each location.

FIG. 9. (Color online) VROOM-predicted sound levels for a weekend afternoon in July relative to the time-averaged levels for each location.
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Mm. 4. Characteristic spectral differences from the overall

sound pressure level for each location across third-

octave bands.

V. UNCERTAINTY QUANTIFICATION

Whereas the NTNM gives a 24-h LAeq for traffic noise

across CONUS, VROOM was created to address the tempo-

ral and spectral variabilities of road traffic noise.

Consequently, the new model provides down to a 1-h LAeq

traffic noise source level for individual road segments. To

truly create a temporally and spectrally varying traffic noise

map, source levels would need to be mapped to physical

locations using sound propagation methods (see Fig. 1) as is

performed in the NTNM. Additional adjustments caused by

objects like sound barriers should also be considered. Thus,

a direct comparison of NTNM to VROOM-predicted noise

levels is not currently useful. However, the time-averaged 1-

h LAeq displayed in Fig. 7 was calculated directly using the

TNM 3.0 equations and, as such, gives the source levels

such as those used to create the NTNM.

Instead of comparing predicted vehicle emission levels

to time-averaged levels, the uncertainty of VROOM is con-

sidered regarding the location of traffic monitoring stations

(TMSs). The VROOM traffic volume model was created

using hourly vehicle counts from TMSs across CONUS.

The locations of these stations are shown in Fig. 10. The

VROOM coefficients, which represent the weekly and

yearly traffic volume variability for any location, are calcu-

lated using the DCs for that location, and values are shown

spatially in the supplementary material. Much of the

uncertainty in VROOM comes from the dissimilarity of geo-

spatial and road data values at TMSs compared to values

found across CONUS.

A. Uncertainty based on road data

One form of uncertainty is caused by the bias of TMS

locations relative to road data. Ideally, the distribution of

any road data at TMS locations should match the distribu-

tion observed across CONUS. If the TMS distribution are

unevenly weighted in comparison to the CONUS distribu-

tion, for example, containing larger AADT values, then that

value will have more impact on VROOM, and other loca-

tions will be underrepresented. For categorical road data,

such as urbanization, f-system, and pavement type, the dis-

tributions can be characterized simply by comparing what

percentage of locations are in each category. These results

are given in Table I.

The results in Table I show that there is some bias

toward urban traffic patterns because TMS locations are

more common in urban locations than there are urban roads

across CONUS. To reduce bias, more TMSs could be placed

along rural roads. Similarly, TMS locations are much more

heavily weighted toward interstates, freeways, and principal

arterial roads than CONUS and, as such, smaller roads are

underrepresented as stations are often more interested in

intercity travel rather than intracity travel. There are also

some differences in pavement type distribution.

Other types of road data are numeric rather than cate-

gorical, such as the number of through lanes. Because

VROOM uses a maximum number of only eight through

lanes, this could still be summarized in table format.

FIG. 10. TMS locations across CONUS.
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However, when moving to a variable with more possible

values, like the speed limit, a probability density plot can be

used to show results more concisely. Therefore, compari-

sons for through lanes, speed limit, and logarithmic AADT

are shown as probability densities in Fig. 11.

The distributions in Fig. 11 show that there is a bias

toward a greater number of through lanes, higher speed lim-

its, and higher AADT values. Although not surprising, as

TMS locations are more likely to be located where there is

more traffic, this does show that VROOM could be

improved and uncertainty reduced by obtaining hourly traf-

fic volume for locations where there is less total traffic.

B. Uncertainty based on DCs

VROOM’s traffic volume model uses DCs to predict

the temporal variability of traffic volume and is based on

hourly counts taken at TMSs across CONUS. Therefore, in

addition to comparing road data distributions at TMS loca-

tions to those for CONUS, the DC distributions should be

TABLE I. Comparisons of the distributions of urbanization, f-system, and pavement type across TMS locations and across roads throughout all of CONUS.

Distribution of urbanization

TMS 46.2% urban 53.8% rural

CONUS 38.8% urban 61.2% rural

Distribution of f-system

TMS 26.6% interstate 9.3% other freeway 31.7% principal arterial 32.4% other

CONUS 4.0% interstate 1.7% other freeway 13.0% principal arterial 81.3% other

Distribution of pavement type

TMS 29.6% average 60.1% asphalt 10.3% concrete

CONUS 66.7% average 30.2% asphalt 3.1% concrete

FIG. 11. (Color online) Comparisons of the distributions of through lanes (a), speed limit (b), and logarithmic AADT (c) for TMS locations and all roads

across CONUS. TMS locations are more heavily weighted toward a greater number of through lanes, higher speed limits, and higher AADT values than the

CONUS distributions.
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considered. For maps of all DC values, see the supplemen-

tary material.

If certain DC values were not represented at TMS loca-

tions, then predictions for locations with those DC values

would have large uncertainty, as with road data.

Fortunately, despite being sparse in some geographic loca-

tions like South Carolina, TMS locations span the range of

and have similar distributions to the DC distributions across

CONUS. Figure 12 shows the distribution of the first DC

value at TMS locations together with the distribution of the

first DC value at roads across CONUS. Distributions for the

other DCs are similar and given in the supplementary

material.

In addition to comparing distributions for individual

DCs, an uncertainty measure for an individual location in

CONUS can be obtained by calculating the standard devi-

ance, or the root mean square (RMS) distance, between that

location’s DC values and the DC distributions across TMS

locations. This is calculated mathematically for a location, l;
by using the mean (li) and standard deviation (ri) of the DC

values at all N TMSs, where DCi is the value of the ith DC,

as

�l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12

X12

i¼1

DCi;l � li

ri

� �2

vuut ; li ¼
1

N

XN

s¼1

DCi;s;

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

s¼1

DCi;s � lij j2
vuut : (2)

The values of �l can be calculated for each road

segment across CONUS and are plotted geographically in

Fig. 13. The value is the RMS standard deviation and, thus,

a value of three means that the DCs for that location are, on

average, three standard deviations away from the distribu-

tion of DC values represented at TMS locations. VROOM

has lower uncertainty at locations with a lower RMS stan-

dard deviation. Although there is some moderate uncertainty

at locations such as southern Florida and northern

Minnesota, RMS standard deviation values are generally rel-

atively low, which shows that VROOM is likely to have low

uncertainty for most geographic locations across CONUS.

C. Additional uncertainty

Additional uncertainty in VROOM can be caused not

just by TMS locations relative to input data but by

FIG. 12. (Color online) A comparison of the distributions of the first DC at

TMS locations compared to those across CONUS. The distributions show

high agreement. A spatial map of the first DC is shown in Fig. 2, and maps

for all DCs are shown in the supplementary material.

FIG. 13. (Color online) RMS standard deviations of the DCs for each location relative to the distribution across TMS locations are shown geographically.

Most locations have small RMS standard deviations, where the most uncertainty is observed in locations such as northern Minnesota and southern Florida.

1704 J. Acoust. Soc. Am. 156 (3), September 2024 Cook et al.

https://doi.org/10.1121/10.0028627

 13 Septem
ber 2024 16:40:52

https://doi.org/10.1121/10.0028627


uncertainty in the reported data that goes into the VROOM

models. To mitigate this uncertainty, TMS locations with

unreasonable data (e.g., traffic volume that showed strange

shifts in reported values such that traffic volume was larger

during nighttime hours at irregular intervals) were given a

lower weight when creating VROOM coefficients. Sites

with twice as much data were weighted twice as heavily,

and sites with missing data were weighted less heavily. For

more details, see Cook et al.11 Values for and distributions

of VROOM coefficients are shown in the supplementary

material along with the temporal patterns of VROOM

components.

Other forms of uncertainty that are not included but

could be considered are the locations at which the

Hallenbeck dynamic traffic class mix data were taken,27 and

uncertainty in the source traffic noise emission equations in

TNM 3.0.13 Modern changes in traffic can create additional

uncertainty; traffic class variation comes from Hallenbeck’s

1997 report, and traffic volume comes from reports from

2015 to 2018. Taking into account the increase in numbers

of electric vehicles and, especially, electric trucks in recent

years could improve reliability of predicted sound emission

levels. Adding new housing developments could change the

DCs for a location, which would also change the VROOM

predictions.

Uncertainties in model input values, such as vehicle

speed, do not result in errors of VROOM traffic mix or vol-

ume modeling but are important to consider when looking at

predicted vehicle source noise emissions. Modifications

could be made to account for changes in vehicle speed with

traffic volume rather than just using reported or predicted

speed limits. For example, congestion indices could be used

as a proxy for speed adjustment, or simple offsets could be

used to account for local differences. For spatial improve-

ments, road segments are considered separately, therefore,

treating locations as a network rather than individual points

would improve reliability of predictions, and time zones

could then also be considered. Adding other parameters

beyond the road data and geospatial data considered could,

likewise, improve reliability.

VI. CONCLUSION

The hourly dynamic nature of traffic noise across

CONUS can be predicted using VROOM. The included traf-

fic volume model was first depicted in Cook et al.,11 and

using geospatial and road data, VROOM predicts total traf-

fic volume with hourly resolution. Expected errors based on

total traffic volume were shown in Cook et al.12 The traffic

class mix model exhibited in this paper expands on previous

results to include prediction of traffic volume by vehicle

class, which is necessary to account for differences in emit-

ted sound spectra and levels produced by different types of

vehicles. Using TNM 3.0 equations, the traffic noise source

model is used to predict traffic noise source levels with

hourly resolution.

Without a major nationwide validation study, either

recording the traffic volume by class or recording sound lev-

els 15 m (50 ft) from roads, expected model errors cannot be

obtained directly. Instead, this paper shows locations of

highest uncertainty as related to geospatial and road data

bias in TMSs. Although it is not a fully robust way of calcu-

lating expected sound level errors, the results illustrate how

VROOM predicts temporal and spectral variability of traffic

noise based on reported and published traffic variability and

noise emission characteristics. The VROOM-predicted

sound levels should not be seen as a fully comprehensive

analysis and prediction of traffic noise but rather as a way to

account for temporal variability—and by using the TNM

noise emission spectra equations, spectral variability—of

traffic noise near roads.

VROOM-predicted noise source levels give expected

spectrally varying sound levels near roads, and all VROOM

predictions exposed in this paper give results in the form of

predicted source noise levels, which are valid 15 m (50 ft)

from roads. To create true sound maps, the emitted spectral

sound levels would need to be used as inputs in a traffic

noise propagation model, and other types of noise levels

beyond an equivalent noise level, such as percentile exceed-

ance levels, would need to be considered. These are topics

of future research.

While not without its limitations, VROOM is a power-

ful tool for predicting temporal and spectral variability of

traffic noise. Predictions are based on observed traffic vol-

ume across CONUS and TNM 3.0 traffic noise source emis-

sion equations. Expected errors, based on predicted and

observed traffic volume where available, are smaller than

errors obtained using time-averaged traffic volume, and

model uncertainty is low for most locations. By accounting

for the temporal variability of traffic volume, VROOM is

able to predict traffic noise, not just for an averaged time

period, but with hourly resolution.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures,

which includes spatial maps and distributions that give a

greater understanding of the underlying values used in

VROOM. These figures include reported road data along-

side VROOM road data, DC values, urbanization status, and

VROOM components and coefficient values.
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