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Spatiospectral lobes are significant contributors to noise radiated from full-scale tactical aircraft. Prior studies

have explored lobe frequency-domain characteristics, but a joint time–frequency domain analysis has the potential to

further describe these phenomena and connect them to source-related events in the time waveform. This paper uses

acoustical data collected from a 120-microphone array near a T-7A-installed F404 engine to characterize the

spatiospectral lobes in combinations of the time, frequency, and spatial domains. An event-based beamforming

method is used in conjunction with a wavelet transform to determine propagation angles and event source locations

corresponding to each of the lobes. Temporospectral events in the wavelet transformare then analyzed usingMarkov

chains. Finally, spatiospectral maps created from the measured data are decomposed into individual lobes using

events in the wavelet transform as a guide. The spatiospectrotemporal combination of these three analyses shows that

the lobes originate from multiple, overlapping regions along the jet lipline and that each lobe has its own peak

radiation angle. Additionally, events corresponding to the spatiospectral lobes occur intermittently and at different

times from each other, leading to bursts of acoustic energy with rapidly changing directivities.

Nomenclature

c = speed of sound
Dj = fully expanded jet diameter

Sr = Strouhal number, fDj∕uj
T = Markov transition matrix
uj = fully expanded jet exit velocity

Wx = wavelet transform of signal x
jWxj2 = wavelet power spectrum

xe = event lipline location measured from the nozzle exit
θ = event propagation angle relative to the jet inlet
τ = cross-correlation time delay

I. Introduction

I NTENSE sound levels produced by high-performancemilitary jet
aircraft can lead to hearing loss for launch personnel that are

repeatedly exposed to these levels [1]. For this reason, it is desirable
to characterize the noise generated by full-scale aircraft to further
inform noise reduction efforts. These sound fields have been ana-
lyzed at full and lab scales as well as in numerical simulations.
Unfortunately, sound fields predicted by numerical simulations and
lab-scale measurements do not completely agree with those of full-
scale tactical aircraft in terms of phenomena produced.
A key feature of high-performance military jet aircraft noise is

multiple spatiospectral lobes, first identified by Wall et al. [2,3]. In
their analysis, acoustical holography was used to create total-field
reconstructions, and the lobes were characterized as distinct regions
of high sound level that evolved through frequency. Before this work,
the lobes were identified as a “dual-peak” phenomenon at individual
microphone locations [4–6], in part because of limited spatial reso-
lution and one-third octave band spectral analyses. However, the
spatiospectral lobes can also be retroactively seen in other analyses.

For example, in Stout et al.’s [7] vector intensity analysis (see
included video), multiple lobes can be seen to form and evolve as
frequency increases. An example of the spatiospectral lobes along a
microphone array near the T-7A aircraft is presented at the top of
Fig. 1. The color map shows levels at military power as a function of
frequency (Strouhal number) and microphone position. Within the
map are at least five regions of elevated level compared to the
surrounding regions. These are the spatiospectral lobes. Four indi-
vidual power spectral densities (PSDs) corresponding to micro-
phones at 15, 20, 25, and 30 engine diameters (Dj) are included in
the bottom of Fig. 1. These spectra show how the lobes appear for a
singlemicrophone. Vertical lines identify the spectral locations of the
first four lobes, as in the top of the figure. Further details regarding the
data in Fig. 1 are provided in Sec. III.
Several methods have been used to study these lobes. Harker et al.

[5] performed preliminary correlation and coherence analysis, where
they suggested that the dual-peaked spectra were created by multiple
overlapping, incoherent sources in the jet. These conclusions were
later expanded on by Swift et al. [8], who performed a related but
more comprehensive analysis for the F-35. In their work, at least five
individual spatiospectral lobes were identified in the peak-frequency
region. They showed that coherence lengths increase within an
individual lobe and decrease in regions of overlap between two or
more lobes. Beyond standard signal processing of the field-acquired
data, inversemethods have recently been largely employed to explore
the apparent origin and other spatial behavior of the lobes. Wall et al.
[3] used near-field acoustical holography (NAH) to recreate the
sound field near a high-performance military aircraft. They then
employed a partial field decomposition method to separate two lobes
and showed that they result frommultiple overlapping sources. Leete
et al. [9] used NAH to track the F-35’s lobes through space and
frequency. They determined that, as frequency increases, the lobes
shift aft and eventually decrease in levelwhile the next lobe appears at
a steeper angle. (This behavior can also be seen in the vector intensity
analysis of Stout et al. [7,10] for the F-22.) Leete et al.’s results were
confirmed and expanded on for the T-7A by Olaveson et al. [11],
using the hybrid beamforming method [12] and an improved ray-
tracing method to determine apparent source locations for each lobe.
Finally, for the T-7A, Mathews et al. [13] have used NAH to reveal a
collection of overlapping local source maxima that appear related to
the lobes.
Except for correlation, the abovemethods operate in the frequency

domain, and inherent spectral averaging removes any temporal fea-
tures. But to better understand the lobes’ underlying mechanisms,
their temporal features must also be characterized. One such time-
domain analysis has been developed in the form of event-based
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beamforming (EBBF) by Vaughn et al. [14,15]. In their studies of jet

crackle, they identified high-amplitude and high-derivative events in

the time waveform and used cross-correlation between adjacent

microphone pairs to beamform these events back to the jet lipline.

The selected events and resultant distributions helped identify radi-

ation and source characteristics of Mach waves and other known jet

noise structures.

While each domain provides its own unique insights, a joint time–

frequency domain (JTFD) analysis has the potential to connect

features from both domains. The wavelet transform is a method of

extracting frequency information at every time step in a signal [16]

and has proven useful in identifying frequency events that change

rapidly through time. In their analysis of a supersonic, lab-scale jet,

Heeb et al. [17] used a wavelet transform to identify time-domain

events corresponding to spectral tones related to screechmodes. They

then applied a time-domain analysis to further characterize the tem-

poral distribution of these events. Kœnig et al. [18] used a wavelet

transform to study temporal structures from a heated, subsonic lab-

scale jet. In their work, the wavelet transform was used as a filter

to extract time-domain features corresponding to peaks in the energy

spectrum. From their analysis, they characterized a temporal inter-

mittency associated with wavepackets and the impact of jet Mach

number and temperature ratio on these features. Beyond these

examples, a wavelet-based JTFD analysis has been used in jet noise

to identify acoustic shocks [19], characterize waveform crackle con-

tent [20], and visualize Mach waves in conjunction with schlieren

imaging [21].

A novel temporal approach is considered in this paper, in the form

of Markov analysis. A Markov chain is a probabilistic model that

describes the evolution of a single-state system with the condition

that the next element in the sequence is only dependent on the current
state. The result is a chain of states that encodes the model properties.
These types of Markov models were first applied to letter content in
poetry [22]. Other applications have been in communication and
information theory [23], the response time of shared computational
resources [24], gene identification in DNA strands [25], speech
recognition [26], and Markov chain Monte Carlo methods [27].
Up to now, the lobes have been primarily identified as a spatio-

spectral phenomenon, but details on how the lobes manifest in the
time domain have yet to be explored. The purpose of this paper is to
analyze the spatiospectral lobes in combinations of the spatial, spec-
tral, and temporal domains using the near-field noise generated by a
T-7A-installed F404 engine. The final product is a spatiospectrotem-
poral representation of the lobes. First, a spatiotemporal analysis is
performed using Vaughn et al.’s [14] EBBF algorithm in conjunction
with the wavelet transform. Next, the temporal structure within the
wavelet transform of microphone signals is analyzed using a
Markov-style probability analysis to provide a lobe temporospectral
characterization. Finally, the Markov model results are used to
decompose measured spatiospectral maps into individual lobes to
identify spatiospectral properties. These results are then summarized
in an animation that represents the jet noise radiation and lobes in a
spatiospectrotemporal sense.

II. Experiment

Data were collected from an F404 engine installed on a tethered
T-7A trainer aircraft [28]. Six run-ups were performed by cycling
through power settings ranging from idle to afterburner (AB). This
paper focuses on the data collected at military power (MIL), i.e.,
100% thrust. The measurement featured over 200 microphones
arranged in multiple near-field arrays and far-field arcs with a micro-
phone array reference point (MARP) located 3.96 m downstream of
the nozzle. For this paper, only the 120-microphone, near-field
imaging array is used, but other analyses have used the far-field arc
(e.g., see [29]). This array was composed of GRAS 46BD and 46BG
1/4′′ pressure mics recorded using NI® 24-bit data acquisition cards
sampling at 204.8 kHz. Figure 2 shows a schematic of the imaging
array setup. The array ran approximately parallel to the jet centerline
in the forward direction and then transitioned to follow the antici-
pated shear layer downstream of the nozzle. A variable microphone
spacing was chosen to appropriately resolve the expected peak
frequency behavior in each region.
The MIL spectra along the array have been compiled into a

spatiospectral map. To emphasize the spatiospectral lobe structure,
the top of Fig. 1 shows only the top 6 dB of this map with a 3-dB-
down contour inwhite. At least five spatiospectral lobes are present in
the figure, which is consistent with previous observations on the F-35
[9]. Unlike previous analyses on full-scale aircraft, spectral results in
this paper are presented in terms of Strouhal number with Sr �
fDj∕uj, where Dj and uj are the fully expanded jet diameter and

exit velocities, respectively. The lobes have a spectral spread, but for
this paper, they will be identified by a single frequency that corre-
sponds to the approximate spectral center of each lobe. The first
occurs at a Strouhal number of∼0:071 and beyond 25Dj. The higher-

ordered lobes (2+) appear as dark patches near Strouhal numbers of
0.15, 0.24, 0.31, and 0.39, respectively, and shift upstream from
∼20Dj to ∼15Dj with increasing lobe number. These Strouhal

Fig. 2 T-7A A measurement schematic.

Fig. 1 Spatiospectral map at MIL (top). White contours indicate the
3-dB-down point. Four individual spectra (bottom) demonstrating the
multi-lobed behavior.
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numbers are quasi-harmonic, and a similar structurewas seen in F-35
noise measurements [8].

III. Methods

A. Event-Based Beamforming

EBBF identifies apparent locations and propagation angles of
time-domain events. First, an event type is defined.Historically, these
have been either large pressure amplitudes or large derivatives
[14,15], though any time-domain structure is viable. For each pair
of adjacent microphones, the top N most prominent events are
identified in the upstream microphone’s time signal with a minimum
separation, δt, between each event. The choice of N can impact the
EBBF performance. If N is too large, nonphysical events will be
identified in the underlying noise, but ifN is too small, there are fewer
data points for averaging. The time separation is included to prevent
events from being double-counted and to ensure a broader sampling
of the waveform.
For each event, a Hann window is applied to thewaveform centered

on the event. A similar window is applied to the downstream signal,
isolating the event in each waveform. The cross-correlation of the two
windowed signals is then used to calculate a time delay, τ, between the
two events. Using the time delay, a sound speed of c � 343 m∕s, and
the assumption that the event is locally planar in the region of the
microphones, identifying the apparent propagation angle and lipline
source location reduces to a geometry problem. Figure 3 depicts the
EBBFgeometry, with the T-7Ameasurement schematic presented as a
3D model. The aircraft is in the upper left corner, and the microphone
array is to the right, shown as blue circles. The vector rm points from
the upstream to the downstreammicrophone and has a length equal to
the distance between the two, though it has been exaggerated here. The
vector rs traces the linear event path and points from the microphone
midpoint to the jet lipline. Following the same formulation as Vaughn
et al. [15], the event propagation angle is

θ � 180° − �ϕ� α� (1)

where α � tan−1�Δy∕Δx� is the angle formed from the microphone

geometry and ϕ � cos−1�cτ∕d� is the angle between rm and rs. The
apparent event source location is extracted from the inner product:

rm ⋅ rs � jrmjjrsj cosϕ (2)

The event is assumed to come from the lipline location
rs � hxe; Dj∕2; hi, where h is the nozzle centerline height and xe is
the unknown event origin relative to the nozzle. Equation (2) is then
solved for xe. This ray-tracing procedure is performed for eachof theN
events and each microphone pair.

B. Wavelet Transform

Whereas the EBBF procedure was developed for the time domain,
examining the spatiospectral lobe behavior in detail requires fre-
quency information as a function of time. The short-time Fourier
transform can provide this information, but the uncertainty principle
dictates that increasing the time resolution necessarily reduces the
frequency resolution [30]. A balance between the two can be
attempted, but the EBBF algorithm requires a high time resolution.
Evenwith a time step of 20ms, the error surpasseswhat is reasonable.
A different method is required to appropriately balance frequency
and time resolutions.
The wavelet transform extracts frequency information at every

instant in time [16]. The basic formulation involves repeatedly
convolving a time signal, x, with a wavelet, ψ , that is scaled to match
a specific frequency of interest. This is typically written as

P�s; t� � ∫ x�t�ψ�τ∕s� dτ where s indicates the wavelet scale. The

scaling factor is then converted to frequency, which results in a
complex function that describes the temporospectral behavior of
the signal. The magnitude and phase information can be analyzed

individually [21], or together as a wavelet power spectrum jWxj2
[16]. When viewed as a power spectrum, jWxj2 is a scalogram that
depicts frequency-dependent energy content through time. While
many families of wavelets exist, this paper uses the Morlet wavelet,
which evenly balances temporal and spectral resolution. The Morlet

wavelet is a complexGaussian expressed asψ�t� � e−t
2∕2ej5t, which

is the MATLAB default. Other families were investigated, but the
results presented here do not change significantly with wavelet type.
Figure 4 shows an example of a 50 ms waveform (top) and the
corresponding wavelet power spectrum (bottom) from a microphone
located at x � 18:9 Dj. This signal contains shocks, which appear in

jWxj2 as faint vertical stripes of high-frequency content at the shock
location [20]. Additionally, there are two high-amplitude events at
relatively low Strouhal numbers: 15 ms at Sr � 0:24 and 27 ms at
Sr � 0:15. These Strouhal numbers correspond to the spatiospectral
lobes at this location and form prominent peaks in the time-averaged
Fourier spectrum.
This paper uses the wavelet transform to identify frequency events

in the time signal for use in EBBF by searching for peaks in time
slices of jWxj2 at the lobe Strouhal numbers, i.e., jWx�Sri; t�j2.

C. Markov Chains

Temporospectral events like those seen in Fig. 4 are observed in a
majority of jWxj2 snapshots for microphones where the lobes are
present. These events occur intermittently and exhibit a visual
frequency-switching phenomenon. Qualitatively, the events appear
as discrete bursts or puffs of energy, which is similar to the temporal
behavior of wavepackets [31,32]. This same behavior has been
observed in lab-scale experiments and numerical simulations of
subsonic jets [18,33–35]. However, the events in Fig. 4 occur at
alternating frequencies, which resembles the screech tone mode
switching in lab-scale jets [17]. Since the events occur intermit-
tently and at different frequencies, wavelet transform time slices are

Fig. 3 Event-based beamforming geometry. The vector rm points from

the downstream to the upstream microphone, rs from the downstream
microphone to the (unknown) event location, andxe from the nozzle to the
event.

Fig. 4 A 50 ms waveform (top) and corresponding wavelet transform
(bottom). Spectral events are seen as bright islands in the transform.
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nonstationary signals, and classic Fourier analysis struggles to
meaningfully quantify the behavior.While othermethods have been
developed to circumvent similar issues, for example, Kearney-
Fischer et al. [36], this papermodels the events as aMarkov process.
There are two components to the Markov model: the transition

matrix and state sequence. The transition matrix is a row-normalized,
square matrix with entries Tij that gives the probability of transition-
ing from one state, si, to another, sj, after a time step. The state

sequence, S, is generated from the transition matrix by defining S1
and choosing the next state (and each subsequent one) based on the
probabilities in T. Sometimes T is unknown, but S is provided or
measured. By assuming that S is a Markovian process, T can be
calculated empirically by determining the transition probabilities
from the sequence itself. Thus, any underlying structure in the state
sequence ismodeled by the transitionmatrix. Thismatrix can be used
to predict the future state of a sequence by taking repeated powers of
T, where �Tn�ij is the probability of transitioning from si to sj on the
nth step. In the limit as n goes to infinity, the rows of Tn become
identical, and each contains the steady-state solution, which shows
the long-term prevalence of each state in S.
This paper models the frequency-switching phenomenon in Fig. 4

as a Markov process and explores the probabilistic relationship
between events at the lobe center frequencies. The state sequences
for eachmicrophone are then used to develop an event-based spectral
decomposition that breaks down the time-averaged Fourier spectrum
into individual spectra for each spatiospectral lobe.

IV. Analysis

This section characterizes the spatiospectral lobes in three combi-
nations of the time, space, and frequency domains. A spatiotemporal
analysis combines the wavelet transform with EBBF to target fre-
quency events corresponding to each spatiospectral lobe. The tem-
porospectral events seen in thewavelet transform are thenmodeled as
a Markov chain and the underlying structure is discussed. From the
Markov model, the time-averaged Fourier spectrum is decomposed
by taking ensemble averages of events corresponding to each lobe
individually. This process is then applied to the entire microphone
array to create new spatiospectral maps for each lobe. Finally, all
these results are combined into a single spatiospectrotemporal ani-
mation that depicts the overall behavior of the spatiospectral lobes.

A. Event-Based Beamforming with Wavelets: Spatiotemporal

EBBF has been used elsewhere to characterize crackle-related
events [14], and the method is now used to explore the lobe’s
spatiotemporal properties. Since the lobes are inherently spectral
phenomena, EBBF requires a frequency trigger. The trigger uses
prominent local maxima in time slices of the wavelet power spec-
trum, jWx�Sri; t�j2, where Sri is a characteristic Strouhal number for
a given lobe. This translates to beamforming at time locations where
the measured signal has a relatively large amount of energy at the
desired Strouhal number, or lobe. This paper uses N � 500 events
and aminimum event separation time of δt � 2:4 ms. The number of
eventswas chosen through a trial-and-error process similar toVaughn
et al. [15], with 500 events representing a large enough number
without oversampling the natural noise in the signal. A 2.4 ms event
separationwas chosen to allow enough space between events to avoid
double counting.
Since only a subset of the imaging array shows evidence of the

spatiospectral lobes, only the affected range of microphones is used
in the beamforming. The same procedure could be applied to the rest
of the array, but events outside this range are low amplitude and
irrelevant to the spatiospectral lobes. Using Fig. 1 as a guide, the
relative spatial regions are presented in Table 1 for each lobe. The
spectral characteristics of the lobes shift with position, but only a
single Strouhal number is chosen to characterize the lobes since
the event triggers are only defined for a single frequency at a time.
The spatial ranges presented here are generous enough to capture the
3-dB-down point around each lobe and a little bit more. Once the
EBBF algorithm is applied to these microphone regions and Strouhal

numbers, the resultant propagation angles and apparent lipline source

locations for each lobe are compiled into normalized histograms.
Figure 5 shows the angle and intercept histograms as a function of

microphone location for each spatiospectral lobe. The probability of

each event is calculated as the number of events that fall into that

bin, divided by the total number of events. These probabilities are

Table 1 Approximate spatiospectral
regions corresponding to each lobe as seen

in Fig. 1

Lobe Strouhal number Spatial range, Dj

1 0.071 24 ≤ xm ≤ 39

2 0.15 15 ≤ xm ≤ 26

3 0.24 13 ≤ xm ≤ 21

4 0.31 13 ≤ xm ≤ 17

5 0.39 13 ≤ xm ≤ 17

Fig. 5 Normalized histograms for Strouhal numbers corresponding to
each spatiospectral lobe. Calculated propagation angles are on top with
lipline intercepts below.

4402 OLAVESON AND GEE

D
ow

nl
oa

de
d 

by
 B

ri
gh

am
 Y

ou
ng

 U
ni

ve
rs

ity
 o

n 
N

ov
em

be
r 

21
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

39
44

 



indicated by color, with values below0.01 set towhite to highlight the

relevant trends. For the higher-ordered lobes, especially lobes 4 and

5, there are relatively few microphones within the lobe’s spatial

extent, causing these figures to appear slightly blurred. The propa-

gation angle histograms (top) indicate that the events responsible for

each lobe have a relatively steady propagation angle, although with a

slight upward trend with increasing microphone position, suggesting

that events must propagate at steeper angles to reach the farther

microphones. The intercept histograms (bottom) also exhibit this

upward trend, though with enough spread to remain relatively

constant.

The angular distributions and event source locations are summa-

rized in Table 2. For each microphone in the aperture, the mean and

standard deviation of the radiation angle (and event origin) are

calculated. An overall mean is obtained by averaging the means

across all microphones. The overall minima and maxima are deter-

mined from the highest and lowest values that are one standard

deviation away from their respective means. In this way, the ranges

presented in Table 2 capture all the primary distribution information

as well as some tapering at either end.

The table contains two key results. First, the average radiation

angle decreases as the lobe number increases. Lobe 1 radiates at

around141°, and each subsequent lobe radiates farther to the sideline,
with lobe 5 being about 121°. Additionally, there is a strong angular
overlap between lobes 2–5, with the mean angle for lobe 5 being

captured by the range of lobe 2 and vice versa. There is very little

angular overlap between lobe 1 and the others. The second result of

interest is the contraction and overlap of the apparent source regions.

Lobe 1 is predicted to occur at about 8.4Dj, and each subsequent lobe

is seen to move closer to the nozzle, with lobe 5 coming from around

6:4Dj. This behavior matches what is expected from the developing

jet turbulence. Closer to the nozzle, the turbulent length scale is

relatively small, resulting in high-frequency radiation. Further down-

stream, the developing turbulence grows in size and thus radiates at a

lower frequency. Finally, the spatial ranges associated with each lobe

monotonically decrease as the lobe number increases. The range

width starts at about 8 Dj for lobe 1 and ends with a range of about

5 Dj for lobe 5. The observation that source regions contract and

move upstream with frequency is consistent with jet noise literature

(see, e.g., Refs. [7,37]), but expands this from the statistically aver-

aged domain to individual time events.

These results compare favorably with those predicted byOlaveson

et al. [11]. From their ray tracing analysis of steady-state lobe

behavior reconstructed from hybrid beamforming, they predicted

radiation angles for MIL of about 140° for lobe 1, 128° for lobe 2,
125° for lobe 3, and 120° for lobe 4. Due to the limited resolution of

their ray-tracing method, they were unable to make predictions for

lobe 5. Spatially, the beamforming suggested that lobe 1 occurs

downstream of the supersonic core tip (∼13 Dj). Lobe 2 was pre-

dicted to occur between the potential and supersonic core tips, with

lobes 3 and 4 moving upstream and clustering upstream of the

potential core tip (∼7 Dj). Aside from lobe 1, the EBBF results are

similar. Lobe 2 spatially falls between the two core tips, and the

higher-order lobes move steadily upstream before resting just near

the supersonic core tip.

While the histograms in Fig. 5 and numerical results in Table 2

provide the EBBF results, it is difficult to connect the relationships

between the event source location and radiation angle. The results are

now presented as a collection of ray-traced events to better visualize

this connection. For each microphone pair, the mean of the corre-

sponding propagation angle distribution is used to linearly trace the

“average” event back to the jet lipline. Figure 6 shows this process

applied to each lobe Strouhal number. Microphones are represented

as blue dots, and the jet lipline is shown as a dashed line. The ray-

traced events are shown as different colored lines. Included below the

lipline is a similarly colored bar that spans the apparent source region

fromTable 2with a black “x” at themeanvalue. It is visually apparent

that the sources corresponding to each lobe graduallymove upstream,

but each has significant overlap with the other lobes. The radiation

angles also exhibit overlap and steepening with increasing lobe

number.

Table 2 Predicted radiation angles and
event source regions for each lobe as calculated

from the data in Fig. 5

Radiation angle
(θ°)

Source location
(xe), Dj

Lobe Min Mean Max Min Mean Max

1 131 141 149 4.8 8.4 12.9
2 115 127 140 4.9 7.7 11.7
3 113 122 132 4.3 7.1 10.9
4 113 122 128 3.8 6.5 9.0
5 112 121 128 4.1 6.4 8.8 Fig. 6 Average event path predicted using the mean propagation angle

for each microphone pair.1‡
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The predicted event source locations corresponding to each lobe
are now compared with predictions made using NAH performed by
Mathews et al. [38], who used the same dataset as in this paper. In
their analysis, the source was represented by an acoustic field
reconstruction at the jet lipline. Figure 7 shows their spatiospectral
source reconstruction for MIL, which exhibits a collection of local
maxima (LM) that may be related to the spatiospectral lobes. Vertical
dashed lines identify the spatial locations of the assumed potential
(red) and supersonic (blue) core tips. To compare the time-averaged
holography analysis and the EBBF results, the predicted source
regions from Table 2 are added to the plot as white horizontal lines
with the mean value as a white dot. The EBBF source predictions for
each lobe neatly coincide with one of the LM at the same Strouhal
number. The implication is that each of the LM can be connected to
one of the lobes—all except the first.
For lobe 1, there is very little overlap between the EBBFpredictions

and the lowest LM. The mismatch between lobe 1 and the lowest LM
suggests that lobe 1 does not behave in the same way as the higher-
ordered lobes, or perhaps these two methods are identifying different,
unrelated phenomena. A similar disagreement is also seen when
compared with the beamforming results. Vaughn et al. [14] used the
same EBBF method to characterize source locations of acoustic phe-
nomena on the F-35.When lobe 1 is compared to their results (see their
Table 1 and Fig. 10), the source region occurs at the overlap between
groups 4 and 5. These groups represent the transition fromMachwave
radiation to large-scale turbulent structure noise. In relation to the flow,
this indicates a transition fromsupersonic to subsonic convection of the
turbulence. That the lower frequencies should occur in this subsonic
regime is consistent with the literature. Holography and beamforming
predict source locations farther downstream, which suggests that lobe
1 is primarily composed of large-scale structure noise. Since EBBF
uses high-amplitude frequency event triggers, most events will be
related to the Mach waves pushing the predicted source region closer
to Vaughn’s group 4. This is also consistent with Leete et al.’s [9]
suggestion that lobe 1 is a superposition of multiple lobes or phenom-
ena. When compared against the other lobes, lobe 1 has a Strouhal
number of about 0.07, which roughly corresponds to the difference
frequency between lobes 3 and 4. There is also significant overlap
between the corresponding source regions for these lobes. These two
observations point toward a possible nonlinear interaction between the
higher-ordered lobes. Future work will explore possible nonlinear
interactions between the spatiospectral lobes.

B. Markov-Style Event Characterization: Temporospectral

The events described in the previous sections are seen to occur
intermittently with a possible relation between lobe frequencies. This

section applies aMarkov-style analysis to the full 30 s waveform from
Fig. 4 to characterize the event temporal structure. Figure 8 shows the
PSD (left) using a frequency bin size of 10 Hz (ΔSr ≈ 0:005). This
waveform captures radiation at about 144° and exhibits multilobed
behavior, which is evidenced by the two notable spectral peaks at
Sr � 0:14 and Sr � 0:24 corresponding to lobes 2 and 3, respec-

tively. The right of Fig. 8 shows jWxj2 for a 0.3 s portion of the
waveform. Included in the figure are three horizontal lines. The green
lines highlight the power spectral peaks, while the magenta line shows
the central dip. Most temporospectral events coincide with one of the
peak frequencies, thoughmany smaller events appear atminor spectral
peaks. Additionally, several events appear at the spectral dip. This is
unsurprising. Even though this dip is a local minimum, it still has a

higher level than the rest of the spectrum.
Between this snapshot and others, events are seen to oscillate

between spectral peaks. This behavior is most notable near 1.95 s,
where four events bounce between the two green lines and then a fifth

lands on the magenta line. This oscillatory behavior is not periodic,
and neither is the spacing between groups of events. Moreover,
whenever there is an event at one of these peak frequencies, there
tends to be a relative minimum at the other peak. A preliminary
correlation analysis is performed on the wavelet time-slices at Sr �
0:14 and Sr � 0:24 to determine a characteristic spacing between
events. Each signal is divided into one hundred 0.3 s blocks (as in
Fig. 8) to ensure that multiple events are present in each block. The
cross-correlation between each signal is then calculated, and the time
lag corresponding to the maximum correlation coefficient is
extracted. Despite this, no “characteristic” time scale is recovered,
although the distribution is somewhat Gaussian and centered on zero.

A different method of characterizing the relationship between events
is thus required.
Since the events’ timing and duration are intermittent, classical

Fourier analysis struggles to extract meaningful information. Addi-

tionally, the sporadic behavior of the events makes investigating
temporal relationships between the lobes challenging. For this rea-
son, a Markov-style analysis is used to model temporal behavior. To
create the Markov model for this behavior, the measured time signal
is represented by a state sequence. States are defined as s00 for no
events, s01 for an event at Sr � 0:24, s10 for an event at Sr � 0:14,
and s11 for an event at both Strouhal numbers.While additional peaks
are present (lobe 4 appears at Sr ≈ 0:35), only events at these
Strouhal numbers are considered for simplicity. The state sequence
is created as follows.
First, the jWx�0:14; t�j2 time slice is extracted from the wavelet

transform and divided into six thousand 5 ms blocks. This step size
was chosen to match the observation that many events have an
estimated duration of about 10 ms. Many have longer or shorter
durations, but an exact value is unnecessary so long as the Markov
chain step size is smaller than the typical event. Using a smaller step

size produces the same results and is used in Sec. IV.C, but it is
difficult to interpret a matrix whose off-diagonals are vanishingly

Fig. 7 EBBF source locations compared to acoustical holography
results.

Fig. 8 Power spectral density (left) of the full 30 s waveform from Fig. 4
with a double peak and a 0.3 s wavelet transform snapshot (right).
Spectral extrema are highlighted in green and magenta.

‡Lobe colors have been changed from how they were initially presented in
Ref. [11]. The updated colors are now orange, yellow, green, purple, and blue
for lobes 1–5.
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small. Once the wavelet time slice has been divided into blocks, the
meanvalue of each block is compared to half themean squarevalue of
themeasured signal. If the blockmean is larger, then that time sample
is marked as having an event at Sr � 0:14. The same procedure is
then repeated for Sr � 0:24. Olaveson et al. [39] compared block
means to the root mean square (RMS) level of each wavelet slice
instead of using the overall signal. This updated method does not
change the conclusions presented in that preliminarywork, but it does
improve the ability to characterize events across the entire micro-
phone array. Once both sequences of events have been created, each
sample is compared, and a final state sequence is compiled by sorting
the resulting combinations into the appropriate states.
Once the state sequence is defined, MATLAB’s hmmestimate

function is used to fill out the transition matrix. These values are
presented in Table 3. The table can be read by starting at any of the
four states in the left-hand column, and then the probability of
transitioning to any of the other states is found by locating the column
corresponding to the desired state. Included in the last row of the table
are the average event lengths and steady-state solution. The matrix
shows that there are relatively high probabilities of transitioning from
any state into s00, indicating that most of the signal is dominated by
having no events at either Strouhal number. On the contrary, the
lowest probabilities in the matrix are seen to be transitions into s11.
Thus, when the sequence transitions from an event at one spectral
peak to another, it prefers to fade out one event before introducing the
next one rather than overlapping the two. This same behavior extends
to interactions between events whenmore than two lobes are present.
While one lobe radiates, the system prefers to fade out that lobe
before starting a newone. In the rare casewheremultiple lobes radiate
simultaneously, changes in which lobes radiate tend to follow a
“switch off/switch on” procedure.
Overlapbetween eventswill dependon their typical durations,which

can be calculated from theweighted sumL � Δt ∞
n�0 nP�n�, where

n is an integer and P�n� is the probability of a sequence of that length
occurring. The factor ofΔt is included to convert from steps to seconds.
For the states si ∈ fs00; s11g, the calculation is straightforward:

Li � Δt
∞

n�0

nTn−1
ii �1 − Tii� (3)

where subscripts on T indicate the matrix index for that state. The
probability assumes that the system starts in the desired states and
remains there for n − 1 steps before finally transitioning to a different

state. This process returns chain lengths of L00 � 20 ms and

L11 � 6:1 ms. The process for the states si ∈ fs01; s10g is complicated
slightly by the presence of s11. Since the chain can begin in either si or
s11 and can have any number of transitions between these states before
leaving, the probability needs to account for every combination of
paths. It is simpler to recreate the state sequence by making the sub-
stitutions s11 → si and sj≠i → s00, which reduces the transition matrix

to a 2 × 2. Equation (3) then applies.This computation returns the chain

lengths of L01 � 8:4 ms and L10 � 9:8 ms. Converting these values
from milliseconds to periods yields 2.4 and 3.4 periods, respectively.
These results suggest thatwhenanevent appears in the signal, it remains

for only a fewcyclesbefore fadingout.Additionally, longbreaks tend to
separate chains of events, which qualitatively matches the visually

observed temporal intermittency. Finally, the fact that L11 is less than

either L01 or L10 implies that when events do overlap, it is more likely
that one event is fading out while the next comes in rather than two
events starting at the same time. These overlaps are uncommon, as is
shown by the steady-state solution.
The steady-state solution is included beneath the transition matrix

in Table 3 and represents the long-term content of the system. From
these values, it is seen that the noise signal spends most of its time
without events at either peak frequency. More interesting is the
relationship between the states and events. By comparing the steady
states for s01, s10, and s11, it is seen that an event is 7.5 times more

likely to occur at one peak at a time rather than both simultaneously.
Combining this with the analysis from Sec. IV.A paints the picture of
a time signal that is characterized by short, intermittent bursts of
energy at spectrally important Strouhal numbers. The events radiate
at different directivities, last only a few wavelengths, and then fade
away, leading to an acoustic “flapping” phenomenon. These results
also show that the turbulent events corresponding to the spatiospec-

tral lobes occur at different times and that their superposition is an
effect of the usual time-averaged methods like holography and
beamforming.
To confirm the significance of the Markov analysis, this same

process has also been applied to pure white noise and to white noise
filtered to have the same spectral shape as in Fig. 8. As expected, the
pure white noise is devoid of spectral events leading to a model with
only a single state: s00. For the shaped white noise, the results closely
match what is seen in Table 3, suggesting that the distribution of
events is primarily dependent on the signal’s spectral shape.

C. Event-Based Spectral Decomposition: Spatiospectral

Now that the lobes have been characterized temporally, the next
step is to observe the spatiospectral properties of individual lobes.
This section uses the Markov state sequence to extract and combine
spectra for individual lobes.
The process is demonstrated on a single microphone and then

applied to the entire microphone array, leading to an event-based
spatiospectral decomposition.
To begin, a new state sequence is generated using the same

procedure outlined in Sec. IV.B, except that every sample of the
waveform is used instead of dividing it into blocks. Using the new
state sequence as a guide, the spectrum for each event is extracted

from jWxj2. The average PSD corresponding to si is then calculated
as

PSDi �
1

N

N

n�1

jWx�Sri; tn�j2 (4)

whereN is the number of times the state appears in the sequence and

tn is the time location of the nth occurrence of the state. These curves
are plotted in Fig. 9 along with the Fourier spectrum (Gxx) and the
averaged wavelet power spectrum. The mean wavelet spectrum
closelymatches the Fourier spectrum, althoughwith some smoothing
caused by the spectral response of the Morlet wavelet. The single-
state spectra show thatwhen events occur at one spectral peak, there is
a reduction of energy at the other peak, indicating that these lobes are,

in general, temporally separable and spectrally unrelated.
Since the Markov model is not limited to two Strouhal numbers,

this same analysis can be applied to any number of spectral peaks.

Using a spatiospectralmap covering the span of themicrophone array
as a guide, spectral peaks corresponding to the spatiospectral lobes
are identified in each microphone spectrum. Figure 10 shows a
spatiospectral map with five sets of colored markers. Each marker
is a spatiospectral coordinate that follows one of the lobes as it
evolves through space and frequency and indicates the Strouhal
numbers that the Markov model will characterize. The markers

extend spatially beyond the darkest regions of each lobe to demon-
strate the spatiospectral tapering of each lobe as it fades.

Table 3 Transitionmatrix for the state sequence

From / To s00 s01 s10 s11

s00 0.75 0.17 0.059 0.022

s01 0.51 0.37 0.072 0.051

s10 0.41 0.11 0.40 0.088

s11 0.27 0.23 0.32 0.18

Event length, ms 20 8.4 9.8 6.1
Steady state 0.64 0.21 0.11 0.042

Each element represents the probability of making a state

transition (from row to column) at each time step. S00 is no

events, S01 is an event at Sr � 0:24, S10 is an event at

Sr � 0:14, and S11 is an event at both Strouhal numbers.
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TheMarkov-style analysis is now applied to the entiremicrophone

array. For n spectral peaks, the available states include every combi-

nation of events and nonevents at each Strouhal number. As an

example, if there are three spectral peaks, �Sr1; Sr2; Sr3�, then the

set of available states is given by sijk where subscripts i; j, and k
represent one of the Strouhal numbers and ijk ∈ f000; 001;
010; 011; 100; 101; 110; 111g. A value of 1 indicates an event at that

Strouhal number, and zero indicates no event. The state s101 repre-
sents an event at Sr1 and Sr3 but no event at Sr2. Performing the

Markov-style analysis for this set of Strouhal numbers would pro-

duce an 8 × 8 transition matrix. Equation (5) is then used to calculate

the spectrum for each state.

To collectively represent the spectra of individual lobes, overlap

between relevant states needs to be accounted for. The overlap is

calculated by taking a weighted average of the spectra for each state

that has an event at the lobe Strouhal number with weights given by

the steady-state solution. The spectra are then plotted together to form

a spatiospectral map and normalized relative to the maximum value.

Figure 11 shows the event-based spatiospectral decomposition with

microphone position (inDj) on the abscissa, Strouhal number on the

ordinate, and level in color. A white contour marks the 3 dB-down

point in each plot. Each subfigure shows the spatiospectral spread of

each lobe as extracted from the time-domain signal. For the higher-

ordered lobes, especially 3–5, a large vertical smear is present around

the primary maximum. This smear is caused by overlapping tempor-

ospectral events in the wavelet transform and implies an overlap of

temporospectral properties of the lobes.

Comparing this result to the overlapping sources in Fig. 6 confirms
a strong relationship between the higher-ordered lobes. Lobe 2
deviates slightly from this pattern in that the downstream protrusion
becomes clearer, and there is only a weak overlap with lobe 1, which
is again consistent with the observation that lobe 1 does not act the
same as the other lobes. The lack of strong overlap suggests that the
source responsible for lobe 2 is not strongly coupled to the other
lobes. It is concluded that events for each lobe occur intermittently
with minimal overlap between lower-ordered lobes and increasing
overlap as the lobe number rises.

D. Spatiospectrotemporal Lobes

This work has analyzed the lobes in combinations of the different
domains. These have been space-time (spatiotemporal) from the
wavelet-enhanced EBBF, time-frequency (temporospectral) from
the Markov-style analysis of the wavelet transform, and finally
space-frequency (spatiospectral) in the event-based spectral decom-
positions. Using the three represented domains, the lobes can now be
considered as a spatiospectrotemporal phenomenon. Combining the
observations from all analyses has led to the conclusion that the
spatiospectral lobes are created by characteristic spectral events
occurring in the measured waveform. These events appear to radiate
from overlapping sources near and upstream of the potential core tip
with different directivities associated with each lobe. Additionally,
events corresponding to each lobe are independent of each other but
statistically prefer to occur at different instances in time. To better
present this conclusion, the results are combined into a single-time
animation. The full animation is included as multimedia in the
supplementary material, but select time snapshots are presented in
Fig. 12. Many features of the plots have been removed in the interest
of presenting multiple snapshots within a reasonable amount of
space. Events corresponding to each spatiospectral lobe follow the
same color convention that has been used throughout this paper:

Fig. 9 Event-based spectral decomposition using events from the

wavelet transform and state assignment from the Markov chain.

Fig. 11 Event-based spectral decomposition applied to the entire
microphone array with a white contour at the 3-dB-down point.

Fig. 10 Strouhal numbers by microphone position for each of the five
lobes.
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orange, yellow, green, purple, and blue for lobes 1–5. The snapshots
in Fig. 12 are chosen to illustrate someof the typical lobe behavior.As
time progresses, the intermittency of each lobe is seen in that there is
at least one frame where there are no events. The exception is lobe 5,
which is discussed in the following paragraphs. Additionally, there is
not a single lobe that consistently dominates the others at all times,
and each lobe is the most prominent at one point, as is seen by the
“Event Fraction” bars in the top left corners.
The animation combines results from each of the preceding analy-

ses. First, the wavelet power time signals corresponding to each
spatiospectral lobe, jWx�Sri; t�j2, are calculated for eachmicrophone
in the imaging array. Next, the most prominent peaks in each wave-
form are located as in EBBF. Of these peaks, only those that have a
level greater than half the RMS level of the signal are kept as events,
consistent with event identification for the Markov analysis. This
means thatmicrophones are not preselected to have specific lobes and
allow for a natural tapering of lobe distributions like Fig. 11. Once all
the events have been identified, each is randomly assigned a direction
and compatible source location from the results in Table 2. This is
done to demonstrate the typical radiation properties of the lobesmore
clearly by removing extreme outliers that can occur in the EBBF
processing. With event radiation locations calculated, a time delay is
applied to each event that accounts for the time it takes for the
acoustic event to travel from the lipline to the microphone. This is
done to illustrate event timing at the source.
The animation has three components: propagating events, the

current event fraction, and the cumulant event count. Radiating
events are represented by colored arrows traveling from the jet lipline
to the microphone array. These arrows travel at an assumed sound
speed of 343 m/s. Before the arrows are drawn, upcoming events in
the flow are represented by colored circles convecting at the jet exit
velocity. Once the circle reaches its predetermined radiation location,
it is drawn as an arrow and propagates to the microphone where the
eventwasmeasured.Note that there are no fluid dynamic calculations
or measurements used for the events within the plume boundaries.
In the upper left corner of the animation is a bar chart that depicts

the current event fraction. These bars give a visual representation of
the number of radiating events (arrows) in the current frame. This
graph helps quantify the underlying relationships between the events,
notably, the results fromSec. IV.C regarding the relationship between
lobes. From the bar charts, the higher-ordered lobes are seen to
exhibit more temporal overlap than the lower ones. As time pro-
gresses, lobes 1 and 2 frequently vanish entirely, with packets of
events coming at longer intervals than the higher lobes. On the
contrary, lobes 4 and 5 exhibit significant overlap in that these events

are nearly always visible together. Lobe 3 falls between the two

extremes.

Finally, the cumulant event count is plotted as an overlapping

collection of histograms that represent the number of acoustic

events that have been measured by the microphone array. These

grow as the animation progresses and demonstrate the relative

number of events present for each lobe within the presented time

window. From the extracted histograms in Fig. 13a, it is seen that

Fig. 12 Select snapshots from the supplemental animation.

Fig 13 Long-term count (a) and probability (b) histograms correspond-
ing to the number of events in each microphone along the imaging array.
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most of the events fall primarily to the higher frequency lobes.
While this might indicate that the higher-ordered lobes represent a
larger portion of the energy in the signal, there is something to be
said about the characteristic time scale of these events. Sec-
tion IV.B shows that the characteristic event length is on the order
of a few periods. Since higher frequencies correspond to a shorter
period, events will have a more localized time signature, whereas
lower frequency events will have longer time signatures. This
means that for a given time window there will be more high-
frequency events than low-frequency events. This difference is
accounted for in Fig. 13b, where each plot is normalized into a
probability density function (PDF). With this normalization, it
becomes more apparent that the lobes are relatively uniformly
distributed across their microphones, with the exception of lobe
4, which has a sharp peak at the overlap between lobes 3 and 5.
Finally, the overlap of the lobes as presented here corroborates
with what is seen in the measured spatiospectral maps in Fig. 1, as
well as the decomposition in Fig. 11: the higher ordered lobes
exhibit a strong spatial overlap while lobes 1 and 2 are spatially
distinct.

E. Mechanisms for the Spatiospectral Lobes

After all this acoustical characterization, one question remains:
What are the flow phenomena responsible for the spatiospectral lobe
radiation? Due to the nature of the T-7A measurement, it was impos-
sible to collect real-time flow data during themeasurement. However,
some theories can be presented here.
From Sec. III.A, lobe 1 was identified to behave differently from

the higher-ordered lobes, which suggests its own production mecha-
nism. While extensive work has not been done for this lobe, the
downstream source location supports the possibility of scrubbing
noise where the shear layer intersects the ground.
The source locations for the higher-ordered lobes are near the

potential core tip and up to the supersonic core tip. This location
suggests that the lobes may be related to Mach waves. One theory
from previous work [8] supposes that the lobes could be generated
by different families of Mach waves; however, the T-7A jet con-
ditions at military power only support Kelvin–Helmholtz insta-
bility waves [40]. An alternative is some kind of interaction
between the convecting turbulence and the shock cells, as postu-
lated by Wall et al. [41]. One possibility could be between turbu-
lent structure and shock cell Prandtl–Meyer expansion fans, as
proposed by Swift et al. [42]. The quasi-periodic acceleration and
deceleration would result in Mach wave radiation at different
angles corresponding to the changing flow speed. Coherence
analysis on this same aircraft has shown coherence between broad-
band shock-associated noise and the spatiospectral lobes [43,44],
again suggesting an interaction between the lobes and the shock
cells. This strong connection to the shock cells warrants future
investigation.
The relation between the spatiospectral lobes and wavepackets is

still an open question. While both feature temporospectrally discrete
bursts of energy, events associated with the lobes oscillate between
multiple frequencies, which is more closely related to amode switch-
ing phenomenon. Future work should look at possible overlaps
between these two temporal behaviors and how they can be related
to the shock cells.

V. Conclusions

This paper has investigated the spatial, spectral, and temporal
features of the spatiospectral lobes using a combination of analysis
techniques. The EBBF algorithm, developed in a previous crackle
study, has been implemented for the T-7A. The method has been
enhanced by using a wavelet transform to identify frequency events
in the timewaveform related to the spatiospectral lobes. These events
have been linearly traced back to the jet lipline to define apparent
source locations of the spatiospectral lobes. The results have
shown that individual lobes are radiation from overlapping sources
with different directivities, which compares favorably to previous

analysis. Lobe 1 is an exception and is theorized to be a different
phenomenon than the other lobes.
A Markov-style analysis has been used to characterize the spa-

tiotemporal structure of the lobes as seen in the wavelet power
spectrum. Visually, events appear to switch between Strouhal
numbers corresponding to notable peaks in the time-averaged spec-
trum. The switching behavior is reminiscent of mode switching in
lab-scale jet screech, and the intermittency resembles the temporal
intermittency of wavepackets. The Markov model has shown
that events along multiple spectral peaks are distributed relatively
independently of each other, with event durations on the order of a
few periods. The spatiospectral lobes can be understood as rapid
bursts of energy at important spectral peaks radiating at different
directivities.
Using the Markov state sequence as a guide, individual spectra

corresponding to events at specific Strouhal numbers have been
created, allowing the spatiospectral lobes to be viewed independ-
ently. The process has been applied to the entire microphone
array, decomposing the initial spatiospectral maps into individual
lobes. The decomposed maps have shown that while the lobes are
largely independent phenomena, there exists a spectral overlap
between lobes 3, 4, and 5. Lobes 1 and 2 remain separate and
distinct. The combined spatiospectrotemporal analysis has been
presented as an animation that shows that the events for the
spatiospectral lobes come in discrete, intermittent packets radiat-
ing at different angles.
A few theories for how the lobes are generated have been discussed.

One theory suggests that the lobes are the result of different families of
Mach waves, but this is unlikely due to the presence of spatiospectral
lobes at engine conditions that don’t support multiple families. Amore
likely explanation points toward interactions between turbulent struc-
tures and the shock cells. There is ample evidence that the shock cells
are involved, from lobe source locations to coherence between the
lobes and broadband shock-associated noise. Future work should
focus on expanding these connections and determining the properties
of the shock cells as they relate to the radiated sound field. Possible
nonlinear interactions between the higher-ordered lobes are alsoworth
studying. Finally, further investigation of the temporal intermittency
seen here and how it relates to the temporal structure of wavepackets
and mode switching is warranted.
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