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Maximum entropy is an approach for obtaining posterior probability distributions of modeling parameters. 
This approach, based on a cost function that quantifies the data-model mismatch, relies on an estimate of an 
appropriate temperature. Selection of this ”statistical temperature” is related to estimating the noise 
covariance. A method for selecting the ”statistical temperature” is derived from analogies with statistical 
mechanics, including the equipartition theorem. Using the equipartition-theorem estimate, the statistical 
temperature can be obtained for a single data sample instead of via the ensemble approach used previously. 
Examples of how the choice of temperature impacts the posterior distributions are shown using a toy model. 
The examples demonstrate the impact of the choice of the temperature on the resulting posterior probability 
distributions and the advantages of using the equipartition-theorem approach for selecting the temperature.
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1. INTRODUCTION

The approach of maximizing entropy for inference problems in an information theoretic modeling setting
was first introduced by E.T. Jaynes in his 1957 papers.1, 2 The objective of Jaynes’ work was to propose
a rigorous method for choosing unbiased probability distributions P (x) on a random variable x over a
hypothesis space Ωx. Jaynes’ method uses the maximum entropy (MaxEnt) principle, which aims to make
as few assumptions as possible to objectively derive probability distributions.3 MaxEnt maximizes the
information entropy,4 S = −Σx∈ΩxP (x) logP (x), subject to two constraints: (1) the distribution P (x)
is normalized to unity over Ωx, making it a probability density function: Σx∈ΩxP (x) = 1; and (2) for a
function f(x), the expectation value ⟨f⟩ = Σx∈ΩxP (x)f(x) is known. These two constraints, as well as
the choice of hypothesis space, represent the minimal assumptions that can be made about a probability
distribution.

Maximizing information entropy in this manner results in probability distributions analogous to those
obtained in statistical mechanics for the energies of a system of particles held at a fixed temperature. Through
this analogy, insights from thermodynamics can be extended to inference problems. It has proven especially
useful in Bayesian inference, where the objective is to sample from the posterior probability distribution
(PPD). In this context, MaxEnt is most commonly used to select uninformative priors in Bayesian infer-
ence;5–7 however, it can similarly motivate the likelihood function.8, 9

The purpose of this paper is to explain the analogies with statistical mechanics, especially the equiparti-
tion theorem, for inference problems in underwater acoustics. We argue that the noise variance is analogous
to temperature in a thermodynamic system and use this insight to estimate the noise variance for a single
data sample. An example is provided using an analytical model to highlight how the PPDs depend on the
selection of the noise variance, i.e., temperature, especially when only a single measurement is available.

2. METHODS

Inferring the parameters of a model from measured data requires a cost function (sometimes called
the loss or error function) that quantifies the data-model mismatch. The best fit parameters are those that
minimize the cost function. In this paper, model predictions are represented by the variable F and are
functions of the N modeling parameters in θ. The modeled values F(θ) are compared to measured values
(observations) D via a cost function. The cost function is denoted by ϵ to emphasize that it is analogous to
energy in statistical mechanics. For this example, the cost function is the sum of squared error (SSE), which
is often denoted by chi-squared χ2 in the statistics literature:

ϵ(θ,D) = χ2(θ) =
M∑
i=1

Ri(θ,D)2, (1)

where the residuals Ri are defined as

Ri(θ,D) = Fi(θ)−Di. (2)

The subscript i corresponds to the ith observation of D, and M is the total number of observations.
The inference process considers the measured data as constant and samples the model input parameters

θ over predefined bounds, for example by Monte Carlo (MC) sampling. Here, each parameter θj is assumed
to be a uniform random variable distributed as θj ∼ U(θj,a, θj,b), where θj,a and θj,b are the lower and upper
bounds for that parameter, respectively. This assumption yields an uninformative prior because every value
within the selected bounds is equally likely and corresponds to the MaxEnt prior for these constraints.

Residuals Ri exist for different reasons. First, measurements D contain noise. Noise in this context
is not referring to ambient acoustical sounds but rather to measurement noise that may be assumed to be
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independent, zero-mean Gaussian distributed random variables. Second, biases in measurements may occur.
Third, the model producing Fi(θ) may not capture all physical processes, which leads to model error.
Throughout the example provided in this paper, the term noise refers to the first category of independent and
identically distributed (IID) Gaussian random noise that occurs due to the measurement process.

A. LIKELIHOOD FUNCTION

The likelihood function for a model F is obtained by first assuming each of the M residuals {Ri(θ,D)}
are IID Gaussian random variables with variance σ2 and zero mean. With this assumption, the joint PDF for
all of the residuals is given by

p(R1, ...,RM |θ,D) =

(
1√
2πσ

)M

exp

{
− 1

2σ2
ϵ(θ,D)

}
. (3)

The statistical formulation of the joint distribution of residuals in Eq. 3 depends on θ and observed data
D. Because D is fixed and the input parameters θ are varied in an inference problem, this PDF indicates the
likelihood that D was generated by parameteris θ. The likelihood function from Eq. 3 is

L(θ|D) ∝ exp

{
− 1

2σ2
ϵ(θ,D)

}
. (4)

The form of Eq. 3 implies that ϵ(θ,D) may also be treated as a random variable. Indeed, ϵ is distributed
according to a χ-squared distribution, which is the reason it is often simply called χ-squared in the statistics
literature.

The likelihood is not fully specified without estimating a value for σ2. If measurements are repeated,
noise variance can be empirically estimated directly from the observations; this apporach, however, is not
possible when there is only a single measurement to work with. The next section begins to approach the
problem of estimating σ2 by constructing an analogy with statistical mechanics using the maximum entropy
(MaxEnt) principle.

B. PRINCIPLE OF MAXIMUM ENTROPY

i. Maximizing Information Entropy

For a discrete hypothesis or parameter space Ωx = (x1, ..., xn), with an unknown associated probability
distribution p = (p1, ..., pn), the MaxEnt principle selects the distribution p which maximizes the Shannon
information entropy given by

S(p) = −
n∑

i=1

pi log pi, (5)

subject to two constraints.1, 2 The first constraint is that p is normalized:
∑n

i=1 pi = 1. The second constraint
is that for some function f(x), the expectation value ⟨f⟩ =

∑n
i=1 pif(xi) is known. Additional constraints

may be added for if the expectation value of other functions is also known. The constraints involving
expectation values constitute known information, which is generally insufficient to uniquely constrain each
pi. The full probability distribution can be determined, however, by maximizing the entropy subject to these
constraints. In practice, the optimization procedure is done using the method of Lagrange multipliers.10

The resulting pi is given by

pi =
1

Z
e−βf(xi), (6)
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where Z is the Lagrange multiplier associated with the normalization constraint. Z is analogous to the
partition function in statistical mechanics and is given by

Z =

n∑
i=1

e−βf(xi). (7)

The second Lagrange multiplier, β, is associated with the constraint ⟨f⟩.
In most inference problems, the parameter space Ωx of interest is continuous, rather than discrete. In

this case, the two constraints generalize as
∫
Ωx

p(x)dx = 1 and ⟨f⟩ =
∫
Ωx

f(x)p(x)dx. The information
entropy for a continuous variable x is defined relative to a reference measure q(x):

S(p) = −
〈
log

p(x)

q(x)

〉
= −

∫
Ωx

p(x) log
p(x)

q(x)
dx. (8)

When q(x) is also a probability distribution (i.e., a normalized measure), the quantity S(p) is also known as
the Kullback-Leibler divergence or relative entropy.11 If the reference measure q(x) is a uniform distribu-
tion, then the probability distribution that maximizes entropy is given by12

p(x) =
1

Z
e−βf(x), (9)

where, as before, Z and β are the Lagrange multipliers associated with the normalization and ⟨f⟩ respec-
tively. The partition function Z is given by

Z =

∫
Ωx

e−βf(x)dx. (10)

Jaynes original motivation was for the MaxEnt principle for selecting minimally informative priors
consistent with available information.5, 6 A recent tutorial by Xiang7 has provided an excellent review of the
relationship between MaxEnt and establishing priors for Bayesian inferences. In addition to prior selection,
MaxEnt may be used as a method for obtaining PPDs.8, 9 To obtain PPDs using MaxEnt, however, the noise
covariance σ2 must be estimated.

Previous work in geoacoustic inversions have used an ensemble approach to estimating σ2. This ensem-
ble approach was used by Stotts and Koch in12 as well as Knobles et al. in,13, 14 in which multiple ship noise
data samples were used to estimate σ2 for geoacoustic inversion. In this approach, the likelihood function
represents the change in information due to the addition of data D, quantified by a known expectation value
for a function f , updates beliefs about parameters θ.

For a continuous variable, the reference measure q(θ) is the Bayesian prior. That is, the MaxEnt like-
lihood maximizes relative entropy subject to the aforementioned constraints over a parameter space with
prior distribution q(θ). For uniform priors, the likelihood obtained from the MaxEnt principle has a nice
relationship to the likelihood obtained in the statistical formulation. In particular, extending the analogy
with statistical mechanics gives an estimate for the noise variance, σ2.

ii. Multi-Particle Partition Function

In statistical mechanics, the partition function is a quantity from which all of the relevant thermodynam-
ics can be derived, such as the internal energy, pressure, heat capacity, and chemical potential. For a system
of many particles (such as an ideal gas) with energy levels Ei in equilibrium with a thermal reservoir at
temperature T , the partition function Zparticles is given by a sum of the Boltzmann factors corresponding to
each available energy level:

Zparticles =
n∑

i=1

e−Ei/kBT , (11)
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where kB is Boltzmann’s constant. This partition function is known as the canonical partition function , and
the system is represented by a statistical ensemble called the canonical ensemble.15, 16

iii. Statistical Partition Function

Parameter values θ of a model F associated with lower cost values ϵ(θ,D) are in better agreement with
the measured data D and, therefore, inferred to be more likely. The minimum, best fit value of the cost is
denoted by ϵ0. Statistical inference characterizes parameter values such that their associated cost, ϵ(θ) is
not too much larger than ϵ0. How much larger than ϵ0 while still being statistically significant is controlled
by the choice of variance σ2.

We apply the MaxEnt principle with f = ϵ in Eq. 9. In the thermodynamic analogy, this choice cor-
responds to a system in thermal equilibrium with a reservoir. The Lagrange multiplier introduced by this
choice determines the average value of the cost, just as the temperature determines the average energy. In a
physical system, the temperature also sets the scale of energy fluctuations, ∼ kBT .

In similar fashion, applying MaxEnt sets the scale for the statistical fluctuations in the cost and determine
σ2. In this application, kB is assumed to be one, and T is thought of as a statistical temperature related to
the information. This T is commonly referred to as temperature.17 Having made this choice, it remains to
select a value for ⟨ϵ⟩, i.e., what T should be used? This question will be addressed in Sec. 2.3.

Assuming that the parameter space Ωθ is continuous and that the reference measure q(θ) is uniform, the
partition function in Eq 10, for this case, is given by

Zstat =

∫
Ωθ

e−βϵ(θ,D)dθ, (12)

which is referred to as the statistical partition function for the model F .
The interpretation of the quantities in the canonical partition function may be drawn upon to assign

meaning to both the cost function ϵ(θ,D) as well as the Lagrange multiplier β. By comparing the statistical
and canonical partition functions, the quantity ϵ corresponds to the energy as in Eq. 11 and, thus, is called
the statistical energy of the model F for parameterization θ. Assuming kB = 1, the parameter β = 1/T in
the statistical partition function may be recognized as analogous to the inverse temperature. and is referred
to as the statistical temperature of the model F .

iv. Derivation of the Likelihood

With the above results, and treating the distribution obtained from the MaxEnt principle as a posterior
distribution p(x) → p(θ|D) for parameters θ and observed data D, the probability distribution in Eq. 9
becomes

p(θ|D) =
1

Zstat
e−βϵ(θ|D), (13)

where the statistical partition function Zstat acts as a normalization constant.
A uniform reference measure q(x) is assumed in the derivation of the partition function Zstat in Eq 13, so
the priors q(x) → p(θ) are also uniform over specified bounds (θa,θb). With these changes, the likelihood
function may be written in terms of the statistical temperature T = β−1 with

L(θ|D) ∝ exp

{
− 1

T
ϵ(θ,D)

}
. (14)

Comparison of Eq. 14 with the likelihood obtained from the statistical formulation as in Eq. 4 indicates
that the statistical temperature is proportional to the noise covariance of the data σ2, which is an estimate of
the total errors in the model and data:

T = 2σ2. (15)
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Because β = 1/T = 1/2σ2 is proportional to the information content of the data, we see that high tempera-
ture implies low information. This matches our physical intuition in which high physical temperature gives
little information about the microstate of the system, while low temperatures are more likely to be found
in the ground state. We now use this physical intuition to determine a natural scale for T in the following
section.

C. TEMPERATURE ESTIMATION

The ultimate goal of using the MaxEnt principle in this paper is to estimate for the noise covariance σ2

using an analogy with statistical mechanics. In this section we use the equipartition theorem to motivate a
natural choice of statistical temperature .

The equipartition theorem states that, on average, the internal energy U of a system is distributed evenly
among the available degrees of freedom, with each degree of freedom having an average energy of 1

2kBT . In
the context of a thermodynamic system at constant temperature, the internal energy fluctuates due to thermal
exchange with a heat bath. Using the PPD obtained in Eq. 13, the average statistical energy is

U = ⟨ϵ⟩ =
∫
Ωθ

ϵ(θ,D)p(θ|D)dθ. (16)

While this quantity is unknown, the minimum cost function, ϵ0 = minθ ϵ(θ,D), is a lower bound and sets
a natural scale for energy fluctuations.

Application of the equipartition theorem results in

ϵ0 ≤ U =

N∑
i=1

T

2
=

N

2
T. (17)

Therefore, we advocate (as recommended in Frederiksen et al.17) setting the statistical temperature accord-
ing to the minimum cost as

T ≈ 2

N
min ϵ0. (18)

This method of applying the equipartition theorem to obtain an estimate of the statistical temperature has
also been suggested in Refs. 18, 19. Temperature selection for MaxEnt is similar to Gibbs’ sampling at
different temperatures20 and other work associated with choosing a data covariance matrix.21, 22

Characterization of posterior distributions requires drawing a large number of samples from the PPD. A
basic approach for selecting the samples is Monte Carlo (MC) sampling, which draws parameters θ from
the specified priors, evaluates the model at those parameter values, and then calculates ϵ(θ,D). For a large
number of samples Ns, both the costs and associated parameter values are stored in memory. Because
uniform priors are used, the joint posterior distribution p(θ|D) is proportional to the likelihood in Eq. 14.

i. Marginalizing the Joint Posterior

To numerically evaluate the marginal PPDs, the parameter space for the ith parameter, Ωθi , is divided
into B uniformly spaced bins. Then, the marginal probability density is calculated by averaging the like-
lihood function for the samples with θi that fall within each bin, using the Savitzky-Golay filter to smooth
artifacts.23

The marginal PPDs are calculated as

p̃(θi,k|D) =

 ∑
|θij−θi,k|≤ 1

2
∆θi

1


−1 ∑

|θij−θi,k|≤ 1
2
∆θi

e−(1/T )ϵ(θi,D)

 , (19)
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where θi,k corresponds to the kth bin center in the parameter space for the ith parameter, ∆θi is the bin
width of the B bins, and θij is the jth value drawn for the ith parameter. The Savitsky-Golay filter is then
applied to this result with a window size of 10% the number of bins B and normalized, so that

p(θi,k|D) =
1

Z
SG3,B/10 (p̃(θi|D))k . (20)

In this equation, SG3,B/10(·) represents the Savitzky-Golay filter23 applied with 3rd-order polynomials
and a window size with B/10 points. θi is a vector of the parameter values at the B bin centers for the
ith parameter, and Z is the normalization constant so that the probability in Eq. 20 integrates to one. After
applying the filter, particularly sharp portions of the PPD may have negative values. If this occurs, these
negative values are zeroed out. Z is obtained by integrating the marginal PPD over Ωθi using the composite
trapezoidal rule as implemented in the trapz function in the numpy python library.

While the Savitsky-Golay filter yields reasonable marginal PPDs in this paper, a more common approach
is to use a kernel-smoothed density estimator (KDE). A KDE should be used in future work as a more
statistically robust method for smoothing estimates of PPDs.

D. SUMMARY STATISTICS

The marginal PPDs can be analyzed to obtain summary statistics such as the peak (mode), mean, and
median parameter values for θi can be computed, as well as the 95% credibility interval (CI). The optimal
parameters, or the parameters which minimize the cost function, are also identified.

The peak, mean, and optimal parameter values for the ith parameter are calculated as

θi,peak = argmaxθi p(θi|D),

θi,mean =

∫ θi,b

θi,a

θip(θi|D)dθi,

θi,optimal = argminθi ϵ(θi,D),

where θi,a and θi,b correspond to the lower and upper bound for θi defined in the priors. Because uniform
priors are assumed, the optimal parameter values correspond to both the maximum likelihood estimate
(MLE) and maximum a posteriori estimate (MAP). However, the MAP estimate is for the joint distribution
of all of the parameters θ, so the MAP estimate for θi may not correspond to the maximum (peak) of its
marginal distribution.

The median and 95% CI are calculated from the cumulative distribution function (CDF), which repre-
sents how much of the probability falls below a particular value for θi, say x. The CDF is given by

CDF(x) = P (θi ≤ x|D) =

∫ x

θi,a

P (θi|D)dθi. (21)

From the CDF, the median is calculated as the point satisfying

CDF(θi,median) = 0.5. (22)

Similarly, the 95% CI, represented as (θi,lower, θi,upper) is obtained from the points which satisfy

CDF(θi,lower) = 0.025,

CDF(θi,upper) = 0.975.

The CI is used because it may be considered as a better notion of the variability of a distribution, as it can be
used to measure how wide or narrow is a probability distribution and more easily accounts for multimodal
distributions than the standard deviation.
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Figure 1: (Left) Visualization of the toy model defined in Eq. 23 used to illustrate the MaxEnt inference process:
the underlying model F(t;θtrue) (blue lines) with θtrue = [2, 3, 3, 4, 1], the measured measured D with σ2 = 5
(black stars), along with 1σ and 2σ uncertainty bands. (Right) Results of the MaxEnt in Sec. 3.2: Comparison of
F(t;θ) evaluated with θ at the optimal, peak, mean, and median values from the PPDs shown in Fig. 2.

3. EXAMPLE

A. TOY MODEL

The maximum entropy (MaxEnt) approach is illustrated using a five-parameter toy model F built as
a linear combination of a sine wave, a linear term, and a decay term. The modeling parameters θ =
[A,B,C,D,E] define the contributions of each of these terms:

F(t;θ) = A sin(Bt) + C +Dt+ 3e−Et, (23)

where t is the independent variable.
Noisy measured data is simulated as

D(t) = F(t;θtrue) + ξ(t). (24)

θtrue contains the parameters used in generating F(t;θtrue); for the example in this paper, θtrue contains
A = 2, B = 3, C = 3, D = 4, and E = 1. F(t;θtrue) is evaluated at 100 evenly-spaced time points on the
interval t = [0, 5], yielding the solid blue line in Fig. 1(a). D is obtained by evaluating the model at the
true parameter values and adding Gaussian-distributed noise ξ(t) ∼ N (0, σ2). For this example, variance
σ2 = 5 is used, which corresponds to Ttrue = 10 (Eq. 15). The resulting measured data D are shown as
black stars in Fig. 1(a). The colored areas indicate regimes of ±1σ (purple) and ±2σ (red).

D exhibits a strong linear trend due to the slope D, as well as the frequency B of the oscillations. The
amplitude of the oscillations A, however, is swamped out by the added noise. Additionally, the effects of
constant C and decay term 3e−Et are not easily identifiable in D. Therefore, we expect the MaxEnt process
to yield PPDs that are informative for B and D and uninformative for A, C, and E.

B. MARGINAL PPDS

MaxEnt is applied to the toy model, using the analogy to the equipartition theorem, to obtain marginal
PPDs for the five modeling parameters. MC sampling of F(t;θ) (in Eq. 23) is performed using 100,000
samples. The samples of θ) are randomly selected from uniform bounds θi = [0, 5]. The cost function is
calculated for each sample (Eq. 1), and Eq. 18 yields T = 1.686. This estimate is used to calculate the
likelihood function and the normalized marginal PPDs (Eq.19).

Marginal PPDs are computed using the method described in Sec. 2.3.1 and displayed for the five param-
eters in Fig. fig:posteriorvisual. The PPDs show that the parameter D is the most identifiable parameter, with
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Figure 2: The marginal PPDs along with lines indicating the optimal, peak, mean, and median parameter values
of θ = [A,B,C,D,E], as well as 95% CI. The statistical temperature of the model T = 1.686 in estimated using
Eq. 18.

a narrow probability distribution and small 95%. The resulting optimal, peak, mean, and median values are
close together and match Dtrue = 4. The PPD for parameter B is somewhat informative, due to the narrow
highest peak. In this case, the optimal and peak values are close to Btrue = 3. The 95% CI, however, is
wide due to the multi-modality nature of the PPD indicating underlying uncertain in the estimated values.

The PPD for C is not multi-modal; the mean, and median parameter values are close to Ctrue = 3, while
the optimal and peak values are higher. This analysis is only possible because the true values are known. In
general, the large 95% CI would indicate only that C has a greater than 0.55 and is likely between 3 and 4.
The posterior distribution for the parameter A shows a similar situation.

Finally, the PPD for E is essentially flat, with a wide 95% CI as well as having the optimal, peak, mean,
and median parameters exhibiting a large spread. These features means that the data contains no information
about the parameter E in the model, and any estimate of E inferred has a large uncertainty.

C. TEMPERATURE DEPENDENCE

The choice of the statistical temperature T has a significant impact on the resulting PPDs. Too low of
a temperature results in sharply peaked probability distributions which may imply more information exists
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from the data for a model then may be actually the case. On the other hand, too high of a temperature
may imply that the data is uninformative. The statistical perspective, as in Sec. 2, provides insight into an
appropriate choice for T and how it relates to the noise variance.

The estimate of T should match the informativity of the data. Since the variance of the data is unknown
in practice, especially with only one data sample, the temperature must be estimated. This toy model
provides evidence that the approach of estimating T using the equipartition theorem analogy (Eq. 18)
obtains posterior distributions that capture features of the model at the Ttrue.

The impact of T on PPDs for the five parameters in the toy model are shown in Fig. 3. The first row
demonstrates what happens in the low temperature regime by using T = 0.1 << Ttrue: narrow, sharply
peaked distributions appear with low variance. This implies greater information exists for the parameters
than evidenced by the noisy data. The second row uses T = 1.68, estimated from Eq. 18. In this row, the
probability distributions are a reasonable representation of the available information about the parameters.
This row should be compared with the third row, which uses T = Ttrue = 10 (Eq. 15) in constructing
the posteriors. The PPDs for the T obtained from the equipartition theorem and from Ttrue share the same
general properties providing evidence that the equipartition theorem estimates capture the underlying nature
of the PPDs.

An example of the PPDs where the estimate of T is too high is shown in the last row. For T = 1000 >>
Ttrue, all of PPDs become uniformative. As T continues to increase, eventually the probability distributions
all become uniform, which implies that the data contains no information about the parameters. This example
highlights how the noise variance may be considered as a measure of the information content available to
inform the inference of modeling parameters. Hence, properly matching the noise variance to the noise level
of the data is important to obtain distributions which accurately represent the information content.

4. CONCLUSION

This work has shown that an analogy with the equipartition theorem in statistical mechanics can be used
to obtain an estimate of the model temperature T for a simple data sample. With this estimate, the MaxEnt
approach yields marginal PPDs that reflect the information content in the noisy data. Underestimation of
T yields narrow, sharply peaked distributions appear with low variance. This implies greater information
exists for the parameters than evidenced by the noisy data. Overestimation of T yields nearly flat PPDs for
all parameters. The equipartition theorem estimate of T yields PPDs that have the same features as those
obtained with the T value related to the standard deviation of the underlying Gaussian noise.

This method for estimating T from a single data sample is significant because prior work with the
MaxEnt approach relied on estimates of T obtained from an ensemble over multiple data samples. The
ensemble approach is limited to cases where multiple data samples are available, whereas, the equipartition
theorem approach can be used in situ with only a single data sample.

This proof-of-concept example has used a Monte Carlo sampling approach. When sophisticated sam-
pling methods can be used, the advantages of using the equipartition theorem estimate of T should still be
evident.
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Figure 3: Examples of the impact of T on the PPDs obtained using the MaxEnt method on the toy model. True pa-
rameter values for each parameter are indicated by the dashed line. (Top row) Underestimation of the temperature
of the model results in sharp, narrow distributions which imply more information than is available about the model
from the data. (Bottom row) Overestimation of the temperature results in flatter, more uniform distributions which
imply that there is less information than is available about the model from the data. (Second row) The temperature
value T = 1.68 is obtained with Eq. 18. (Third row) The true temperature for this example is Ttrue = 2σ2 = 10 as
in Eq. 15.
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