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The information contained in spectrograms of ocean shipping noise is explored with a deep learning 
method for seabed classification. Due to the lack of measured and labeled ship noise data, the residual 
convolutional neural network ResNet-18 is trained with synthetic data samples generated by physics-based 
models. Previously, spectrograms from a single hydrophone channel, each scaled by their standard 
deviation, were utilized to infer an effective seabed class. This work, in contrast, utilizes multiple channels 
and a new scaling of the data more suited to deep learning. Models are trained with data from one, two, or 
four channels corresponding to hydrophones of different depths.  The validation results show that for two-
channel models, models with data from hydrophones at a lower average depth perform slightly better. 
Model performance is shown to depend neither on whether a specific channel is included nor the distance 
between channels in the model. These conclusions allow future multichannel studies to narrow down the 
number of models needed to obtain comprehensive results.
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1. INTRODUCTION

The propagation of sound waves in the ocean is influenced by the absorptive and reflective properties
of the seabed. These properties are encoded in underwater sound signals. For example, the noise from
a transiting cargo ship or tanker, also known as a ship-of-opportunity (SOO), can be used to determine
seabed parameters since it contains information about the ocean environment. Some early examples of
optimizations based on SOO noise include Battle et al.,1 Heaney,2 Koch and Knobles,3 and Park et al.4

Spectrograms of SOO signals can be used to obtain an estimate of effective seabed properties along the
propagation path.5 While traditional optimization algorithms have been commonly used, deep learning has
recently been applied to obtain seabed type based on SOO data.

In the recent deep learning studies, convolutional neural networks (CNNs) were trained on synthetic
data generated with a range-independent normal model sound propagation model, ORCA,6 and the Wales-
Heitmeyer source spectrum for transiting cargo ships.7 While Van Komen et al.8 used training data gen-
erated with only four representative seabed types, Forman et al.9 demonstrated how a correlation metric
of frequency-dependent transmission loss over range can be used to identify seabed classes to include in a
larger seabed catalog. This approach led to the creation of a 34 seabed catalog used to generate synthetic
training data in Escobar et al.10 Data simulated with these 34 seabeds were used to train six different deep
learning architectures based on convolutional neural networks. The consistency of the seabed predictions
from ResNet-18 led to the selection of that architecture for this study.

Previous work with SOO spectrograms for seabed classification used only a single hydrophone in the
middle of the water column.8–10 The single hydrophone was part of a 16 element vertical line array (VLA).
This study considers the impact of including spectrograms from multiple hydrophones as different input
channels to the ResNet-18 residual neural network.11 This proceedings paper report is part of a larger study
that considers the advantages and limitations of using multiple elements on the vertical line array. After
a brief description of the training data and neural network architecture, the validation results are shown.
Comparisons of the accuracy when data from one, two, and four channels are included. The two and four-
channel results are also analyzed with respect to average depth and separation distance of the channels
selected. While not exhaustive, these results provide some insight into how the selection of hydrophone
depths and spacing influence prediction accuracy. Guidelines are provided for balancing the advantages of
including more hydrophones with the increased computational costs.

2. METHODS

A. SYNTHETIC TRAINING DATA

The training data is modeled after ship noise spectrograms measured during the Seabed Characteriza-
tion Experiment 2017 (SBCEX2017). The experiment took place in the New England Mud Patch, in an area
with a water depth of approximately 75 m. Vertical line arrays (VLAs) were deployed by Scripps Institute
of Oceanography - Marine Physical Laboratories (SIO:MPL) with 16 hydrophones spaced 3.75 m apart.
The hydrophones were numbered from #1 (at a depth of 15.75 m) to #16 (at a depth of 72 m). The depths
of each of the 16 hydrophones are shown in Table 1. Prior studies used data from the center hydrophone,
#8 (at a depth of 42 m). For the present study, spectrograms were generated for all even-numbered hy-
drophones using a wide variety of ship speeds and ranges. For each ship-receiver combination, the received
levels for the synthetic dataset are simulated by combining the empirical source spectral levels for shipping
noise developed by Wales and Heitmeyer7 with transmission loss computed with ORCA, a range-dependent
normal mode model6 for 34 different seabeds. The seabed classes are detailed in Table III of Escobar et
al.10 For each seabed, the training data for the one- and two-channel models were generated using one
measured sound speed profile, one randomly drawn source depth, 15 closest-point-of-approach values ran-
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Table 1: Hydrophone channel number and corresponding receiver depths (from the surface, in 75 m of water) for
the SBCEX2017 VLAs deployed by SIO:MPL.

Hydrophone Receiver depth (m)

1 15.75
2 19.50
3 23.25
4 27.00
5 30.75
6 34.50
7 38.25
8 42.00
9 45.75

10 49.50
11 53.25
12 57.00
13 60.75
14 64.50
15 68.25
16 72.00

domly drawn between 0.5 km to 15 km, and nine ship speeds randomly drawn between 8 kt to 20 kt. The
four-channel models only differed by using three sound speed profiles instead. Therefore, to train one- and
two-channel models, a total of 4590 synthetic ship spectrograms were simulated, and for the four-channel
models, 13,770 synthetic spectrograms were simulated.

B. SEABED CLASSIFIER

The deep learning model used in this study is the ResNet-18, a CNN architecture with 18 layers, skip
connections, and approximately 11.2 million learnable parameters.11 Since this is a classification task, the
last layer is linear and connects to the classifier output via a softmax activation. Additionally, k-fold cross
validation12 is used with k = 5. The following hyperparameters are used during training. The network is
optimized with AdamW, an optimizer based on Adam but with weight decay corrections.13 The learning rate
begins at 0.001 and then changes each epoch according to a cosine scheduler. An early stopping mechanism
is included which stops training when the validation loss does not improve by at least 0.001 for a patience
length of three epochs. During the five-fold cross validation, one or more of the folds might not train
properly and terminate training prematurely via the early stopping mechanisms. In this situation, if the
validation accuracy for any of the folds is below 70%, a re-training mechanism is implemented where the
weights in the network receive a different random initialization, and the fold is trained again. Each fold
has a maximum of two tries to reach the 70% validation accuracy threshold, with the second trained model
accepted if both have low accuracy.

Due to the use of ship noise spectrograms, each data sample is mapped individually to remove the impact
of different source levels. For each data sample (one ship with multiple channels), the spectral density levels
(in dB re 1 µPa) are adjusted to have zero mean and a standard deviation of one across all channels. Values
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Table 2: Channel combinations for the four-channel models used in this study. Channel numbers correspond to
hydrophone depths from Table 1.

Channel Combinations

2 4 6 8
4 6 8 10
2 6 10 14
4 6 10 14
6 8 10 12
2 8 12 16
6 8 12 14
6 8 12 16
6 10 12 16
6 10 14 16
4 12 14 16
8 10 14 16
8 12 14 16

more than three standard deviations from the mean are reassigned to a value of mean ± three standard
deviations. The spectral density levels are then linearly mapped to the domain [0,1].

The data are augmented with zero-mean Gaussian white noise,14 which is different each epoch to ensure
that models trained on synthetic data are learning the important underlying signals rather than memorizing
specific instances of noise. This common machine learning procedure helps avoid overfitting and improves
generalizability. The implementation of noise differs between the training dataset and the validation set. For
the training set, new noise is randomly drawn and added to each spectrogram of each batch, before each
epoch of the training process. For the validation set of spectrograms, noise is drawn once and added during
the first training epoch. The new noisy validation spectrograms replace the original validation spectrograms
for use in each subsequent epoch. This approach allows the validation process to better mimic testing on
measured data, as the noise on a measured spectrogram would not change from epoch to epoch.

While previous work used only single channel input,8, 10 machine learning models can utilize input data
with multiple channels. When representing the input data as a tensor, the depth of the tensor is the number
of channels. The channels correspond to the different hydrophones, and each two-dimensional layer of the
tensor is the spectrogram data from one hydrophone. The additional information from the multichannel
approach is hypothesized to increase accuracy and/or efficiency of training the deep learning models for
seabed classification. For this newly expanded data, new machine learning training hyperparameters must
be chosen. In particular, the batch size used to train one- and two-channel models was 512, but the optimal
batch size for four-channel models was determined to be 1024.

For this study, the even-numbered channels on the 16-channel VLA are used to create different testing
scenarios. Only even-numbered channels are used to yield more varied information, while minimizing the
size of each data sample and thus lowering the computation costs. A one-channel model is trained for each
of the even-numbered channels. For two-channel models, every possible combination of two channels from
the eight available channels (8C2 = 28) are trained. For four-channel models, thirteen total models are
trained. The specific channel combinations are shown in Table 2. The accuracies obtained for different
channel combinations are presented in Sec. 3.

The neural network architecture and training algorithms are implemented in PyTorch version 1.5.1 and
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Figure 1: Seabed classification accuracy on validation samples for the one-channel models. The horizontal axis
units are listed as both channel number and receiver depth in meters from the surface. Dots indicate the means,
and bars indicate the standard deviation over five models (trained with k-fold cross validation). Error bars that
extend past 100% are truncated to represent the maximum accuracy physically possible.

run in Python 3.6.9 on an NVIDIA Tesla T4 GPU. Under these conditions, the entire process from load-
ing training dataset to training completion takes approximately 15 minutes for single-channel models, 18
minutes for two-channel models, and 40 minutes for four-channel models for the 34-seabed classification
task. During this training process, validation is conducted using the “testing” portion of the dataset as deter-
mined by the k-fold splitting of the dataset. After training, the networks are then applied to the data samples
from SBCEX2017 to test generalizability. Generalization results are being prepared for a peer-reviewed
manuscript.15

3. RESULTS

Validation tests are performed to determine how accurately the model performs on synthetic data not
used in training but drawn from the same statistical distribution as the training data. Five-fold cross vali-
dation is used, as described in Sec. 2.2. The mean accuracy and standard deviation over the resulting five
trained models are calculated for each channel combination. The models are subsequently grouped by a
given characteristic to investigate factors affecting model accuracy.

The seabed classifier output for each testing data sample (i.e., synthetic ship spectrogram) is a vector 34
elements long containing numbers that indicate the probability of a specific seabed being the correct answer.
For the validation cases, the classifier output (for each data sample) is averaged over the five folds (for each
model), and the seabed with the highest probability is designated as the selected seabed. In this validation
testing, the predicted seabed can then be compared with the correct seabed to determine the accuracy of the
model. Results are shown for models trained using both single and multiple channels with the 34 seabed
catalog.

Validation metrics help test the hypothesis that utilizing additional hydrophone channels increases accu-
racy and efficiency of training deep learning models for seabed classification. Regarding training efficiency,
the introduction of additional channels increases the amount of time required to train a model. Therefore,
it should only be used if an increase in accuracy or generalization is offered. The validation results are
described in Sec. 3.1.
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Figure 2: Seabed classification accuracy on the validation data for two-channel models (left) and four-channel
models (right). On the left, all two-channel combinations of the even-numbered channels are represented for a
total of 140 models (28 channel pairs × 5 folds). On the right, selected combinations of four channel models are
represented by the channel numbers they contain. The horizontal axis units are listed as both channel number
and receiver depth in meters from the surface. Dots indicate the means, and bars indicate the standard deviation
over the models belonging to each group defined by the inclusion of a specific channel. Error bars that extend past
100% are truncated to represent the maximum accuracy physically possible.

A. VALIDATION

The validation accuracy of models trained with the 34 seabed catalog are analyzed to evaluate how best
to use multiple channels from a VLA in deep learning. For each channel or channel combination tested, the
seabed classification accuracy on the testing (validation) data is averaged over the five folds; the mean and
standard deviation are plotted for comparison along with a line of ”Best Fit” for the mean values. For one-
channel models, shown in Fig. 1, no significant difference is found in validation accuracy between models
trained on different channels.

The two-channel models are evaluated in three ways: the inclusion of a specific channel, distance be-
tween the two channels, and average depth of the two channels used. All combinations of the even-numbered
channels are represented for a total of 28 channel pairs, which yields 140 trained models (28 channel pairs
× 5 folds each). Grouping trained models by the inclusion of a specific channel means that, for example,
all seven pairs using Channel #2 (#2 and #4; #2 and #6; #2 and #8; #2 and #10; #2 and #12; #2 and #14; #2
and #16) belong to a group, all models using Channel #4 belong to a group, and so on. This analysis reveals
no significant difference between performance of models when comparing which channel they contain, as
shown in Fig. 2 (left). The mean and standard deviation are calculated for the 35 models (7 pairs × 5 folds)
associated with each channel. The accuracy is fairly constant across the hydrophone depths.

The four-channel models are evaluated in a similar way, as shown in Fig. 2 (right). The mean and stan-
dard deviations of validation accuracy for the thirteen models (each with 5 folds) are plotted based on which
channels they include. Similarly to the two-channel models, there appears to be no significant difference
when analyzing multichannel model performance by the inclusion of data from a specific hydrophone. For
the given dataset, the two-channel and four-channel models have similar validation accuracy. Therefore, the
additional time required to train four-channel models is likely not beneficial to validation accuracy. How-
ever, generalization accuracy, or the ability for the model to predict on measured data, must be evaluated
differently.

Another way to analyze validation accuracy is to consider the average depth of the channels included in
the two- and four-channel models. The mean validation accuracy of the models are plotted in Fig. 3 as a
function of the average depth of the channels used in each model. For the two-channel models, performance
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Figure 3: Mean seabed classification accuracy on the validation data for two- and four-channel models as a
function of the average depth of the channels included. The horizontal axis units are listed as both average channel
number and average receiver depth in meters from the surface.

Figure 4: Mean seabed classification accuracy on the validation data for two- and four-channel models as a
function of the average distance between the hydrophone depths included. The horizontal axis units are listed
as both channel number difference and receiver depth difference in meters from the surface.

increases for models with data closer to the seafloor. For the four-channel models, however, maximum accu-
racy occurs for an average channel depth between 42.0 and 49.5 m from the surface, or between Channels #8
and #10. The final validation analysis investigates the impact of the distance between the selected channels
on model performance. The distance between the channels does not have a significant effect on validation
accuracy, as shown in Fig. 4.

4. CONCLUSION

In this study, a deep learning model for seabed classification was expanded to utilize data from hy-
drophones at multiple depths. This classification task used data from transiting SOOs to classify seabed
type, given a set of 34 seabed classes. Validation on the holdout set in the k-fold cross-validation proce-
dure offers suggestions for how many, and which, hydrophones should be used in a multichannel ResNet-18
model. The results indicate that for two-channel models, an average hydrophone depth closer to the seafloor
performs slightly better. The results also indicate that neither the inclusion of a specific hydrophone nor the
distance between hydrophones in a model has a significant impact on validation accuracy. However, to fully
determine whether multichannel models perform better than single-channel models, the ability of the deep
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learning model to generalize to measured spectrograms must be analyzed. Furthermore, with the availability
of data from multiple channels, an ensemble method of combining results from models trained on differing
subsets can also be investigated. Both these tasks are done in Lau et al.15 In conclusion, when data from
multiple hydrophone depths is available to train a ResNet-18 for seabed classification, more consideration
should be placed on where the average depth of the included channels lies, rather than the distance between
channels in the model.
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