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Abstract – The directional radiation patterns of musical instruments have long been defining characteris-
tics known to influence their perceived qualities. Technical understanding of musical instrument directivities
is essential for applications such as concert hall design, auralizations, and recording microphone placements.
Nonetheless, the difficulties in measuring sound radiation from musician-played instruments at numer-
ous locations over a sphere have severely limited their directivity measurement resolutions compared to
standardized loudspeaker resolutions. This work illustrates how a carefully implemented multiple-capture
transfer-function method adapts well to played musical instrument directivities and achieves compati-
ble resolutions. Comparisons between a musician-played and artificially excited trumpet attached to a
mannikin validate the approach’s effectiveness. The results demonstrate the trumpet’s highly directional
characteristics at high frequencies and underscore the crucial effects of musician diffraction. Spherical
spectral analysis reveals that standardized resolutions may only be sufficient to produce valid complex-
valued directivities up to nearly 4 kHz, emphasizing the need for high-resolution, played musical instrument
directivity measurements.
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1 Introduction

Directional radiation is an essential aspect of played
musical instruments. Musical instrument radiation char-
acteristics influence many practical applications, includ-
ing microphone placements [1–4], auralizations [5, 6], and
concert hall designs [7, 8]. Nevertheless, properly acquir-
ing and implementing source directivities for these and
other applications requires sufficient spatial resolution.
The AES56-2008 (r2019) [9] governs measured spherical
directivities for loudspeakers with 5◦ angular resolution
to enable successful electroacoustic and room-acoustical
modeling and prediction. Commercially available room
acoustical prediction software packages commonly employ
these standardized angular resolutions [10, 11]. However,
the fine details afforded by comparable resolutions for
musical instruments have remained obscure.

Musical instrument directivity measurements present
several practical challenges [12]. For example, unlike loud-
speakers, musicians cannot repeat notes exactly each
time their orientations or scanning microphone positions
change, and new measurements begin. Furthermore, while
the position of a loudspeaker is easily controllable during
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a measurement sequence, a musician often shifts while
playing. Aligning a principal loudspeaker axis toward
desired polar and azimuthal angles is automatable, but
practical considerations restrict the rotation of a live
musician and their instrument to the horizontal plane
(i.e., the azimuthal angle) only.

To evade these and other challenges, some researchers
have resorted to artificial excitation of instruments,
including horns [13–16], the clarinet [17–19], bassoon
[20, 21], violin [18, 22–28], guitar [25, 29], harp [29, 30],
and piano [31, 32]. Directivity measurements employing
artificial excitation of musical instruments have achieved
angular sampling resolutions comparable to the AES
standard, such as for the bassoon [21] and trumpet [15,
16]. These finer angular resolutions have revealed salient
radiation details that coarser sampling cannot detect,
such as numerous side lobes at high frequencies.

While the enhanced repeatability of artificial excita-
tion increases the feasibility of higher-resolution mea-
surements, the approach ignores the critical effects of
live musicians, including their diffraction, absorption, and
natural instrument excitation. More recently, Bellows
and Leishman [19] showed that diffraction and absorp-
tion of the human body significantly alter the directiv-
ities of isolated instruments, such as the clarinet, even
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at lower frequencies. Results from Marruffo et al. [16]
likewise suggested that the interaction of sound waves
with the musician’s body impacts trumpet directivities.
Meyer and Wogram correctly stressed that musicians and
instruments are intrinsically integrated entities for prac-
tical directivity measurements [14]. In fact, while most
of Meyer’s published results emanated from artificially
excited instruments, he also performed sparse measure-
ments of played instrument directivities in some cases
to evaluate the diffraction and absorption caused by
musicians’ bodies [14, 20].

One approach to evaluating played musical instru-
ments’ directivities is limiting measurements to individ-
ual multichannel recordings. This single-capture method
fixes the positions and orientations of musicians and
instruments within a stationary enveloping microphone
array having limited (e.g., 13, 22, 32, or 64) total sampling
positions over the measurement surfaces or contours [5,
33–37]. One of the most significant works to date involv-
ing directivity measurements of 41 modern and historical
instruments employed a quasi-spherical microphone array
with 32 nearly uniformly spaced positions [38].

Single-capture systems do not require playing repeti-
tions and may claim better measurement repeatability.
However, the coarse measurement resolutions may lead
to spatial aliasing errors at frequencies of interest, lim-
iting the application of measured directional data. For
example, radiation from the trumpet and other horns
has long been known to be roughly omnidirectional at
low frequencies and increasingly directional at higher fre-
quencies, with the strongest radiation in front of the bell
[13–16]. Nonetheless, some trumpet directivities interpo-
lated through spherical harmonic expansions appearing in
[39] based on the measurements reported in [38] show per-
plexing patterns, including nulls in front of the bell and
strong radiation lobes to the side of the musician. These
unplausable directional characteristics suggest that spa-
tial aliasing errors from insufficient sampling resolution
may have contaminated the results.

Indeed, the number of spatial sampling positions
employed in previous single-capture systems have been
significantly fewer than the number recommended by
AES56-2008 (r2019) [9]. The 5◦ angular resolutions spec-
ified for standardized loudspeaker directivity measure-
ments would require 2522 unique sampling positions
over a sphere, with accompanying microphones, sup-
port structures, cables, and data acquisition channels.
Because this is an impractical number for single-capture
measurements, multiple-capture systems employing mov-
ing microphones or sources are necessary to measure
played musical instruments, just as they are to measure
loudspeakers.

Researchers have previously employed multiple-
capture methods in musical instrument directivity stud-
ies, such as for the piano [40], violin [41, 42], and tra-
ditional Korean musical instruments [8]. However, the
works employing the approaches lacked complete spher-
ical data, did not use excitation approaches applicable
to all instruments, or did not use actual transfer func-
tions to adequately compensate for differences between

playing repetitions necessitated by incremental captures.
Recently, two of the present authors published work on
a multiple-capture, transfer-function method for measur-
ing live speech directivity with a full-spherical, 5◦ reso-
lution compatible with the AES standard [43]. Neverthe-
less, adaptations of multiple-capture methods to musical
instruments come with unique challenges and differing
results.

This work illustrates how the multiple-capture,
transfer-function method adapts to musical instrument
directivities by assessing a trumpet’s sound radiation.
The applied technique enables 5◦ polar and azimuthal
angular resolution measurements compatible with the
AES directivity sampling standard [9]. Narrowband direc-
tivities, while confirming well-known general radiation
characteristics, reveal intricate radiation patterns, diffrac-
tion lobes, and musician shadowing. Comparing results to
those of an artificially played trumpet and seated manikin
is similar to the approach described in [19] and confirms
the reliability of the multiple-capture, transfer-function
method. The comparisons also highlight the benefit of
directivities derived from played rather than artificially
excited musical instruments. Spherical spectral analy-
sis reveals that the sampling resolution is sufficient to
produce complex-valued narrowband directivities up to
nearly 4 kHz. Derived directivity indices verify that the
trumpet is a highly directional source at many frequen-
cies. Additional results and discussions related to source
centering and spatial aliasing highlight the benefits of the
multiple-capture method in producing high-resolution,
spherical directivities. An archival database at [44] pro-
vides the directivity results for use by other researchers
and practitioners in various acoustics applications.

2 Methods

2.1 Measurement procedure

Several components of the directivity measurement
system appear in Figure 1, including a fixed reference
microphone, a rotating semicircular microphone array,
and a musician and instrument within an anechoic cham-
ber (fc = 80 Hz). The constant-radius R = 1.17 m
array incorporated 36 precision free-field 12.7 mm (0.5 in.)
microphones at fixed 5◦ polar-angle increments. Acous-
tically treated apparatuses suspended and supported
the arc and rotation system. The musician’s chair and
footrests could adjust vertically, horizontally, and angu-
larly within the rotating arc. References [45, 46] include
more details about the measurement hardware and cali-
bration procedures.

Because the trumpet was not fixed, musician move-
ments could potentially introduce spatial variances affect-
ing the directivity measurement’s quality. To mitigate
these variances, a head restraint connected to the
musician’s chair and tightened across the musician’s
forehead ensured consistent head position within the
rotating array. To minimize rotational movements, a laser
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Figure 1. Illustration of the directivity measurement system
with a musician and Vincent Bach Model 43 Stradivarius B[
trumpet. The laser pointer was attached to the bottom of the
instrument near the water keys. The marked axis indicates the
coordinate directions employed in later balloon plots.

attached to the instrument (see Fig. 1) illuminated an
acoustically unobtrusive ≈2 cm square target fixed to the
chamber wall several meters away. The measurement pro-
cedure required that the musician hold the trumpet still
to align with the target during the playing sequence.

While oriented toward the initial azimuthal angle φ =
0◦, the musician played a chromatic scale at mezzo-forte
from B[3 to F5, the typical playing range of the instru-
ment, with each note held for 1 s, followed by a 1 s rest. A
metronome signal in the musician’s earphone ensured a
consistent pace, while an electronic tuner helped maintain
pitch consistency. The musician repeated any problem-
atic notes of a scale for correction. Following a successful
multichannel recording, the rotation system advanced 5◦
in the azimuthal angle φ, and the musician repeated the
scale. This process continued until the directivity mea-
surement system collected a complete sphere of sampled
data via 72 multichannel recordings, each with 24-bit,
48 kHz sampling.

As an additional validation, the directivity measure-
ment system evaluated the directivity of the trumpet
when it was artificially excited by a small transducer cou-
pled to the trumpet mouthpiece. Three repetitions of a
five-second logarithmic swept sine served as the excitation
signal. As suggested by Figure 2, the artificial excitation

Figure 2. Illustration of the directivity measurement system
with an artificially excited trumpet and manikin.

apparatus was attached to a seated manikin. Although
the manikin was somewhat smaller, lacked forearms and
hands, and otherwise differed in geometry, it provided
a rough approximation of the diffraction and absorption
caused by the musician’s body [16, 19]. A support struc-
ture aligned the instrument and its laser to the same
target on the anechoic chamber wall.

2.2 Data processing and analysis

2.2.1 Narrowband

Because even the best musicians play repeated notes
with amplitude and spectral variations, imperfect rep-
etitions seemingly pose an insurmountable problem
for multiple-capture directivity measurements. However,
when appropriately employed, frequency response func-
tions (FRFs) between the reference and array micro-
phone signals mitigate these effects. Previous research
has demonstrated that FRFs establish directivity func-
tions for loudspeakers [47], the human voice [43, 48], and
musical instruments [42, 49]. However, for musical instru-
ments playing discrete notes (i.e., without glissandi), the
FRFs must derive from spectrally sparse signals and are
valid only at specific frequencies for which significant
radiated sound energy arrives at both the reference and
array microphones.
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The FRFs for the uth microphone at the vth
azimuthal rotation followed from the autospectral esti-
mates Gaav

(f) of the reference microphone signal av(t)
and the cross-spectral estimates Gab̃uv

(f) between that
signal and each array microphone signal b̃u,v(t), where
the tilde indicates the possibility of uncorrelated noise
in the array signals. For each note, the spectral esti-
mates resulted from Welch’s method [50, 51] and involved
five 48 000-sample block sizes (1 s record length, 1 Hz
narrow-band resolution), a Hann window, and 90% over-
lap. For each reference and array microphone pair, the
FRF estimate

Huv(f) = Gab̃u,v
(f)/Gaav

(f) (1)

provided an unbiased result with respect to uncorrelated
noise in the output signals [51]. A normalized FRF-based
directivity function follows as [43]

Duv(f) =
Huv(f)

H(uv)max|H|(f)
, (2)

where (uv)max|H| represents the index pair with the
maximum FRF magnitude for a given frequency.

2.2.2 Spherical harmonic expansions

Spherical harmonic expansions provide several bene-
fits to directional data discretely sampled over the sphere.
First, the expansions provide a continuous representa-
tion of the pressure field for further interpolation. Second,
spherical harmonic expansions applied to complex-valued
narrowband pressure data allow extrapolation of far-field
directivity functions [46, 52]. Third, the spectrum of the
expansion provides essential information on spatial alias-
ing and establishing viable frequency ranges for direc-
tivities [53]. Fourth, truncation of spherical harmonic
expansions may be leveraged for spatial filtering.

A spherical harmonic expansion applied to complex-
valued narrowband data yields the unique solution on the
exterior domain [54]:

p̂(r, θ, φ, k)

=
∞∑
n=0

n∑
m=−n

pmn (k)
h

(2)
n (kr)

h
(2)
n (kR)

Y mn (θ, φ), r ≥ R, (3)

where p̂ is the complex pressure amplitude, r is the radial
distance from the origin, R is the measurement sphere
radius, k is the wavenumber, h(2)

n (kr) are the spheri-
cal Hankel functions of the second kind of order n (for
outward-going waves with eiωt time dependence), Y mn are
the spherical harmonics of degree n and order m [55],
and pmn (k) are the pressure expansion coefficients. The
expansion coefficients follow from orthogonality as

pmn (k) =
∫ 2π

0

∫ π

0

p̂(R, θ, φ, k) [Y mn (θ, φ)]∗ sin θ dθ dφ,

(4)

where ∗ indicates complex conjugation. A normalized con-
tinuous directivity function on the measurement surface
follows as [43]

D(R, θ, φ, k) =
p̂(R, θ, φ, k)

p̂[R, (θ, φ)max|p̂|, k]
· (5)

A sound source’s directivity varies over increasing radial
distance r until converging to a radially independent
far-field directivity function [56]. However, practical con-
straints, such as anechoic chamber size, often limit the
array sampling radius so that measurements may not
always fall in the source’s far field. For example, the
acoustic far field requires that kR � 1 while the geo-
metric far field requires that R � Rs, where Rs is the
dimension of the source [56]. For the present work, the
R = 1.17 m array suggests that while frequencies above
500 Hz may be in the acoustic far field, the large size
of the musician relative to the array radius (see Fig. 1)
does not satisfy the geometric far-field constraint. Conse-
quently, the measurements should not be assumed to be
in the source’s far field.

Differences between measured directivity patterns in
the near field of a source and the oft-desired far-field pat-
tern have motivated the use of acoustic centering algo-
rithms [38, 39, 57, 58]. These methods generally attempt
to expand the pressure field about a source’s acoustic
center so that the near-field measurements are “represen-
tative of farfield performance” [59, 60]. However, rather
than attempting to modify near-field results, one may
directly obtain an unnormalized far-field directivity by
propagating the measured pressure with r → ∞ as [46,
53, 56]:

D̃ff(θ, φ, k) =
∞∑
n=0

n∑
m=−n

in+1

h
(2)
n (kR)

pmn (k)Y mn (θ, φ), (6)

which follows from the large-argument approximation of
the spherical Hankel functions valid for r � kR. Interest-
ingly, the magnitude of this far-field directivity is inde-
pendent of source location within the array [52, 61].
Source translation does modify the far-field directivity’s
phase according to [52, 61]

Dff,t(θ, φ, k) = eikr̂·rtDff(θ, φ, k), (7)

where r̂ is the unit vector in the direction of r, rt is
the translation vector, and Dff,t is the far-field directivity
after translation. Once one determines the acoustic center
rc, setting rt = −rc in equation (7) provides a far-field
phase correction by virtually moving the source back to
the acoustic center (see Sect. 3.4 and [62]).

Some computational techniques, such as geometric or
ray-based methods, only employ magnitude far-field val-
ues [63]. In these cases, equation (6) suffices for practical
applications of directional data. Some have also consid-
ered the relevance of phase data for interacting coher-
ent sources [64], in which case the phase simplification
afforded by acoustic centering may also be beneficial.
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In wave-based simulations using complex-valued narrow-
band data [65, 66], the expansion of equation (3) provides
the unique solution on the exterior domain r > R [54].
Consequently, acoustic source centering is not necessary
to obtain the correct solution. Nonetheless, acoustic cen-
tering may benefit computational efficiency by reducing
the number of necessary expansion coefficients [39, 57].

The far-field directivity factor function follows from
the far-field directivity function as [56]

Qff(θ, φ, k) =
4π|D̃ff(θ, φ, k)|2∫ 2π

0

∫ π
0
|D̃ff(θ, φ, k)|2 sin θ dθ dφ

· (8)

For comparisons between two directivities, a directivity
factor function deviation follows as [46]

σQ =
1

4π

∫ 2π

0

∫ π

0

|Q1(θ, φ, k)−Q2(θ, φ, k)| sin θ dθ dφ.

(9)
It may be expressed as a directivity factor function
deviation level as

LQ = 10 log10(1 + σQ), (10)

where the addition of 1 in the argument of the loga-
rithm maps σQ = 0 to 0 dB. Importantly, this metric
may be used to monitor the convergence of spherical
harmonic expansions over increasing expansion degree
(see Sect. 3.2).

2.3 Source order and spatial aliasing analysis

The discrete spherical sampling employed in directiv-
ity measurements limits computation of the expansion
coefficients pmn to maximum degree Nd, effectively trun-
cating the infinite series in equation (3). This maximum
expansion degree depends on the number of sampling
positions, their distribution over the sampling sphere,
and is independent of source characteristics [67]. The 5◦
dual equiangular sampling scheme allows expansions to
Nd = 34 [68] when using spherical quadrature weights
[69] to numerically evaluate the orthogonality integral in
equation (4).

The proper application of spherical harmonic expan-
sions, including the far-field propagation of equation (6),
requires that the maximum spherical harmonic expansion
degree necessary to represent the source Ns be less than
or equal to that resolvable by the sampling array Nd. Oth-
erwise, spatial aliasing occurs, meaning that errors appear
in calculated values of pmn and the spherical-harmonic-
based representation becomes invalid [67, 68]. Conse-
quently, estimating Ns is essential to establishing usable
frequency ranges for directivity validity and analysis.

For a source enclosed by a notional sphere of radius
Rs centered at the origin, the evanescent nature of the
spherical Hankel functions suggests that the relative con-
tributions of the expansion coefficients with n ' kRs
decrease rapidly in the far-field [54, 67, 70]. As a result,

a sound source with “effective radius” [70] Rs requires
an expansion with terms up to roughly Ns ≈ kRs [53].
This simple relationship suggests that a source is spa-
tially band-limited so that one may effectively truncate
the infinite series in equations (3) and (6) at a frequency
dependent Ns without significant errors. Because spatial
aliasing occurs when Ns exceeds Nd, this relationship
also implies that the maximum usable wavenumber for
analysis of complex-valued directivities is

kmax =
Nd
Rs
· (11)

This equation highlights that for a fixed source extent, the
only way to increase the viable frequency bandwidth for
analysis is increasing the sampling resolution to increase
Nd. Additionally, because Rs is the spatial extent of the
source as measured from the origin, poor source place-
ment may cause Rs to be much larger than the source’s
actual dimensions [61].

Estimating Rs from measured data is essential to
deduce the maximal usable frequency for spherical-
harmonic-based analysis without spatial aliasing errors.
The energy-per-degree metric [71]

En(k) =
n∑

m=−n
|pmn (k)|2 (12)

serves as a useful tool for this purpose. It represents the
spatial signal energy for a specified expansion degree n
summed over all orders m and provides a measure of a
source’s spherical spectrum. Since a source with effective
radius Rs radiates little energy to the far field for n >
kRs, the ratio

γ(N, k) =
∑N
n=0En(k)∑∞
n=0En(k)

, (13)

represents the spatial signal energy lost by the infinite
series truncation to degree N . In practice, a finite sum-
mation up to Nd replaces the infinite summation in the
denominator. For a fixed threshold, e.g., γ = 0.98, com-
puting N for several discrete wavenumber k values allows
a least-squares fit to the line N = kRs as

Rs =
1
J

J∑
j=1

N
(0.98)
j

kj
, (14)

where the index j references the set of sampled wavenum-
bers and N

(0.98)
j is the minimum N which satisfies

γ(N, kj) = 0.98. To ensure spatial aliasing effects do not
negatively impact the estimate, the maximum wavenum-
ber considered in the least-squares fit should be no
more than Nd/R, which corresponds to 1.6 kHz for the
present work. This limit represents the maximum fre-
quency for spherical-harmonic-based analysis applied to
an arbitrarily-shaped source entirely contained within
the measurement radius R. Of course, higher-frequency
analysis is possible for sources with effective radii Rs < R.
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Besides establishing a valid frequency range for
complex-valued narrowband data, the concept of an
effect radius is beneficial for post-processing directiv-
ity patterns. Truncations of spherical harmonic expan-
sions smooth directivity patterns, enabling spatial filter-
ing to reduce measurement noise [54]. Because the essen-
tial expansion coefficients and radiated energy tend to lie
along and below n = kRs, coefficients higher than this
limit are prone to a lower signal-to-noise ratio, assuming
Gaussian spatial noise. Truncation of these higher-degree
coefficients according to

N = dkRse+ 2 (15)

thus allows appropriate spatial filtering of the measured
data [54]. In equation (15), the ceiling function d e rounds
up to the nearest integer and the arbitrary addition of two
helps preserve energy from the roll-off above n = kRs
(see Sect. 3.2).

3 Results

3.1 Narrowband frequency response functions

Playing inconsistencies between repeated captures can
lead to significant level deviations in the array micro-
phone signals. Figure 3 highlights the effectiveness of
the FRF method in compensating for these variations
by comparing narrowband (1 Hz resolution) normalized
directivity functions derived from the array autospectral
levels (Fig. 3a) with those derived from FRFs (Eq. (2) and
Fig. 3b) for the 3rd partial of B[ (699 Hz). Balloon colors
and radii indicate relative levels on a decibel scale. The
musician faces the 0◦ azimuthal marker, and the vantage
point is upward and to the musician’s right.

As one might anticipate, the first directivity pattern
is hardly discernible without adequate normalizations for
playing repetitions and their associated captures at the
azimuthal angle increments. The fixed reference micro-
phone data indicated that level variations for this spe-
cific partial and frequency exceeded 30 dB, which may
be due to both playing level and slight frequency shifts.
The input-level variations led to the strong longitudinal
banding artifacts in the output measured by the array.

On the other hand, the FRFs between the reference
and array microphone signals are robust to these vari-
ations, assuming that the pertinent sound propagation
mechanisms comprise an LTI system. As evidenced by
the FRF-based balloon in Figure 3b, the FRFs compen-
sated for these deviations, leading to a smooth direc-
tivity function with no visible banding effects. This
typical result highlights the effectiveness of the transfer-
function method for narrow bands (and broader bands)
when properly applied to radiation from played musical
instruments.

Another essential validation of the FRF method fol-
lows by comparing directivities produced by the played
and artificially excited trumpet. Figure 4 plots narrow-
band (1 Hz resolution) FRF-based directivity balloons

Figure 3. Trumpet narrowband directivities at 699 Hz based
on (a) autospectral levels from the uncalibrated array micro-
phone signals and (b) calibrated frequency-response functions
between the reference and array microphone signals.

(Eq. (2)) for four different partials from the played trum-
pet (Figs. 4a–4d) and the equivalent extracted frequen-
cies for the artificially excited trumpet (Figs. 4e–4g). The
selected frequencies followed from extracting peaks of the
effective input autospectrum [43] for a given note. The
vantage point is upward and primarily to the musician’s
right side. At 233 Hz (B[3, 1st partial, Figs. 4a and 4e),
the radiation at the array surface is not particularly
directional, although some diffraction and shadowing
behind the musician appear. At 311 Hz (E[4, 1st partial,
Figs. 4b and 4f), stronger radiation in front of the musi-
cian and a side lobe become apparent. Shadowing atten-
uation behind the musician exceeds 10 dB. These trends
continue to develop at 438 Hz (A4, 1st partial, Figs. 4c
and 4g), and 524 Hz (C4, 2nd partial, Figs. 4d and 4h). At
these frequencies, the strongest radiation regions concen-
trate in front of the trumpet, and reduced levels appear
behind and in the directions of the musicians’ legs. Sim-
ilar diffraction features are visible in speech and clarinet
directivity measurements [19, 43].

Despite the inherent differences between a musi-
cian and a manikin, the directivities derived from the
played trumpet qualitatively agree with those derived
from the artificially excited trumpet. Although some
lobes’ precise directions and locations show minor vari-
ations, the essential directional characteristics, includ-
ing the numbers of lobes and regions of reduced
levels, concur. The LQ between the played and arti-
ficially excited directivities did not exceed 1.0 dB for
these partials. The individual LQ were 0.7 dB, 0.8 dB,
1.0 dB, and 1.0 dB for 233 Hz, 311 Hz, 438 Hz, and 524 Hz,
respectively. These similarities and the absence of longi-
tudinal banding highlight the FRF method’s robustness
in compensating between repeated measurements and
deriving high-resolution directivities of played musical
instruments.

Figure 5 plots the directivity balloons of four higher-
frequency partials for the played trumpet (Figs. 5a–5d)
and the equivalent extracted frequencies for the artifi-
cially excited trumpet (Figs. 5e–5g). The vantage point
is upward and behind the musician and manikin to
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Figure 4. FRF-based directivity balloons for the (a)–(d) played and (e)–(h) artificially excited trumpet with manikin. (a) and
(e): 233 Hz. (b) and (f): 311 Hz. (c) and (g): 438 Hz (d) and (h): 524 Hz.

Figure 5. FRF-based directivity balloons for the (a)–(d) played trumpet and (e)–(h) artificially excited trumpet with a manikin.
(a) and (e): 589 Hz. (b) and (f): 737 Hz. (c) and (g): 932 Hz (d) and (h): 1160 Hz.

facilitate visualization of the diffraction and interfer-
ence patterns around and behind the bodies. At 589 Hz
(D4, 2nd partial, Figs. 5a and 5e), the most substan-
tial radiation concentrates directly in front of the musi-
cian, and two side lobes and a diffraction spot appear
behind the musician’s chair. Increased diffraction effects
behind the body and complex regions of constructive and
destructive interference characterize the directivity pat-
terns at this higher frequencies, especially at 1160 Hz
(B[3, 5th partial, Figs. 5d and 5h). These detailed
diffraction and interference patterns require higher

sampling resolutions afforded by the multiple-capture
method.

The qualitative agreement continues between the gen-
eral radiation characteristics of the played and artificially
excited trumpets at these higher frequencies. However,
some finer details appear to differ, potentially due to
the inherent differences between the musician and the
manikin. The LQ were 1.2 dB, 1.5 dB, 1.6 dB, and 1.5 dB
for 589 Hz, 737 Hz, 932 Hz, and 1160 Hz, respectively.
Section 4.2 further considers deviations between played
and artificially excited directivities.
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Figure 6. Played trumpet directivities at 695 Hz (F4, 2nd
partial) based on (a) N = 3, (b) N = 4, (c) N = 6, (d)
N = 8, and (e) N = 12 degree spherical harmonic expansions,
and (f) the raw FRF-based directivity.

3.2 Spherical harmonic expansions

Spherical harmonic expansions are beneficial for direc-
tivity interpolation, far-field propagation, and other
processing applications. However, their implementation
requires careful convergence analysis to ensure adequate
expansion terms. Figure 6 plots the directivities derived
from spherical harmonic expansions of the complex-
valued FRFs over varying expansion degrees evaluated on
the measurement surface r = R (Eq. (5)) for the second
partial of F4 (695 Hz). The expansions limited to N = 3
(Fig. 6a) or N = 4 (Fig. 6b) are insufficient to capture
the general radiation trends at this particular frequency.
The LQ between the raw FRF-based directivity (Fig. 6f)
and each of these expansion directivities are 4.4 dB and
3.9 dB, respectively. An N = 6 expansion (Fig. 6c) pro-
duces general directional characteristics that begin to

Figure 7. Directivity factor function deviation lev-
els between measured FRF-based and spherical-harmonic-
expansion-based directivities over expansion degree N for
selected partials.

resemble the original measured data and decreases the LQ
to only 1.3 dB. The N = 8 (Fig. 6d) and N = 12 (Fig. 6e)
expansions further decrease the LQ to 0.4 dB and 0.2 dB,
respectively.

The number of required expansion coefficients depends
on the directivity pattern’s complexity, which typically
increases with frequency. To highlight this concept,
Figure 7 plots LQ between the original measured data and
the expanded data for varying maximal expansion degree
N and four partials. For the 233 Hz case (B[3, 1st partial)
shown by the solid red curve, the deviation levels decrease
to below 1.0 dB with only an N = 3 degree expansion.
However, for the 1315 Hz case (E4, 4th partial) shown by
the purple dotted curve, the levels do not reach this same
threshold until an N = 13 degree expansion. Thus, prop-
erly implementing spherical harmonic expansions requires
careful monitoring of both frequency-dependent effects
and convergence to measured patterns.

Considering a source’s effective radius provides addi-
tional insight into the increasing number of expansion
terms required with increasing frequency. Figure 8 plots
the energy per degree En over frequency and expan-
sion degree (see Eq. (12)) for the played (Fig. 8a) and
artificially excited (Fig. 8b) trumpet. Color indicates
the relative level on a decibel scale, with white repre-
senting expansion coefficients with high levels and black
representing expansion coefficients with low levels.

With a truncation factor of γ = 0.98 (see Sect. 2.2.2),
least-squares fits estimated the effective radius of the
played trumpet and musician and the artificially excited
trumpet with manikin to be Rs = 0.44 m and Rs =
0.45 m, respectively. Overlaid magenta dotted lines in
Figures 8a and 8b indicate the truncation curve N =
dkRse + 2 that uses these values. Below 3 kHz, most of
the significant coefficients lie below this line. The essential
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Figure 8. Spherical spectrum (En) for the (a) played and (b)
artificially excited trumpet.

expansion coefficients, indicated by the white streaks,
follow the trend of n = kRs.

The overlaid green dashed line represents the upper
expansion degree without significant spatial aliasing,Nd =
34 [68]. Near 4.5 kHz, significant signal energy reflects
across this line, which is analogous to time-frequency
domain aliasing, where the frequency f = fs/2 + ∆f
aliases to f = fs/2 − ∆f , where fs is the sampling
rate. Accordingly, the reflected energy in the plot is a key
indicator of the reliable bandwidth without spatial alias-
ing [68]. Using the intersection of N = dkRse + 2 with
Nd = 34 yields an upper usable limit of 3.9 kHz. Above
this frequency, spatial aliasing effects are significant and
pressure field extrapolation or interpolation using spherical
harmonic expansions may be unreliable.

With an estimate of the effective source radius in
place, appropriately truncating the spherical harmonic
expansion enables spatial filtering, which can remove
undesirable measurement noise [54]. To illustrate this
concept, Figure 9a plots a raw FRF-based directivity bal-
loon for the fourth partial of E4 (1315) Hz. Although the
compensation by the FRF method is substantial com-
pared, for example, to the directivity of Figure 3a, minor
longitudinal banding remains due to measurement incon-
sistencies between repeated captures. For this particu-
lar frequency, equation (15) with an effective radius of

Figure 9. Directivity at 1315 Hz (E4 4th partial) based on
(a) raw narrowband FRFs and (b) an N = 13 degree spherical
harmonic expansion.

Rs = 0.44 suggests that a truncation atN = 13 will main-
tain the essential directional characteristics while elim-
inating measurement noise contained in higher-degree
expansion coefficients and smoothing the residual band-
ing. Figure 9b plots the resultant directivity expanded
to this degree. The LQ between the FRF-based and
smoothed result was 0.8 dB.

3.3 Far-field propagation

Far-field propagation via spherical harmonic expan-
sions yields the unique far-field magnitude pattern inde-
pendent of source positioning within the array [52, 61].
Figure 10 illustrates how far-field propagation may mod-
ify measured directivities for three selected partials.
Figure 10a shows the played trumpet directivity at 394 Hz
(G4, 1st partial) while Figure 10d shows its far-field pro-
jected pattern using an N = 6 degree expansion. The
directional characteristics remain similar, but the radi-
ated levels are stronger to the side and behind. Because
the trumpet bell lies in front of (+x) and above (+z) the
array’s geometric center (see Fig. 1), the source placement
suggests that the near-field directivity will have stronger
levels directly in front of the bell than the far-field direc-
tivity, as is the case for a displaced monopole [52]. Similar
changes are visible in Figures 10b and 10e, which com-
pare the directivities at 986 Hz (E4, 3rd partial) with an
N = 10 degree expansion.

Figure 10c shows the measured directivity at 1558 Hz
(C5, 3rd partial). At this higher frequency, one may antic-
ipate that the principal radiation axis will be in front of
the musician, where body diffraction effects impact radi-
ation less significantly [72]. However, the measured pat-
tern indicates that the principal axis falls slightly above
the direction of the bell at an elevation angle of approxi-
mately 25◦ (polar angle θ = 65◦). In contrast, the far-field
projected directivity shown in Figure 10f with an N = 15
degree expansion lowers the principal axis to an elevation
angle of about 15◦ (θ = 75◦).

3.4 Acoustic centering

Although the far-field directivity function of equa-
tion (6) is suitable for both geometric and wave-based
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Figure 10. Directivity balloons based on (a)–(c) raw nar-
rowband FRFs and (d)–(f) far-field propagated spherical har-
monic expansions. (a) and (d): 394 Hz. (b) and (e): 986 Hz .
(c) and (f): 1558 Hz.

simulations, acoustic centering may reduce the complex-
ity of the phase pattern and may reduce Ns. The low-
frequency acoustic center [60] applied to the lowest note
(B[3, 233 Hz, kRs ≈ 2.0) identified the acoustic center of
the source at rc = (0.22, 0.01, 0.47) m, which roughly cor-
responds to the location of the instrument’s bell (compare
Fig. 1).

3.5 Directivity index

The directivity index (DI) has been a fundamental
metric of source directivity for decades. Although one
may calculate the DI and its associated directivity fac-
tor in any direction [56], most authors report it refer-
enced to a source’s principal radiation axis only. This axis
is clear for many sources, such as typical loudspeakers

Figure 11. Frequency-dependent trumpet directivity prop-
erties: (a) Directivity index and (b) maximum radiation axis
elevation.

and horns. However, it is unrealistic for other more com-
plicated sources, including many played musical instru-
ments. Some sources are multidirectional [46, 47]. Others
have complex interference and diffraction patterns. Some,
like the human voice, have maximum radiation directions
that vary with frequency [46, 73]. The trumpet likewise
exhibits an angularly varying maximum radiation direc-
tion, although the instrument’s bell may be considered
the principal radiation axis.

Figure 11a plots the frequency-dependent DIs of the
played and artificially excited trumpet derived from
the far-field directivity pattern. Figure 11b presents the
frequency-dependent elevation angle for the maximum
radiation axis over the sphere. The markers represent
171 extracted partials from the first ten harmonics of the
twenty played notes (29 partials lie above the 4 kHz spa-
tial aliasing limit). The far-field corrections produce cal-
culated DIs of about 1.5 dB at the lowest frequencies. The
DIs slowly increase to about 5 dB at 1 kHz. Above 1 kHz,
they increase by about 2 dB per octave until approaching
approximately 15 dB at 4 kHz.

Below 1 kHz, the elevation angle of the direction of
maximum radiation fluctuates widely. However, above
1 kHz, the variability narrows until the values converge to
near −5◦ at the highest frequencies, corresponding to the
direction of the instrument’s bell. These results suggest
that at low frequencies, wave effects such as diffraction
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about the human body influence the maximum direction
of radiation. However, at higher frequencies, this direction
corresponds to the specular radiation from the bell.

4 Analysis

4.1 Zenith variance

The FRF method employed in this work operates under
the assumption that the trumpet’s sound radiation behaves
as an LTI system. Because the zenith (north pole) micro-
phone should remain at the same place relative to the trum-
pet during the array rotation, the variance of this micro-
phone’s directivity level provides insights into FRF vari-
ability and repeatability between the 72 repeated captures.
Indeed, the AES56-2008 (r2019) directivity sampling stan-
dard specifies that the pole positions may be used to val-
idate directivity measurement repeatability, although it
does not provide a metric to do so [9]. The present work
applies a zenith directivity factor function deviation level
LQ,z to quantify the variability as

LQ,z = 10 log10(1 + σQz
) (16)

where

σQ,z =

[∑V−1
v=0 |Q0v(f)− 〈Q0v(f)〉v|2

]1/2

〈Q0v(f)〉v
, (17)

Q0v is the directivity factor function (Eq. (8) but with
Dff(θ, φ, f) replaced with Duv(f)) at the zenith sam-
pling position (u = 0), and 〈Q0v(f)〉v is its azimuthally
averaged value.

Figure 12 plots LQ,z for two hundred extracted par-
tials from both the musician and manikin-based direc-
tivities. Solid curves represent the average deviations
over 1/3-octave bands to help visualize the frequency-
dependent trends better. The deviations remain small
up to 1 kHz; LQ,z does not exceed 0.6 dB for the played
instrument and 0.3 dB for the artificially excited instru-
ment. Above 1 kHz, the deviations begin to increase, and
at 4 kHz, they are consistently above 1.0 dB. However, the
deviations for all played partials remain below 2.5 dB.
The variability of the measurements made with artifi-
cial excitation tend to be lower than those produced
by the musician except at the highest frequencies. The
average level over all frequencies is 0.8 dB for the musi-
cian and manikin. These results quantify the repeatabil-
ity of the FRF-based method in compensating for varying
repetition levels with restrained musician movements.

4.2 Comparison with artificially excited directivity

The artificially excited trumpet provides meaningful
validation of the FRF-based multiple capture method and
its high-resolution directivity measurements. Figure 13
plots LQ for the same two hundred partials to quan-
tify deviations between the played and artificially excited

Figure 12. Directivity factor function deviations at the zenith
microphone position between the 72 repeated captures.

Figure 13. Directivity factor function deviation levels
between the played and artificially excited FRF-based direc-
tivity results.

directivity measurements. The levels follow from the
raw FRF-based measurements with no spherical har-
monic expansion or other post-processing applied. The
red curve shows the 1/3-octave-band averages and bet-
ter illustrates the general trends. For the lowest frequen-
cies considered, the deviations remain below 1.0 dB. As
frequency increases, they slowly rise to about 2.0 dB at
2 kHz. The deviations vary more significantly near and
above 2 kHz, with some levels exceeding 3.0 dB and others
dropping below 2.0 dB. The general frequency-dependent
trend increases with increasing frequency. The average
LQ across all partials is 2.1 dB.

The relatively low LQ over frequency highlights the
repeatability of the FRF method. The increase of LQ
with frequency does not necessarily suggest that the FRF
method is becoming less valid; it may merely indicate that
geometric and material differences between the musician
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Figure 14. Directivity factor function deviation levels
between measured and symmetrized partials for played and
artificially excited trumpet.

and manikin lead to increased deviations at higher fre-
quencies. For example, the directivities at 1160 Hz seen
in Figures 5d and 5h do not show any severe longitudinal
banding in the FRF-based measurements; the reported
deviations in Section 3.1 of around 1.5 dB appear to
result from variations in the locations of diffraction lobes
and attenuation regions around the musician. Indeed,
LQ,z at this frequency is only 0.4 dB, indicating high
FRF repeatability. Nonetheless, while the pole variance
may be a better indicator of measurement reliability,
the relatively low LQ between the played and artificially
excited directivities over frequency provides an essential
validation of the multiple-capture method.

4.3 Symmetry

For many sources, symmetry is another key indica-
tor of directivity validity, such as the quasi-symmetry
about the median plane for speech [43]. From geometrical
arguments, one would also expect quasi-symmetry about
the median plane for the trumpet, especially at lower
frequencies. The equiangular sampling scheme employed
in the present work facilitates symmetrizing about the
median plane. The process involves averaging data from
opposing points on the measurement sphere so that the
symmetrized directivity factor function becomes

Qs(θ, φ, f) =
1
2

[Q(θ, φ, f) +Q(θ,−φ, f)] , (18)

where Q is the original function and Qs is the sym-
metrized function. If a source exhibits high symmetry,
deviations between the measured Q and symmetrized Qs
should be slight. A symmetrized directivity factor func-
tion deviation level LQ,s quantifies these variations by
calculating LQ (Eq. (9)) between Q and Qs.

Figure 14 plots LQ,s between the measured and sym-
metrized data for the played and artificially excited trum-
pet. The symmetry levels in both cases are nearly the

Figure 15. Spherical spectrum (En) for the trumpet direc-
tivity measurements available in [74] based on 32 sampling
positions.

same below 1 kHz and consistently fall below 0.6 dB.
As frequency increases, LQ,s and their differences tend
to increase. However, the frequency averaged values are
0.9 dB and 1.0 dB for the played and artificially excited
trumpet, respectively, indicating high symmetry.

4.4 Comparison of results from previous work

The multiple-capture method developed in this work
allows significantly higher sampling resolutions for played
musical instruments than in previous works. Higher sam-
pling resolutions are beneficial to resolve finer radiation
details and essential to avoid spatial aliasing effects due
to undersampling. As suggested by Section 2.3, one of the
primary advantages of high-resolution directional data is
that it allows the application of directional data to higher
frequencies necessary for realistic acoustic simulations.
The effective source radius estimate of Rs = 0.44 m, use
of Nd = 34 expansions, and the spherical spectra plots of
Figure 8 suggest that the 5◦ dual equiangular sampling
scheme provides sufficient spatial sampling to produce
trumpet directivities up to around 4 kHz.

In contrast, previous research employing single-
capture methods do not achieve comparable validity
ranges. For example, the more recent work of Weinzierl
et al. [74] contains musical instrument directivities for a
played trumpet using a R = 2.1 m, 32-point measurement
scheme capable of Nd = 4 spherical harmonic expan-
sions. Although the source placement and musician size
differ between studies, an initial rough estimate using
the same effective source radius of Rs = 0.44 m suggests
that complex-valued narrowband directivities may only
be valid to around 500 Hz (slightly above B4). Because the
played notes in this work ranged from B[3 (233 Hz) to F5
(698 Hz), a comparable 32-point sampling cannot repre-
sent the complex-valued pressure for many of these note’s
fundamental frequencies and their associated partials.

To consider the viable frequency range for such coarse
spatial resolutions, Figure 15 plots the spherical spec-
trum based on processed trumpet directivities from the
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Figure 16. (a)–(d) Far-field projected directivity balloons from the present work. (e)–(h) Played trumpet directivity balloons
derived from recordings available from Weinzierl et al. [74] plotted over the original 32 sampling positions and (i)–(l) interpolated
via an N = 4 spherical harmonic expansion to the same 2521 sampling positions as the present work. (a), (e), and (i): 277 Hz
(D[4). (b), (f), and (j): 738 Hz (G[5). (c), (g), and (k): 1314 Hz (E6). (d), (h), and (l): 1869 Hz (B[6).

original recordings available from [74]. The overlaid dot-
ted magenta line indicating n = kRs with Rs = 0.44 m
(see Fig. 8) appears to be in reasonably good agreement
with the strongest band of signal energy despite differ-
ences between the two works. The spectrum reveals that
only the lowest partials below 300 Hz exhibit a band-pass
nature, suggesting that spatial aliasing likely occurs near
or below 500 Hz.

To consider how spatial aliasing effects impact direc-
tivities, Figure 16 compares played trumpet directivity
results derived from the original recordings from [74] with
those of present work for selected partials. Figures 16a–
16d plots far-field directivities from the present work
over the 5◦ degree, 2521-point sampling scheme expanded
according to equation (15), Figures 16e–16h plots direc-
tivities from Weinzierl et al. over the original 32 sam-
pling positions, and Figures 16i–16l plots directivities
from Weinzierl et al. interpolated via spherical harmonic
expansions to the same sampling position as the present
work. All directivity balloon plots employ linear interpo-
lations between sampling positions to better visualize the
location of the discrete sampling positions.

Comparisons between the original sampling positions
from both works (Figs. 16a–16d and 16e–16h) show simi-
lar directional features, including increasing directionality
with increasing frequency and similar general diffraction
and shadowing effects by the musician. Nonetheless,
the higher-resolution measurements provide significantly
more detail and additional insights into the finer source
radiation and diffraction features. For example, the low-
resolution measurements fail to detect minor side lobes,

a feature noted in the high-resolution, 0.5◦ polar mea-
surements of an artificially excited trumpet performed
by Marruffo et al. [15].

While the directivity interpolated via spherical har-
monics shows reasonable agreement with the correspond-
ing result from the present work for the fundamental
of D[4 (Figs. 16a and 16i), the higher notes, which
all fall above 500 Hz, show significant deviations. The
LQ between the four partials are 1.2 dB, 2.2 dB, 3.1 dB,
and 3.1 dB. Additionally, the directivities in Figures 16j
though 16l show strong asymmetries similar to those
appearing in [39]. These include non-physical radiation
from the musician’s side (see Fig. 8 of [39]).

In that work, the authors noted that the acoustic cen-
tering algorithm “achieves good results in the range of
up to 400 Hz,” [39] which corresponds well to the spa-
tial aliasing limitations suggested by Figure 15. Indeed,
Deboy [57] found converging results beyond 1 kHz for a
similar centering algorithm applied to a trombone mea-
sured by a system allowing Nd = 7 expansions (see
Fig. 7.46 of [57]). Thus, the algorithm’s failure to con-
verge in [39] likely resulted from spatial aliasing effects
above 400 Hz rather than limitations of the algorithm
itself. Asymmetries, spurious and non-physical radia-
tion lobes, and deviations from measured high-resolution
results above 500 Hz strongly suggest that insufficient
sampling resolution has led to deleterious spatial aliasing.

Figure 17 compares the frequency-dependent maxi-
mum DI values derived from Weinzierl et al. [74] with
those of the present work for played trumpets. Both works
show similar DI increases from around 2.5 dB at 250 Hz to
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Figure 17. Played trumpet directivity indices from Weinzierl
et al. and the present work.

5 dB by 1 kHz and more than 10 dB by 3 kHz. More signif-
icant discrepancies arise above 3 kHz, but it is important
to note that a 32-point measurement array can at most
evaluate a DI of 10 log10(32) ≈ 15 dB, [75] meaning the
DI values near that level are less reliable. Additionally,
insufficient sampling may further degrade estimates of the
source’s DI. Frequency-averaged deviations between the
two data sets were less than 1.0 dB below 1 kHz but rose
to 3.9 dB when considering all values below 4 kHz.

5 Discussion

The multiple-capture method provides a feasi-
ble means of assessing high-resolution played musi-
cal instrument directivities compatible with loudspeaker
standards. Nonetheless, its procedures require careful
implementation to achieve satisfactory results. A funda-
mental assumption is that the system between the refer-
ence microphone input and each array microphone output
is approximately linear and time-invariant. Because the
exterior sound pressure levels produced by most musical
instruments are sufficiently low to avoid nonlinear acous-
tic propagation effects, the assumption of a linear system
between the reference microphone and each array micro-
phone is generally realistic. However, the requirement of
a time-invariant system introduces more practical chal-
lenges. Controlling instrument orientation and musician
position between incremental rotations is critical to miti-
gate movements that can appear as longitudinal banding
in the FRF-based directivity balloons.

Another relevant measurement detail is the reference
microphone’s location. The reference microphone serves
as a normalization tool when combining the successive
captures of the instrument’s radiation. Of course, other

normalization approaches could be employed, such as nor-
malizing by the levels of the fixed-position north pole
microphone. However, the ostensible advantage of a refer-
ence microphone near the source is that it affords better
signal-to-noise ratios (SNRs) when computing the FRFs.
Importantly, these SNRs provide insight into viable fre-
quency ranges when considering excitation level alone
[43, 46], an aspect typically overlooked in most studies
on musical instrument directivity. In the present work,
the trumpet’s strong radiation levels produced spherically
averaged SNRs exceeding 15 dB even for partials beyond
4 kHz, indicating that the spatial sampling resolution was
the primary limiting factor in the usable frequency range.

While the head restraint and instrument-mounted
laser pointer severely restricted musician translation and
rotation, some slight movements are expected as no musi-
cian can sit perfectly still. If the reference microphone
is fixed in space relative to the array microphone posi-
tions, as in the present work, these movements lead to
time-varying directivity levels at both the reference and
array positions. If the musician’s displacement and the
source’s directivity are significant, musician movements
result in a distorted normalization factor, leading to fur-
ther longitudinal banding when combining the successive
measurements.

An alternative choice would be to fix the reference
microphone to the instrument, allowing it to vary in space
relative to the array microphone positions. This choice in
part corrects the time-varying directivity levels at the ref-
erence position, but does not resolve time-varying direc-
tivity levels at the array positions. When considering the
musician and reference microphone as a fixed reference
frame, musician movements may be interpreted as an
effective positional translation of the array microphones
that likewise lead to longitudinal banding. Additionally,
the correction remains imperfect because the fixed chair,
legs, and torso create scattering and diffraction depen-
dent on the head and instrument orientation [72] so that
the measured normalization factor will differ from that
measured if the musician had remained fixed. Further-
more, a moving reference microphone position relative
to the fixed array microphone positions leads to distor-
tions in cross-spectral estimates due to changing prop-
agation path lengths between the microphones. Bodon
[45] employed both fixed-position reference microphones
and instrument or musician-attached reference micro-
phones; neither choice completely removed distortions
and subsequent longitudinal banding. Further investiga-
tions on optimized reference microphone placement would
likely improve FRF-based musical instrument directivity
measurements.

Despite the measurement difficulties in obtaining
results from the multiple-capture system, the higher
resolutions afforded by the approach are essential for
practical applications. The AES56-2008 (r2019) directiv-
ity sampling standard and common architectural acous-
tics software packages have long recognized the bene-
fit of high-resolution data [9–11]. Additionally, the fea-
sibility of far-field propagation and implementation of
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complex-valued directivities in acoustic simulations
require sufficient sampling to avoid spatial aliasing effects.
Using the estimated source effective radius of Rs =
0.44 m, the resolution applied in this work enables spher-
ical harmonic expansions up to around 4 kHz. The maxi-
mum frequency without spatial aliasing would be signif-
icantly less for lower-resolution schemes, such as those
employed in single-capture measurements.

The existence of spatial aliasing limitations in directiv-
ity measurements constitutes a significant research area
that requires further investigation. While some previ-
ous works have discussed this topic to an extent, actual
sampling limitations need to be clarified. This work has
explored this concept in three significant ways: (1) study-
ing the convergence of spherical harmonic expansions
to the measured pressure, such as in Figures 6 and 7;
(2) plotting the source’s spherical spectrum, such as in
Figure 8; and (3) estimating the source’s effective radius.
Nevertheless, a need remains for additional research
into methods that determine required sampling posi-
tions for musical instrument directivities. In addition, the
results of this work suggest that even current loudspeaker
sampling standards may be insufficient to achieve nar-
rowband spherical harmonic expansions over the entire
audible bandwidth.

An archival database at [44] provides trumpet direc-
tivity results from the present work. The complex-
valued, narrowband directivity functions incorporate the
methodology discussed in Section 2, including far-field
propagation, spatial filtering, and phase corrections.
These results will benefit researchers and practitioners in
improving source modeling, microphone placements, and
room acoustic simulations.

6 Conclusions

This work has illustrated how a multiple-capture
transfer function method allows the assessment of high-
resolution played trumpet directivities with spherical
sampling compatible with current loudspeaker directivity
standards. Measurements of played trumpet directivities
have demonstrated good agreement with those produced
by an artificially excited trumpet with an accompanying
manikin and previously reported single-capture directivi-
ties of lower resolution. The results confirm the expec-
tation that the played trumpet is a directional source
with a directivity index value exceeding 10 dB at 4 kHz.
The results also demonstrate the importance of musician
diffraction effects, which are essential in practical appli-
cations. Future work could explore the impacts of trum-
pet mutes on directivities and apply the measurement
techniques to many other musical instruments. Inves-
tigations on reference microphone positioning, alterna-
tive normalization approaches, or other spatial smoothing
techniques could improve the quality of directional data.
Further analysis of spatial aliasing limitations on direc-
tivity measurements would also enhance this vital area of
acoustics.

Acknowledgments

The authors express appreciation for funding from the William
James and Charlene Fuhriman Strong Family Endowed
Fellowship Fund for Musical Acoustics.

Conflicts of interest

The authors declares that they have no conflicts of interest
in relation to this article.

Data availability statement

The data that support the findings of this study are
available from the authors upon reasonable request.

References

1. M. Clark, P. Minter: Dependence of timbre on the tonal
loudness produced by musical instruments. Journal of the
Audio Engineering Society 12 (1964) 28–31.

2. B.A. Bartlett: Tonal effects of close microphone place-
ment. Journal of the Audio Engineering Society 29 (1981)
726–738.

3. B. Bartlett: Tonal effects of classical music microphone
placement. Audio Engineering Society Convention 74
(1983) 1994.

4. S.D. Bellows, T.W. Leishman: Optimal microphone place-
ment for single-channel sound-power spectrum estimation
and reverberation effects. Journal of the Audio Engineer-
ing Society 71 (2023) 20–33. https://doi.org/10.17743/
jaes.2022.0052.

5. F. Otondo, J.H. Rindel: The influence of the directivity
of musical instruments in a room. Acta Acustica United
with Acustica 90 (2004) 1178–1184.

6. F. Otondo, J.H. Rindel: A new method for the radiation
representation of musical instruments in auralizaitons.
Acta Acustica United with Acustica 91 (2005) 902–906.

7. J. Meyer: The sound of the orchestra. Journal of the Audio
Engineering Society 41 (1993) 4.

8. C.-H. Jeong, J.-G. Ih, C.-H. Yeon, C.-H. Haan: Prediction
of the acoustic performance of a music hall considering
the radiation characteristics of Korean traditional musi-
cal sources. Journal of the Korean Acoustical Society 23
(2004) 146–161.

9. AES56-2008 (r2019): AES Standard on Acoustics: Sound
Source Modeling: Loudspeaker Polar Radiation Measure-
ments. Audio Engineering Society, New York, 2019.

10. C.L.F. Group: CLF: A common loudspeaker format. Syn-
Aud-Con Newsl. 32 (2004) 14–17.

11. Ahnert Feistel Media Group: GLL: A New Stan-
dard For Measuring and Storing Loudspeaker Perfor-
mance Data, 2007. https://www.afmg.eu/en/gll-loud

speaker-data-format-white-paper?.
12. M. Kob: Impact of excitation and acoustic conditions on

the accuracy of directivity measurements, in: Proceedings
of ISMA, Le Mans, France, 2014, pp. 639–643.

13. D.W. Martin: Directivity and the acoustic spectra of brass
wind instruments. Journal of the Acoustical Society of
America 13 (1942) 309–313. https://doi.org/10.1121/
1.1916182.

14. J. Meyer, K. Wogram: Die Richtcharakteristiken des
Hornes [The directional characteristics of the horn]. Das
Musikinstrument 6 (1969) I–XII.

15. A.C. Marruffo, A. Mayer, A. Hofmann, V. Chatziioannou,
W. Kausel: Experimental investigation of high-resolution
measurements of directivity patterns, in: Proceedings of
DAGA, Vienna, 2021.

https://doi.org/10.17743/jaes.2022.0052
https://doi.org/10.17743/jaes.2022.0052
https://www.afmg.eu/en/gll-loudspeaker-data-format-white-paper?
https://www.afmg.eu/en/gll-loudspeaker-data-format-white-paper?
https://doi.org/10.1121/1.1916182
https://doi.org/10.1121/1.1916182


16 S.D. Bellows et al.: Acta Acustica 2025, 9, 13

16. A.C. Marruffo, J. Thilakan, A. Hofmann, V. Chatziioan-
nou, M. Kob: High-resolution 3D directivity measure-
ments of a trumpet, in: Proceedings of DAGA, Stuttgart,
2022.

17. J. Meyer: Die Richtcharakteristiken von Klarinetten [The
directional characteristics of clarinets]. Das Musikinstru-
ment 14 (1965) 21–25.

18. E. Maestre, G.P. Scavone, J.O. Smith: State-space mod-
eling of sound source directivity: an experimental study
of the violin and the clarinet. Journal of the Acousti-
cal Society of America 149 (2021) 2768–2781. https:

//doi.org/10.1121/10.0004241.

19. S.D. Bellows, T.W. Leishman: Modeling musician diffrac-
tion and absorption for artificially excited clarinet direc-
tivity measurements. Proceedings of Meetings on Acous-
tics 46 (2022) 035002. https://doi.org/10.1121/2.

0001586.

20. J. Meyer: Die Richtcharakteristiken von Oboen und
Fagotten [The directional characteristics of the oboes and
bassoons]. Das Musikinstrument 15 (1966) 958–964.

21. T. Grothe, M. Kob: High resolution 3D radiation measure-
ments on the bassoon, in: Proceedings of ISMA, Detmold,
Germany, 2019, pp. 139–145.

22. J. Meyer: Die Richtcharakteristiken von Geigen [The
directional characteristics of violins]. Instrumentenbau-
Zeitschrift 18 (1964) 275–281.

23. G. Weinreich: Directional tone color. Journal of the
Acoustical Society of America 101 (1997) 2338–2346.
https://doi.org/10.1121/1.418213.

24. L.M. Wang, C.B. Burroughs: Directivity patterns of
acoustic radiation from bowed violins. CASJ 3 (1999)
9–17.

25. P.R. Cook, D. Trueman: Spherical radiation from stringed
instruments: measured, modeled, and reproduced. CASJ
3 (1999) 8–14.

26. L.M. Wang, C.B. Burroughs: Acoustic radiation from
bowed violins. Journal of the Acoustical Society of Amer-
ica 110 (2001) 543–555. https://doi.org/10.1121/1.

1378307.
27. H.J. Vos, O. Warusfel, N. Misdariis, D. de Vries: Analysis

and reproduction of the frequency spectrum and directiv-
ity of a violin. Journal of the Acoustical Society of the
Netherlands 167 (2003) 1–11.

28. G. Bissinger, E.G. Williams, N. Valdivia: Violin f -hole
contribution to far-field radiation via patch near-field
acoustical holography. Journal of the Acoustical Society
of America 121 (2007) 3899–3906. https://doi.org/10.
1121/1.2722238.

29. S. Berge: Models for Vibration and Radiation of Two
Stringed Instruments. Norwegian University, 1996.

30. J.-L. Le Carrou, Q. Leclere, F. Gautier: Some character-
istics of the concert harp’s acoustic radiation. Journal of
the Acoustical Society of America 127 (2010) 3203–3211.
https://doi.org/10.1121/1.3377055.

31. J. Meyer: Die Richtcharakteristiken des Flügels [The
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