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ABSTRACT

Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct
implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic
theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly
coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold
calcium plasma, we track the complete ion distribution function f ðx; v; tÞ. We discover that commonly used kinetic models (Bhatnagar–
Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma for-
mation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations
underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams.
This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and
flow-induced instabilities in strongly coupled systems.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0253054

I. INTRODUCTION

Hydrodynamic models accurately predict plasma transport when
the mean free path is shorter than the plasma scale length.1–4 This
capability is critical for experiment planning, data analysis, plasma
characterization, and parameter optimization.5 Radiation-
hydrodynamic codes like LILAC,6 HYDRA,7 and xRAGE8 have been
shown to successfully capture the temperature, density, and neutron
yield of experiments at NIF and OMEGA. They nicely model the influ-
ence of target surface defects, voids, and structural imperfections on
ICF neutron yield in the hydrodynamic limit.9,10 Hydrodynamic codes
are widely used because they are much faster than kinetic codes and
incorporate radiation effects much more easily.11

However, many plasmas start far from the hydrodynamic limit.12

Kinetic effects arise when the velocity distributions are strongly
non-Maxwellian, which is the inevitable outcome of nearly every

laser–matter interaction, including laser direct-drive experiments. In
some cases, when experiment and simulation are directly compared,
hydrodynamic codes do not reproduce the experiments even though
the hydrodynamic limit is reached,13 suggesting the presence of kinetic
effects outside the hydrodynamic approximation. In models of laser
direct-drive experiments at OMEGA, for example, understanding
kinetic effects is critical.6

Kinetic codes derive from the plasma kinetic equation

@f
@t

þ v � rxf þ qE
m

� rvf ¼ C f½ �; (1)

where f ðx; v; tÞ is the distribution function for a particular ion species
of massm, and E represents the electric field. Given a model of the col-
lision operator C, the kinetic equation can be solved for the distribu-
tion function f ðx; v; tÞ. When the distribution function is near
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Maxwellian, one can derive hydrodynamic models by taking velocity
moments of Eq. (1). Validating the various collision operator models
and determining when the hydrodynamic approximation is appropri-
ate is as an ongoing and important concern in many areas of plasma
science.

In a series of papers, Killian’s group at Rice University studied the
kinetic-to-hydrodynamic transition using ultracold neutral plasmas
(UNPs).14–16 By placing a series of obstructions in the ionizing laser
beam, those authors created a UNP with “sculpted” initial condi-
tions.17 They found that UNPs with sharp and deep density gradients
produced non-thermal ion velocity distributions. They explored the
evolution of a UNP with a gap in the middle. Their gap had sharp
edges, leading to ion jetting across the gap. They compared their results
to a hydrodynamic code and found that shallower gradients, smaller
gaps, and lower initial electron temperatures led to more hydrody-
namic behavior.

In this paper, we take a closer look at the kinetic-to-
hydrodynamic evolution of a UNP with steep density gradients. We
create a strongly coupled calcium UNP with steep density gradients.
Using precision laser spectroscopy, we determine the plasma ion phase
space distribution function. We compare these distributions with pre-
dictions from a kinetic code that uses two different collision operators.
We find that our simulations generally reproduce plasma behavior,
with significant differences in the approach to equilibrium. The kinetic
codes rely primarily on low-order moments of the distribution func-
tions and do not capture all of the observed phase-space dynamics.
This platform enables precision tests of kinetic theories and opens new
possibilities for studying plasma stopping power and flow-induced
instabilities in strongly coupled systems.

II. UNPS AND HEDPS

The UNP environment serves as an efficient high energy-density
plasma (HEDP) simulator.18 The connection lies in the Yukawa
model.19,20 In general, HEDPs and UNPs are multicomponent plasmas
in which pairwise ion interactions can be approximated using a
screened, repulsive 1=r potential

VðrijÞ ¼
ZiZje2

rij
exp � rij

k

� �
; (2)

where Z and Zj are the (effective) ionization states of ions i and j, and
rij is the distance between them. In this model, electrons serve as a neu-
tralizing background charge, screening ion charges with a characteris-
tic length k. The screening length is often taken to be the Debye length
kD ¼ ½kBTee0=ðne2Þ�1=2, where n is the electron density and Te is the
electron temperature. However, other formulations of this length
include ion screening and quantum and strong-coupling effects.21

The Yukawa model does not capture all of the expected physics
in HEDPs or UNPs. Electron-ion thermalization,22–33 for example, is
not explicitly included in the Yukawa model. Quantum effects,34,35

such as bound states, three-body recombination, and quantum degen-
eracy, are also not included. HEDPs and UNPs share similar physics
in these non-Yukawa aspects as well.

When the Yukawa model is valid, two parameters uniquely define
the plasma state.36,37 One is the unscreened strong-coupling parameter

C ¼ Z2e2

aws

1
kBT

; (3)

where aws ¼ ð3=4pniÞ1=3 is the Wigner–Seitz radius (ion sphere
radius), ni is the ion density, and T is the ion temperature. The other is
the inverse scaled screening length

j ¼ aws
k

; (4)

where k is once again the Yukawa screening length of Eq. (2). Both
UNPs and HEDPs can be well-described by Yukawa interactions and
exist in overlapping regions in the C� j parameter space.18,21

The Yukawa model is commonly used to describe ion–ion inter-
actions in both weakly and strongly coupled plasmas.19,36 Examples of
strongly-coupled plasmas with C > 1 include white dwarf stars,38 the
cores of Jovian planets,39,40 some stages of laser-driven plasma experi-
ments6,41 and X- and Z-pinch plasmas,42 dusty plasmas,43,44 quark-
gluon plasmas,45,46 dusty plasmas consisting of highly charged dust
particles,47–50 non-neutral plasmas,51–53 ions in UNPs54–56 and other
systems.

Comparing model predictions with experimental data provides
an important check of plasma theories in the strongly coupled plasma
regime. The range of strong coupling parameter values accessible to
UNPs57 is in the range of C � 2. Using sculpted plasmas,17 it is possi-
ble to create kinetic conditions that are far from equilibrium. When
C � 1, collisions are described using small-angle scattering that leads
to various prescriptions for Coulomb logarithms.28,58 The Coulomb
logarithm description can be extended up to C � 1 using a numeri-
cally computed binary cross sections.21 Ultimately, for C � 1, one
needs to include collective phenomena.59

Strong coupling also introduces new behaviors in the plasma that
arise from spatial order. For example, the scaled viscosity displays a
minimum near C � 5 to 10, increasing toward very large values of the
strong coupling parameter.21 As C increases toward 1, many-body
hard collisions become important. The characteristic length scale
changes from the Debye length to the inter-particle spacing. As C
increases beyond C ¼ 10 to greater coupling, viscosity increases again.
Isolating transport processes in HEDPs is difficult because many dif-
ferent processes compete.60,61 Ideally, a precision experiment which
enables isolation of one or two simple processes would make it possible
to evaluate theoretical treatments. UNPs provide such an opportunity
in a range of C and j relevant to HEDP experiments.62

III. EXPERIMENT

Three excellent reviews describe how UNPs are generated, diag-
nosed, and modeled.54,55,63 UNPs are strongly coupled, non-
degenerate, quasi-homogeneous, quasi-steady-state, Z ¼ 1 plasmas
with accurately known initial conditions.64 They provide an idealized
platform for measuring plasma transport properties,18,64–70 and can
be used to simulate transport in HEDPs.16,18,57,71–77 Some studies
in our lab include dynamics of strongly coupled neutral Coulomb
systems,78–81 exploring the HEDP/UNP crossover,18,71 ion transport
properties of binary ion mixtures,64,65,72 and the density evolution of
partially magnetized plasmas.66,82,83

Our UNPs are created by photo-ionizing laser-cooled Ca atoms
in a magneto-optical trap (MOT).64,66,72,84 The MOT is formed by
overlapping six counterpropagating laser beams with an atomic beam
in the center of a magnetic quadrupole field. Ionizing laser pulses at
423 and 390nm form the Caþ plasma, as indicated in Figs. 1(a)–1(c).
The difference of the ionization energy and the photon energy of the
photo-ionizing laser sets the initial electron temperature, typically
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2DE=3kB ¼ Te ¼ 10–400K. On the other hand, the initial ion tem-
perature is determined by disorder-induced heating, usually Ti ¼ 1K,
depending on the density.78,85,86 When the ionizing lasers are spatially
smooth, the density of the plasma equals the density of the neutral
atom cloud, and it evolves self-similarly87

nðr; tÞ ¼ n0

ð1þ t2=s2eÞ3=2
exp � r2

2r20ð1þ t2=s2eÞ

" #
: (5)

The peak plasma density is in the range of n0 ¼ 108–1010 cm�3,
the initial rms size is r0 � 1mm, and the characteristic expansion

time is se ¼ ½mr20=ðkBTeÞ�1=2. The resulting plasma is just inside
the strongly-coupled plasma regime with C ¼ 2, although a range of
C ¼ 0:1–11 is possible.57

We analyze these plasmas using laser-induced fluorescence
(LIF).64,72,88 A probe laser beam tuned to the Caþ 397 nm resonance
[Fig. 1(b)] is shaped to be 1 cm wide in the y-direction and 1mm thick
in the x-direction, and it is centered on the plasma [Fig. 1(c)]. Ion fluo-
rescence in the illuminated portion of the plasma is imaged onto a
gated ICCD camera, allowing us to record a cross-Sec. of the ion den-
sity distribution near the center of the plasma. The ICCD camera is
triggered after a delay time of 0–20ls and captures fluorescence dur-
ing a short time window, typically between 25 and 200ns. Identical
plasmas are generated 10 times per second. To improve the signal-to-
noise ratio, we repeatedly measure ion fluorescence on 50 sequentially
created plasmas with identical measurement conditions.

We adjust the frequency of the probe laser beam in
Df ¼ 20MHz steps that span the entire velocity distribution. For ions
moving at the appropriate velocity, the probe laser beam is Doppler-
shifted into resonance, v ¼ kDf , where k is the atomic transition
wavelength. The ICCD camera then records where ions at that velocity
are located in the plasma. By analyzing the images at different probe
laser frequencies, we are able to map out a spatially resolved ion distri-
bution function at the chosen delay time. The Doppler shift provides
information about the velocity component that is parallel to the probe
laser beam propagation direction. The camera gives the location of
those ions.

As shown in Fig. 1(d), we integrate the fluorescence image over a
range of60:5mm in y to obtain a portion of the distribution function
as a function of z at that ion velocity and time, f ðz; vn; tnÞ, where vn is
the ion velocity Doppler-shifted into resonance with the probe laser
beam and tn is the delay time at which the image was taken. This y-
integrated image becomes one row in the phase-space image of the
plasma, showing where all the ions of that particular velocity are
located in space. We repeat this measurement for a wide range of
probe laser beam frequency detunings to generate the image shown in
Fig. 1(e).

The image in Fig. 1(e) represents the convolution of the true dis-
tribution function with the Lorentzian linewidth of the Caþ 397nm
transition. The convolution appears in both velocity v and position z
due to hydrodynamic flow in the z direction. Deconvolving the images
is challenging due to the non-trivial hydrodynamic velocity distribu-
tion in sculpted plasmas.

We generate sculpted plasmas17 by spatially structuring the ioniz-
ing laser beam. We place a wire in the ionizing laser, directly in front
of a lens pair. The wire is 1:1 imaged into the plasma and the ionizing
laser beam is nearly collimated at the plasma82 when the lenses are
identical, spaced by 2f, and the wire-to-plasma distance is 4f. For this
work, we use a pair of 200-mm focal length UV-achromatic lenses to
image the wire onto the plasma. The plasma forms as the optical “neg-
ative” of the wire. A wire is imaged as a sheet at the plasma, creating
two hemispherical plasmas separated by a sharp-edged gap. For the
data shown in this paper, our wire diameter and the plasma gap are
both 0.28mm.

In our experiment, we collect fluorescence images when the probe
laser beam propagates both parallel and perpendicular to the direction
of the density gradient. In this way, we generate information about
f ðy; vy; tÞ and f ðz; vz ; tÞ. Due to the symmetry of our experiment,
f ðx; vx; tÞ ¼ f ðy; vy; tÞ.
IV. MULTI-SPECIES KINETIC MODELING

Kinetic models track particle distributions in phase space. They
accommodate non-equilibrium flow features such as e.g., bump-on-
tail interactions, two stream instabilities. The cost is that they are more

FIG. 1. Generating the phase space fluorescence maps. (a) Partial energy level diagram for Ca. The wavelength of the 390 nm laser determines the electron energy. (b) Partial
energy level diagram for Caþ. (c) Schematic representation of fluorescence measurements. A pair of lenses collects plasma fluorescence and images it onto an ICCD camera
sensor. A spectral filter is used to isolate only the 397 nm fluorescence. (d) Images at Df ¼ �200; 0;þ200MHz, which yields the vz information. Camera images show ions
Doppler-shifted into resonance with the probe laser beam. Dashed white lines indicate the physical size of the plasma (r ¼ 2r0). Red lines indicate the one-dimensional
slice in z, with velocity information coming from Df . (e) Phase space fluorescence map. Plasma conditions: n0 ¼ 1:3	 109 cm3, Te ¼ 96 K, Ti ¼ 1 K, r0 ¼ 1:29mm, delay
time¼ 4ls, measurement window¼ 200 ns.
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computationally expensive than hydrodynamic models due to their
higher dimensionality.

A. Collision models

We use two collision operators in our kinetic code: the
Bhatnagar–Gross–Krook (BGK)89–91 and the Lenard–Bernstein (LB)92

models.
The BGK collision term in Eq. (1) has the form

CBGK f½ � ¼ Mðx; v; tÞ � f ðx; v; tÞ
sðx; tÞ ; (6)

where the equilibriumMaxwellian distribution is

Mðx; v; tÞ ¼ nðx; tÞ exp �ðuðx; tÞ � vÞ2
2v2thðx; tÞ

" #
: (7)

Here, nðx; tÞ describes the spatial distribution, v2thðx; tÞ ¼ kBTðx; tÞ=m
is the ion thermal velocity, equal to the second central moment of
the ion velocity distribution, and uðx; tÞ is the local average flow
velocity. The parameter sðx; tÞ is the characteristic relaxation time
for the system. It includes effects of ion thermalization, mixing,
electron-ion collisions, viscosity, and other transport properties.

We explore the importance of velocity diffusion by using a differ-
ent collision operator. Following the work of Lenard and Bernstein,92

we set the right-hand side of Eq. (1) to

CLB ¼ 1
sðx; tÞ

@

@v
� vf ðx; v; tÞ þ v2thðx; tÞ

@f ðx; v; tÞ
@v

� �
: (8)

For both collision models, the collision times s are a free parame-
ter that can be tuned to match specific properties, e.g., temperature or
momentum relaxation rates. In this work, the Ion–ion s are chosen to
match temperature relaxation using the Stanton–Murillo Transport
(SMT) cross sections,21 which are valid into moderately coupled
plasma regimes. These collision frequencies, as well as the derivations
of the BGK and LB forms of the collision operator themselves, implic-
itly rely on the assumption that the distribution functions are near
Maxwellian; however, they are favored for their simplicity relative to
the much more computationally expensive Boltzmann or Fokker–
Planck models.

B. Electric field

The electric field in Eq. (1) is modeled through a nonlinear
Poisson–Boltzmannmodel, where

neðx; tÞ ¼ ne0 exp e/ðx; tÞ=kBTeðx; tÞ½ �; (9)

Eðx; tÞ ¼ �r/ðx; tÞ; (10)

where ne0 is a normalization constant that ensures charge neutrality.
Using the Poisson equation for the electric field, this results in the non-
linear equation

�r2/ ¼ 4pe½Zn� ne0 expðe/=kBTeÞ�; (11)

where Z is the charge of the ion particles; in this study, we have Z ¼ 1.
The electron-ion temperature relaxation is modeled with an addi-

tional set of equations for the electrons

@Teðx; tÞ
@t

þ 2e
3kB

uðx; tÞ � Eðx; tÞ ¼ Tðx; tÞ � Teðx; tÞ½ �
seiðx; tÞ ; (12)

and by adding an additional consistent electron-ion BGK collision
term to the right hand side of Eq. (1),

Cie ¼ Mieðx; v; tÞ � f ðx; v; tÞ
sieðx; tÞ : (13)

Here, the relaxation times sei; sie are given by standard Landau–
Spitzer rates,58 using GMS Coulomb Logarithms.28 For more details
on the formula for multispecies target distribution Mie, see Haack
et al. on multi-species BGK operators.90

C. Code details

Our BGK model is a finite-volume, 1D-3V code capable of
modeling multiple kinetic species.93 We use Nx ¼ 496 spatial grid
points, each 5.2lm wide, and Nv ¼ 1003 velocity grid points with a
resolution of 2.8 m/s. The time step is 1 ns. The ions are the single
kinetic species. The simulation is initialized with the experimentally
measured f ðy; vy; 0Þ and f ðz; vz; 0Þ.

The ion distribution function is evolved using Eq. (1) with colli-
sion operators in either Eq. (6) or Eq. (8). We solve the kinetic equa-
tion in conjunction with Eqs. (10), (11), and (12). The nonlinear
equation (11) is solved using a standard Newton–Raphson method.93

V. RESULTS
A. Ion distribution function evolution

Experimental and simulated distribution function results are
shown in Fig. 2. The z-component of the distribution function,
f ðz; vz ; tÞ is represented using a logarithmic false-color plot. An imper-
fection in the optical imaging system causes additional fluorescence to
appear in the gap between the plasmas. This is most clearly evident in
the first and second panels of Fig. 2(a), for 0.1 and 1.1ls. We have ver-
ified that the ion density in the gap is less than 1% of the peak plasma
density using an independent measurement. For these experimental
data, the peak density is 1:2	 109 cm�3. The initial electron tempera-
ture is Te ¼ 96K. The ion fluorescence is integrated over a 200 ns win-
dow centered on the time displayed in the plots.

The steepness of the density gradient at the edge of the gap can
be inferred from ion acceleration measurements. If we assume that the
ions are accelerated by the ambipolar field, the acceleration can be
written as

az ¼ � kBTe

mi

1
n
@n
@z

: (14)

When Te ¼ 96K, the measured acceleration is 109 m/s2, suggesting a
gradient length scale of

‘ ¼ 1
n
@n
@z

� ��1

¼ 20 lm: (15)

This method of inferring the density gradient has some uncertainties.
Our simulations indicate that both the gradient and the density con-
trast ratio in the gap influence the initial ion acceleration.

The experimental data are compared with the simulation in
Figs. 2(b) and 2(c). Both the BGK and LB simulations reproduce the
ion jetting and counterpropagating plasma flow at 1.1 and 3.1ls. The
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thermalization rate in both simulations is somewhat slower than the
experiment. Because the experimental inputs are well known, the sim-
ulations are tightly constrained. Referring to Eq. (1), only the terms on
the right-hand side are in question. For kinetic codes, the parameters
are the electron model, the collision frequency, and the form of the col-
lision operator.

For the electron model, we use a Poisson–Boltzmann equation.
The electrons are modeled as a fluid. We tried running the simulation
treating the electrons as a second kinetic species. However, the large
ion-to-electron mass ratio caused the simulation to run unacceptably
slowly.

We vary the form of the collision operator using both BGK and
LB collision operators, Eqs. (6) and (8). The primary difference is that
the LB operator adds a velocity diffusion term. From the data in Fig. 2,
this diffusion term speeds the approach to equilibrium, but in a way
that doesn’t precisely match the experimental data.

Varying the collision frequency also does not improve the agree-
ment between the simulation and experiment. In both the BGK and
LB simulation, decreasing the collision frequency decreases the ther-
malization rate. On the other hand, increasing the collision frequency
dramatically decreases the ion jetting into the gap. Ions accelerate out
from the two sides of the gap, collide in the middle without overlap-
ping, and generate a broad Maxwellian velocity distribution. In addi-
tion, the increased collision frequency increases the pressure in the
gap, restricting the plasma expansion at the gap edge.

B. Role of electron temperature in ion acceleration

The agreement between the experiment and simulations at 0.1
and 1.1ls in Fig. 2 validates the electric field model described in Sec.
IVB. At these times, when the relative ion velocities in the gap are
high, we expect the ballistic motion and electric fields to dominate the
evolution of the ion distribution making the collision terms negligible.

At even earlier times, the electrons may not be Maxwellian.
Nonthermal electrons could race into the gap ahead of the ions, con-
tributing to a greater electric field than predicted by our model.

We study this possibility by measuring the ion acceleration dur-
ing the first 25 ns of plasma evolution. In the experiment, we set the
camera delay time to 0 ns and the camera measurement duration to
only Dt ¼ 25 ns and measure the z-component of the ion distribution
function, f ðz; vzÞ. From this we calculate the z-component of the
hydrodynamic velocity as a function of z,

FIG. 2. The z-component of the ion distribution function on a logarithmic scale. (a) Experimental results. Because the experimental result derives from LIF, the underlying veloc-
ity distribution is convolved with the atomic linewidth. (b) Simulation with the BGK collision operator. (c) Simulation with the LB collision operator, Eq. (8).

FIG. 3. Change in maximum velocity vs initial electron temperature in the first 25 ns
of plasma evolution. The black circles are the experimental values, the blue dot-
dashed line is a linear fit to the data, the shaded region represents the 1 r estimate
of the uncertainty in the fit. The red circles and dotted line show values from the
simulation multiplied by a factor of 4. The BGK and LB simulation predict the same
acceleration because they use the same electric field model.
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hvzðzÞi ¼

ð
vzf ðz; vzÞ dvzð
f ðz; vzÞ dvz

: (16)

The maximum excursions from zero velocity are plotted in Fig. 3. We
analyze the simulation data in the same way, averaging the velocity dis-
tribution over the first 25 ns and calculating the hydrodynamic velocity
using Eq. (16). These data are also shown in Fig. 3.

Both the experiment and the simulation reveal a linear dependence
of the ion acceleration on the initial electron temperature. The simula-
tions underpredict the initial acceleration, as expected. However, this
underprediction is inconsequential in the overall plasma evolution,
because the electrons quickly thermalize. The electron density model in
Eq. (10) is a good approximation for most of the plasma evolution.

C. Thermalization

In Fig. 4, we compare the rms velocity of the ion distribution
function in the center of the gap along the z (longitudinal) and y
(transverse) directions. When the counterstreaming plasmas have
merged, we extract the rms width by fitting the fluorescence line shape,
Sðy; z; �Þ, to a Voigt profile,

Sðy; z; �Þ ¼ aRe w ~z � ~�0ðy; zÞ½ �� �
; (17)

where ~z � ~�0ðy; zÞ ¼ ½� � �0ðy; zÞ þ ic�=½rðy; zÞ ffiffiffi
2

p � and w[x] is the
Faddeeva function. The Voigt profile is the convolution of a
Lorentzian and Gaussian line shape. The isolated atom line shape is
Lorentzian. The measured laser-induced fluorescence line shape con-
volves the velocity distribution with the atomic response. When the
velocity distribution is Gaussian, fitting the fluorescence line shape to
the Voigt profile allows us to extract the underlying rms Gaussian
velocity width. In the fit, we use the amplitude a, the center frequency
�0ðy; zÞ, and the rms Gaussian width rðy; zÞ as fit parameters. We use
this method to determine vrms for all the y axis data in Fig. 4 and also
for the z axis data after 5ls.

On the other hand, when the distribution function contains mul-
tiple peaks, we calculate the rms velocity using from the fluorescence
line shape

vz;rmsðzÞ ¼

ð1
�1

ðvz � uzÞ2Sðz; vzÞ dvzð1
�1

Sðz; vzÞ dvz

2
6664

3
7775
1=2

; (18)

where uz is the z-component of the hydrodynamic velocity. We use
this method for the z axis data in Fig. 4 for 0 < t < 5 l s. Using Eq.
(18) overestimates the rms velocity because of fluorescence measure-
ments automatically include a convolution of the velocity distribution
with the atomic line shape. However, in the data of Fig. 4, the power-
broadened Lorentzian half-width corresponds to a velocity of 6.9 m/s.
For the multi-peaked distributions earlier than 5ls in Figs. 2 and 4,
this additional broadening is negligible.

The data in Fig. 4 provide insights into the details of the kinetic
simulations. In the longitudinal direction, the simulations match each
other and the experiment for the second moment of the velocity distri-
bution. In the transverse direction, the simulations overpredict the
broadening of the second moment. This is likely due to the isotropic
nature of the collision model’s treatment of post-collisional velocities.
The BGK model assumes a spherical Gaussian post-collision velocity
distribution. An improved model that used an ellipsoidal distribution
would better capture scattering in the direction of particle motion.94,95

Similarly for LB, which broadens the fastest in Fig. 4, an improved
model would allow for non-symmetric diffusion tensor.96

In the experiment and both simulations, we verify that the trans-
verse distribution functions are nearly Maxwellian at all times.
However, the longitudinal distributions are more complicated. In the
experiment, the bimodal nature of the longitudinal velocity distribu-
tion in the center of the plasma has relaxed by 5ls [see Fig. 2(a)] and
reached a local equilibrium by 7ls (see Fig. 4). A similar situation is
true for the LB simulation. However, the BGK simulation has not fully
relaxed by 7ls.

VI. DISCUSSION

One of the aims of this study is to probe the validity of kinetic
models compared to a simple, well-characterized experiment, one in
which the initial ion density, electron temperature, spatial density pro-
file, and charge state are known. In both the BGK and LB simulations,
the approach to thermalization is much slower than in the experiment.
This is evident in both Figs. 2 and 4. This discrepancy likely stems
from fundamental limitations in both kinetic models. The BGK model
approximates the collision operator by relaxing the distribution func-
tion toward a local Maxwellian at a single characteristic rate. It consid-
ers only the first three velocity moments (density, momentum, and
energy) and assumes these moments adequately capture the essential
physics of thermalization. For example, the second moment of the
velocity distribution in the longitudinal direction matches the experi-
ment in Fig. 4. However, this simplified treatment may not properly
account for the complex velocity-space structures that develop in
strongly-coupled plasmas with steep gradients.

The Lenard–Bernstein operator introduces velocity-space diffu-
sion and friction, potentially capturing some additional physics miss-
ing from BGK. However, it uses only the same low-order moments to

FIG. 4. The rms velocity (the square-root of the second centered moment) of the
ion distribution function in the z (longitudinal) and y (transverse) directions. The
experimental data are shown in blue circles and triangles. The experimental and
simulation longitudinal data are similar. The transverse broadening rates show a
wider discrepancy.
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define these terms. It also relies on a factorized collision frequency that
may not accurately represent the true collision processes in our system.
The velocity-space derivatives in LB help describe the smoothing of
sharp features in the distribution function. In our hands, the LB model
over predicts the relaxation of counterpropagating ion flow.

Our electric field model, based on Poisson–Boltzmann in Eq.
(12), treats electrons as a fluid rather than a kinetic species. While this
assumption significantly improves computational efficiency, it may
oversimplify the electron response to density gradients. The fluid treat-
ment cannot capture non-Maxwellian features in the electron distribu-
tion function that could affect ion thermalization through modified
screening and electric field fluctuations.

Several factors could contribute to observed discrepancies
between the simulations and the experiment and also between the two
simulations.

• The assumption of a single relaxation time in BGK may be too
simplistic, as different moments of the distribution function
might relax at different rates in strongly coupled systems.

• Both models account for strong coupling effects that could
enhance thermalization through collective modes only implicitly,
through the SMT collision cross-sections.

• The use of only three moments in BGK might miss important
higher order effects that become relevant when density gradients
are steep.

• Both kinetic models derive from a perturbative expansion of the
Boltzmann equation. BGK is derived using an expansion around
an equilibrium distribution, plus further approximations. LB
derives from the Fokker–Planck equation, which approximates
the collision physics assuming small angle scattering. These per-
turbative approaches may not be valid for our highly non-
equilibrium plasma in the gap.

• The factorized collision frequencies in both models may not cap-
ture the full velocity dependence of the actual collision processes
and collision cross sections.

• The fluid treatment of electrons may miss important kinetic
effects in the electron response that could modify the electric field
and affect ion thermalization.

An extended BGK model (EBGK) that includes additional
moments and a more sophisticated treatment of the collision fre-
quency might better match the experimental results. Additionally,
treating electrons kinetically, while computationally intensive, could
provide insight into whether electron kinetic effects significantly influ-
ence the thermalization rate. However, the observed discrepancies sug-
gest that new theoretical approaches may be needed to fully describe
thermalization in strongly coupled plasmas with steep gradients.

With a better model, future work could focus on more complex
interface structures, such as a sharply pointed triangular gap, or sys-
tems in which the plasma density varied significantly on either side of
the gap. Adding the possibility of binary ion mixtures further enriches
the HEDP applicability of future studies.
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