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ABSTRACT:
In shallow-water downward-refracting ocean environments, hydrophone measurements of shipping noise encode

information about the seabed. In this study, neural networks are trained on synthetic data to predict seabed classes

from multichannel hydrophone spectrograms of shipping noise. Specifically, ResNet-18 networks are trained on dif-

ferent combinations of synthetic inputs from one, two, four, and eight channels. The trained networks are then

applied to measured ship spectrograms from the Seabed Characterization Experiment 2017 (SBCEX 2017) to obtain

an effective seabed class for the area. Data preprocessing techniques and ensemble modeling are leveraged to

improve performance over previous studies. The results showcase the predictive capability of the trained networks;

the seabed predictions from the measured ship spectrograms tend towards two seabed classes that share similarities

in the upper few meters of sediment and are consistent with geoacoustic inversion results from SBCEX 2017. This

work also demonstrates how ensemble modeling yields a measure of precision and confidence in the predicted

results. Furthermore, the impact of using data from multiple hydrophone channels is quantified. While the water

sound speed in this experiment was only slightly upward refracting, we anticipate increased advantages of using

multiple channels to train neural networks for more varied sound speed profiles.
VC 2025 Acoustical Society of America. https://doi.org/10.1121/10.0036221
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I. INTRODUCTION

Different seabed environments have acoustically dis-

tinct effects on underwater sound propagation. These effects

are encoded in the sound signal as it travels from source to

receiver. For example, noise from a transiting cargo ship or

tanker encodes information about the ocean environment

that can be used to obtain an estimate of effective seabed

along the propagation path, capturing the cumulative impact

of seabed interactions as sound travels from ships to

receivers. Noise from these ships of opportunity (SOO) has

been used to infer seabed properties with traditional optimi-

zation algorithms, and more recently, with deep learning. In

this work, seabed inference is cast as a classification prob-

lem to bypass the parameter identifiability complications

associated with parameter regression, i.e., the non-

uniqueness caused by parameter correlations1 and sloppi-

ness.2 By selecting catalogs of representative seabeds that

are not too acoustically similar,3,4 a residual convolutional

neural network (CNN) can be trained to predict seabed clas-

ses from ship noise spectrograms.

Ships of opportunity noise has been used for seabed char-

acterization in many optimization algorithms. Several have

noted that SOO noise contains enough information to obtain

effective seabed properties. Studies have used one hydro-

phone,5,6 a vertical line array,7–12 a moored horizontal line

array (HLA),13–16 an L-shaped array,17 a towed HLA,18,19 a

vector sensor,20,21 and one hydrophone on an autonomous

underwater vehicle.22 Geoacoustic inversions with SOO noise

have been performed with least squares based search algo-

rithms,13,15,18,19,23 blind ray deconvolution,7,11 joint time-

frequency inversion,10 and Bayesian optimizations.14,16,21,22,24

Studies have used lower frequencies (20–140 Hz)21 as well as

higher bands (1700–3300 Hz) for parameter estimation.11

As SOO noise has been used for geoacoustic inversion,

researchers have noted several challenges and potential sol-

utions. Nicholas et al.17 noted that the vertical aperture of an

L array provided environmental information, ship range,

and depth information, while the horizontal aperture pro-

vided ship bearing information. Heaney5 noted the chal-

lenges of predicting the full ocean response due to

environmental mismatch between the model and data, com-

pounded by variability with range; he instead moved to the

a)This paper is part of a special issue on Assessing Sediment Heterogeneity

on Continental Shelves and Slopes.
b)Email: tbn@byu.edu
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prediction of average field levels and time spreads of the

acoustic field in the ocean. Tollefsen and Dosso14 quantified

the information content of five low frequency components

received on a moored HLA and concluded that problems

with low signal-to-noise ratio (SNR) could be overcome by

combining multiple data segments. Stotts et al.23 used

10–250 Hz spectrograms to examine the impact of interfer-

ing noise signals on the parameter estimates. Gervaise

et al.6 concluded that attenuation cannot be estimated accu-

rately with their inversion scheme. Due to these limitations,

we choose a seabed classification approach in which the

closest effective seabed is selected instead of inferring indi-

vidual parameters.

Machine and deep learning techniques also can be used

to infer seabed properties.25,26 Some approaches include

neural and statistical classifiers,27 artificial neural net-

works,28,29 generalized additive models,30 Bayesian learn-

ing,9,31 and CNNs.32–35 In these studies, the learned labels

might be modal properties,31,36 the channel impulse

response,9 individual seabed parameter values,29,30,37 or a

seabed type or class.32–35,38 Different types of sound sources

have been used for this purpose, including continuous wave

signals,28,33,38 linear frequency modulated signals,30 and

impulses.31,32,37

Most closely related to the current work are studies that

use SOO noise and supervised learning. Van Komen et al.35

used a CNN to obtain ranges and ship speed on synthetic

spectrograms while providing seabed type predictions.

Additionally, the difference between the types of input data:

complex spectra, magnitude of the spectral density, and

spectral density levels were investigated. They found that

the complex spectral density input was better for range esti-

mation, and spectral density levels were best for seabed

classification. While the study only considered four repre-

sentative seabed classes, a subsequent study by

Escobar–Amado et al.34 applied six different CNN architec-

tures to classify between 34 seabeds and used the trained

networks on SOO spectrograms measured during the Seabed

Characterization Experiment 2017 (SBCEX 2017). Their

work found that ResNet-18 gave the most consistent results

because of the residual skip connections. The catalog of 34

seabeds was determined using the Pearson correlation of

broadband transmission loss (TL) over range, as described

in Forman et al.3 While this 34 seabed catalog has per-

formed well for the SOO spectrograms over the

360–1100 Hz frequency band of interest, the same approach

could be used to identify an appropriate seabed catalog for

different frequency bands or other types of input data.

The studies noted previously used only one hydrophone

located in the middle of the water column. The main contri-

butions of the current work are (1) to evaluate the impact of

using multiple receivers, (2) to illustrate the benefits of

ensemble learning, (3) to determine the most likely seabed

class in the New England Mud Patch region, and (4) to

introduce a new type of data mapping as a preprocessing

step to facilitate more efficient deep learning. Care is taken

to avoid data leakage (described in Sec. II E), which was

present in previous studies, in order to improve the ability of

the trained networks to generalize. The ResNet-18 classifi-

cation networks are trained using SOO spectrograms on

combinations of one, two, four, or eight channels on a verti-

cal line array (VLA). The trained networks are then applied

to SOO spectrograms measured during SBCEX 2017. For

SOO spectrograms with clear striation patterns, the trained

networks predict one of two seabed classes. Our discussion

of these results highlights important factors in developing

generalizable deep learning algorithms for ocean acoustics

applications that provide a measure of confidence through

ensemble learning.

II. METHODS

A. Measured data

The multidisciplinary SBCEX 2017 studied a region of

the continental shelf in the North Atlantic Ocean. While the

experimental site, roughly 95 km south of Martha’s

Vineyard, Massachusetts, is referred to as the “New

England Mud Patch,” the seabed there is composed of a

variety of sediments including mud, clay, silt, and sand. The

bathymetry of the site is relatively flat, approximately 75 m

deep, and is known to have a large region with relatively

thick and uniform upper layer of fine-grained sediment.

SBCEX 2017 occurred in March and April to take advan-

tage of a stable, nearly isothermal the water column.39

The seabed in the experimental area has been studied

extensively. Results of a full-waveform chirp sonar survey

show a layer of mud on top of sand in Fig. 3 of Wilson

et al.39 The two-way acoustic travel time map in Fig. 2 of

Wilson et al. indicates that the thickness of the mud varies

around the measurement area up to a thickness of 12 m. For

the sound speed in this first sediment layer, each of the 19

published estimates included in Fig. 7 of Wilson et al. found

values near unity for the frequency-dependent sound speed

ratio across the sediment-water interface and evidence of

complexity in the exact layering of the sediment.39

Two identical 16-channel VLAs were deployed in dif-

ferent locations by the Marine Physical Laboratory of the

Scripps Institution of Oceanography. VLA 1 and VLA 2

each contained 16 hydrophones spaced 3.75 m apart. The

lowest hydrophone (#16) was located 3 m above the sea-

floor. A diagram illustrating the spacing of hydrophones is

shown in Fig. 1. In previous deep learning seabed classifica-

tion,34,35 only data from the center hydrophone on these

VLAs (#8, located 33 m from the seafloor) were considered.

This work explores how using data from multiple sensors

impacts the performance of a CNN and provides guidelines

for the depths and spacing of the sensors to yield the most

consistent results. Specifically, the input data for the CNNs

are different combinations of one, two, four, and eight chan-

nels from the VLA.

In addition to the structured experiments conducted dur-

ing SBCEX 2017, the VLAs recorded merchant vessels trav-

eling in nearby shipping lanes. A schematic of the locations

of the VLAs and the shipping lanes is shown in Fig. 2.
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These passing merchant ships, which served as SOO, were

identified using vessel traffic data collected by the U.S.

Coast Guard through the Automatic Identification System

(AIS) and retrieved from the Marine Cadastre.40 An esti-

mate for the ship speed in knots and closest-point-of-

approach (CPA) distance to the VLA in km were calculated.

A subset of seven of these measured ship spectrograms are

used in this paper and listed in Table I.

For each channel, the time waveform over a 20 min

window centered around CPA is used to generate spectro-

grams of the SOO passing the array. The sampling fre-

quency of these waveforms is 25 kHz. A fast Fourier

transform (FFT) is performed such that a frequency spacing

of Df ¼ 6:016 Hz is obtained, which matches the frequen-

cies at which the synthetic spectrograms are computed (as

described in Sec. II B). To achieve this Df ¼ 6:016 Hz, the

FFT is performed on blocks with ns ¼ 8310 samples and

50% overlap. Also, a Hanning window was applied (from

the numpy Python package). From each spectrum, frequen-

cies from 360 to 1100 Hz are selected. The frequency range

was chosen to be 360–1100 Hz to avoid corruption from the

350 Hz tones produced by research vessels during the exper-

iment (the RV Endeavor emitted a loud source of noise in

the 300–350 Hz band).

The previously noted FFT parameters are chosen for

our specific application of deep learning. With the memory

constraints often encountered while training deep learning

networks, decisions must be made regarding the relative

importance of the resolution of a single data sample com-

pared to the total number of samples included in a training

dataset. To evaluate the impact of the spectrogram resolu-

tion on the predicted seabed, Amos et al.41 compared results

for three frequency bands and time intervals. This study

showed that using only 123 frequencies over the

360–1100 Hz band obtains the same results as using more

frequencies. The 20 min time interval with 10 s between the

spectra was found to be an ideal balance between using

fewer times and obtaining consistent results. The FFT proc-

essing over the 20 min yields 7219 total time steps, but only

the 121 time steps (spaced 10 s apart) centered on the CPA

are selected for the input data samples. While this is a lower

resolution than often used in ocean acoustics, data manage-

ment considerations and memory limitations motivate the

use of fewer frequencies and time steps.

No time averaging is done over the 10 s interval. This

approach effectively produces a spectrogram consisting of

snapshots of the spectra that are 10 s apart. Comparisons of

a spectrogram before and after the time resampling are

shown in Figs. 3(a) and 3(b). Although the resulting spectro-

grams are less smooth in appearance, this approach better

matches how the synthetic spectrograms are calculated at

discrete ranges, as explained in Sec. II B.

The resulting measured SOO data samples used by the

ResNet-18 networks for prediction contain spectral density lev-

els in dB re 1 lPa2/Hz. As a visual example, spectral density

levels from two of the ships are shown. Spectrograms from

MSC Kalamata and Hafnia Green measured on VLA 2 at four

different channel depths are shown on the left columns of Figs.

4 and 5. The “bathtub” striation pattern typical of SOO spec-

trograms (and other moving sources) is due to the shifting of

FIG. 1. Schematic of the vertical line arrays deployed in SBCEX 2017.

FIG. 2. SBCEX 2017 site in the New England Mud Patch. The deployment

locations of VLA 1 and VLA 2 are marked for reference, as well as the

shipping lanes. The SOO used in this work traveled in these shipping lanes,

with the exception of the Viking Bravery, which traversed a path that was

approximately parallel with the direction of a vector between VLA 1 and

VLA 2.

TABLE I. Details about seven transiting SOO (cargo ships and tankers)

that have strong striations in their spectrograms. CPA range and ship speed

are estimated from AIS data (Ref. 40). Ship transits occurred from Julian

Days 83–90 in 2017.

Ship name Type VLA CPA (km) Speed (kt) Day

Corrido Tanker 2 3.95 14.6 84

MSC Kalamata Cargo 2 3.11 16.7 83

MSC Kalamata Cargo 1 5.95 16.7 83

Tombarra Cargo 2 3.24 16.3 90

Viking Bravery Cargo 2 3.09 14.7 90

Viking Bravery Cargo 1 3.30 14.7 90

Hafnia Green Tanker 2 2.77 10.9 89
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interference patterns as the ship approaches and then leaves

CPA.5 The impact of receiver depth on the spectrogram images

also can be observed. These inter-channel differences are

caused by interference effects and encode information about

the seafloor due to the phase of the Green’s function during

shallow water propagation. This present study seeks to deter-

mine how the additional information affects the performance

of the trained deep learning networks.

B. Synthetic SOO spectrograms

Due to a lack of labeled measured data, we train the

neural networks using synthetic data. To train a neural

network on a synthetic dataset for generalization to mea-

sured data, the synthetic data must capture the character and

variation of the measured data samples, i.e., sufficient over-

lap is needed in the distributions of the real and synthetic

datasets. To this end, the received levels (RL) for the syn-

thetic dataset are simulated by combining the empirical

source spectral levels (SL) for shipping noise developed by

Wales and Heitmeyer42 with modeled TL,

RLðf ; h; zs; zr; rÞ ¼ SLðf Þ � TLðf ; h; zs; zr; rÞ; (1)

where f is frequency, h is a vector of environmental parame-

ters, zs is the source depth, zr is the receiver depth, and r is a

vector of source-receiver ranges. The environmental param-

eters in h include the water depth, the water sound speed

profile (SSP), and the geoacoustic profile of the seabed. The

geoacoustic profile includes parameters such as sound

speed, compressional attenuation, density, shear speed and

attenuation, and thickness of the layers. Receiver depths cor-

respond with measured hydrophone depths as shown in

Fig. 1.

The source spectrum of radiated ship noise is approxi-

mated by the empirical source model described by the unla-

beled equation in Sec. 3 of Wales and Heitmeyer.42 The

source spectral density level in dB/Hz as a function of fre-

quency, f, is calculated as

SLðf Þ¼S0�10logðf 3:594Þþ10logðð1þðf=340Þ2Þ0:917Þ;
(2)

where S0 might be described as the “y-intercept” of the

source spectrum. Wales and Heitmeyer recommend a value

of S0 ¼ 230 dB, but a randomly selected value between 220

and 240 dB can simulate ship noise corresponding to differ-

ent overall levels.

The TL is modeled using ORCA, a range-independent

normal-mode model for acousto-elastic sound propaga-

tion.43 ORCA treats the ocean environment as a waveguide

and computes the frequency-dependent modal eigenvalues

knðf ; hÞ and normalized depth-dependent mode functions

/nðf ; z; hÞ. The mode functions are vertical standing waves

caused by the interference of downward and upward travel-

ing waves at specific angles.

These modal eigenvalues and depth-dependent mode

functions are used to calculate the complex Green’s

function for the wave equation in the ocean environment

h for each source-receiver combination at each fre-

quency f,

pðzs; zr; rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2peip=4

p 1

qs

X

n

/nðzsÞ/nðzrÞ
eiknr

ffiffiffiffiffiffiffi
knr
p ; (3)

where /nðzsÞ and /nðzrÞ are the nth depth-dependent normal

mode functions evaluated at the source depth zs and receiver

depth zr, respectively; knðf Þ is the nth modal eigenvalue; qs

is the density at the source depth; and r is the horizontal

range between source and receiver.

FIG. 3. Data preprocessing steps applied to measured SOO spectrograms.

(a) The bandpassed spectrogram with 123 frequencies. (b) Spectrogram

resampled to the coarser time sampling of 121 time steps over 20 min. (c)

Spectrogram mapped to a domain of [0,1].
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From the modulus of the Green’s function, the

frequency-dependent TL is calculated for each source-

receiver configuration for each environment h,

TLðzs; zr; rÞ ¼ �20 log10ðjpðzs; zr; rÞ=p0jÞ; (4)

with TL in dB relative to p0, the pressure 1 m from the

source. Examples of synthetic spectrograms are displayed in

Fig. 6 for different h. These spectrograms have been mapped

to facilitate more effective deep learning, as discussed in

Sec. II E 1.

C. Environmental parameters

The sound propagation model requires the ocean envi-

ronment h be parameterized using sound speed, density, and

attenuation as a function of depth both in the water column

and in the seabed (shear parameters can also be included in

the seabed). Since the measured data were obtained during

SBCEX 2017, the measured water column sound speeds and

bathymetry of the area where the VLAs were located, as

described in Wilson et al.,39 are used in generating the syn-

thetic spectrograms. The ocean is modeled as 75 m of water.

Three different SSPs are used, each increasing approxi-

mately linearly. The sound speeds are modeled after SSPs

measured during SBCEX 2017, as shown in Fig. 7. Water

density is held constant at 1.04 g/cm3. Previous studies used

ten different measured SSPs, but synthetic data generated

with such similar SSPs were found to cause significant data

leakage, as discussed in Sec. II E. We selected only three of

the previous ten measured SSPs: the mean, minimum, and

maximum, which span the space of possible SSPs.

The purpose of this work is to evaluate the potential for

using multichannel SOO spectrograms in seabed classifica-

tion. To accomplish this, a catalog of suitable seabed classes

has been created that capture the variety of seabeds in shal-

low ocean regions and yet are acoustically distinct. Initially,

in Van Komen et al.,35 four seabed classes were used with

parameterizations h representing deep mud, mud over sand,

sandy silt, and sandy seabeds, taken from previous geoa-

coustic inversions at different locations. However, more

environments were needed to obtain better resolution and

improve the applicability of a deep learning seabed

classifier.

To expand the catalog of seabed classes, a measure of

acoustic similarity was identified to help select seabed clas-

ses that are acoustically distinct enough to be learned by the

classifier. As explained in Forman et al.,3 the determination

of “acoustically distinct” seabeds was made by calculating

the commonly-used Pearson correlation for vectors of TL as

a function of frequency and range. For each of approxi-

mately 60 seabeds from the literature, TL vectors at one-

third octave band center frequencies 250–1250 Hz and

ranges 1–15 km were generated, and the Pearson correlation

of every combination was calculated. One-third octave

bands were chosen to represent the overall effect of the

frequency-dependence of the TL as a function of range.

FIG. 4. SOO spectrograms of the MSC
Kalamata ship during SBCEX 2017

from Channels #2 (a) and (b); #6 (c)

and (d); #10 (e) and (f); and #14 (g)

and (h) on VLA 2. The left column

shows the extracted spectrograms and

the right column shows the same spec-

trograms after they have been mapped,

as described in Sec. II E 1. The AIS

data for MSC Kalamata gives an

approximate speed of 16.7 kt and a

CPA range of 3.11 km from VLA 2.
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Different frequency spacings were tested and yielded similar

results.

In an iterative process, seabeds were included in the

final catalog if their TL vectors had a Pearson correlation

of less than 0.8 with all other seabeds already in the cata-

log. The threshold of 0.8 was selected because correla-

tions greater than 0.8 indicate a strong positive

correlation. The resulting catalog of 34 seabeds was used

in Escobar-Amado et al.34 These seabeds are listed in

Table II along with the references for where the geoacous-

tic profiles were obtained. The seabeds are ordered

according to the sound speed at the top of the sediment.

The sediments with “sbc” at the end of the label and a “*”

next to the number came from geoacoustic inversions

using data measured during SBCEX 2017. Details about

how these seabeds were parameterized may be found in

Howarth et al.4 Schematics of Seabeds 0–21, 28, and 33

are shown in Figs. 8 and 9.

The seabed catalog was used to create a synthetic data-

set of simulated spectral density levels (in dB re 1 lPa2/Hz)

for training and validation testing. For each environment,

sets of CPA ranges, ship speeds, and effective source depth

were randomly chosen. These quantities were chosen to pro-

vide a reasonable variety of ship properties for each combi-

nation of seabed and SSPs. The bounds for ship CPA, ship

speed, and effective source depth encompass a common

range of values for transiting ships. Specifically, the bounds

on CPA are between 0.5 and 15.5 km, ship speeds are

between 8 and 20 knots, and effective source depth is

between 6 and 9 m.

To ensure that the random selections of ship speed and

CPA range are not clumped, the span for each parameter is

divided into bins, and three random samples are drawn

from each bin. Specifically, three ship speeds are randomly

chosen between 8 and 12 knots, 12 and 16 knots, and 16

and 20 knots. Three CPA ranges are randomly chosen

between 0.5 and 3.5 km, 3.5 and 6.5 km, 6.5 and 9.5 km,

9.5 and 12.5 km, and 12.5 and 15.5 km. In previous work,

the center of each bin was included for every environment,

but these are not included in the current study. Thus, for

each environment (combination of seabed and SSP), 15

CPA ranges, nine ship speeds, and one source depth were

randomly chosen. For each data sample, the receiver

depths are selected from those shown in Fig. 1. The result-

ing synthetic dataset has a total of 41 310 spectrograms

with unique source properties. The training dataset is inten-

tionally small to avoid data leakage during training and

validation, which improves the generalizability of the

trained networks.44 More input data will be required when

greater variations in SSPs are included in the training data,

as described in Van Komen et al.35

D. Deep learning

A ResNet-18 neural network architecture was chosen for

seabed classification following the results of Escobar–Amado

FIG. 5. SOO spectrograms of Hafnia
Green during SBCEX 2017 from VLA

2, similar to Fig. 4. The AIS data for

Hafnia Green gives an approximate

speed of 10.9 kt and a CPA range of

2.27 km from VLA 2.
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et al.34 which compared six different CNN architectures. The

networks in that experiment were two three-layer CNNs,

three five-layer CNNs, and one 18-layer residual CNN called

ResNet-18. The ResNet-18 networks had the most consistent

performance in cross-validation testing and generalization on

69 measured SOO spectrograms.

Residual neural networks were first proposed by He

et al.66 and introduced identity mapping skip connections

between layers. The skip connections combat vanishing gra-

dients during the backpropagation step of training a CNN,

which worsens as more layers are added to a network, and

thus skip connections make deeper networks more feasible.

FIG. 6. Synthetic SOO spectrograms

for Seabeds 0 (a) and (b); 4 (c) and (d);

8(e) and 9(f); 12 (g) and (h); 21 (i) and

(j); and 28 (k) and (l) using the ship

speed and CPA range of MSC
Kalamata (left) and Hafnia Green
(right) from VLA 2 Channel #10.

These spectrograms have been mapped

as discussed in Sec. II E 1.
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ResNet-18 is a CNN architecture containing 18 layers and

skip connections, with 11.2� 106 learnable parameters. A

final linear layer connects to the classifier output via a soft-

max activation.67

While previous work used only one-channel input

data,34,35,41 deep learning networks can utilize input data

with multiple channels. Signals recorded on multiple hydro-

phone depths can be stacked together into one input data

tensor. When representing the input spectrogram data as a

tensor, the depth of the tensor is the number of channels in

the data samples (one, two, four, or eight channels in this

study). Each two-dimensional layer of the tensor is the

spectrogram data from one hydrophone. The additional

information from this multichannel approach is hypothe-

sized to increase the performance of the deep learning net-

works for seabed classification. For the majority of this

study, the even-numbered channels on the 16-channel VLA

are used to create different testing scenarios. Using the

even-numbered channels captures the range of information

across the array, while keeping the size of each data sample

low, thus, decreasing the overall computational load.

A one-channel network is trained for each of the even-

numbered channels. For two-channel networks, the 16 dif-

ferent combinations listed in the left column of Table III are

trained. For four-channel networks, the 13 combinations

from the right column of Table III are trained. For eight-

channel networks, one network is trained using all available

even-numbered channels, another network is trained using

the odd-numbered channels, and a third network is trained

using only the deeper eight channels (Channels #9–#16), for

a total of three 8-channel networks. The specific channel

combinations were chosen following the results of a numeri-

cal study by Lau and Neilsen,68 which concluded that the

spacing between hydrophone channels used in a multichan-

nel network does not significantly impact validation accu-

racy for the case of slightly downward refracting SSP.

However, a slightly higher validation accuracy was obtained

for networks with a deeper average depth of the hydro-

phones included.

E. Hyperparameters

The ResNet-18 network is trained on the synthetic data-

set discussed in Sec. II B. The input dataset is randomly

divided for k-fold cross-validation69 with k ¼ 5. This

method splits the training dataset into five equally-sized

groups. Training occurs in four of the five groups, and

FIG. 7. Ten water SSPs measured during SBCEX 2017. The three SSPs

shown as solid black lines are the profiles used in generating synthetic SOO

spectrograms for the present study. The dotted, colored lines are SSPs not

used in this study.

TABLE II. List of the 34 seabeds used for this study. Column “#” corresponds to the seabed number used for identification in the results. ctop
1 is the value of

sound speed at the top of the first layer reported in the paper specified in the “Ref” column. The seabeds with “*” next to the number come from geoacoustic

inversions using data from SBCEX 2017, as indicated in the references.

# Seabed label ctop
1 Reference # Seabed label ctop

1 Reference

0* lin_sbc 1387 45 17* dahl2020_sbc 1479 21

1* knobles_sbc 1436 46 18* brown_sbc 1479 47

2* dahl_sbc 1445 20 19* michalopoulou_sbc 1491 48

3* belcourt_2_sbc 1445 49 20 clay_35m 1500 50

4* potty_sbc 1452 51 21* tollefsen_sbc 1508 16

5* wan_2_sbc 1452 52 22 malta_a 1510 53

6* belcourt_1_sbc 1453 49 23 west_florida 1540 54

7 deep_mud 1454 55 24 korean_c 1553 56

8* barclay_2_sbc 1455 57 25 korean_a 1558 55

9* barclay_3_sbc 1459 57 26 korean_k 1567 58

10* bonnel_1_sbc 1464 59 27 silt_35m 1575 50

11* wan_1_sbc 1467 60 28 sand 1592 61

12* mud_over_sand_sbc 1469 46 29 sandy_silt 1592 51

13* barclay_1_sbc 1470 57 30 knobles14j 1650 62

14* mud_35m 1470 50 31 newJersey_a 1704 63

15* bonnel_2_sbc 1471 64 32 korean_h 1757 65

16* bonnel_3_sbc 1474 64 33 gravel_35m 1800 50

2134 J. Acoust. Soc. Am. 157 (3), March 2025 Lau et al.

https://doi.org/10.1121/10.0036221

 31 M
arch 2025 19:12:44

https://doi.org/10.1121/10.0036221


validation testing occurs in the remaining group. The pur-

pose of k-fold cross-validation is to reduce bias in trained

networks since five networks are effectively trained with the

same amount of input data. Each trained network yields a

classifier output vector corresponding to the probability that

the different classes correspond to an input data sample.

Data leakage44 occurs when statistical independence

between the validation and training data is violated.

Networks trained on leaky datasets “cheat” by learning the

validation labels instead of generalizable attributes of the

training data. Data leakage was hypothesized to have

occurred in previous studies, including Escobar-Amado

et al.,34 where the training data were generated with ten

measured SSPs capable of producing nearly-

indistinguishable samples. Additionally, previous networks

were trained on synthetic data in which ship speeds and

CPA ranges contained both specified values (bin centers, as

previously described) and randomly drawn values.

Consequently, the training dataset contained multiple spec-

trograms with the exact same ship speed and CPA range,

similar SSPs, and similar source depths for each environ-

ment. The similarity in the resulting spectrograms led to

FIG. 8. Schematics of Seabeds 0 to 11 from Table II. The depth-dependent sound speed cðzÞ is shown as the thick black line through 75 m of water (blue

background) and the upper 45 m of seafloor (brown background). The density q (g/cm3) and compressional attenuation ap (dB/m/kHz) are listed in the side

bar. For seabeds that contain shear properties, the shear speed cs (m/s) and shear attenuation as (dB/m/kHz) are also listed. The subscript w indicates the

water; superscripts t and b differentiate between the top and bottom of the sediment layer; the subscript number corresponds to the sediment layers.
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data in both the training and validation sets containing near-

identical samples when the k-fold split was made. For the

present study, data leakage is mitigated by using only three

measured SSPs, one randomly drawn source depth, and

CPA ranges and ship speeds randomly chosen for each data

sample. In future work, significant variation in SSPs should

also be included when generating the training dataset, as dis-

cussed in Van Komen et al.70 Additionally, the source depth

variation may have an impact, as described in Knobles

et al.71 and should be more fully investigated.

Other hyperparameters used during training are as fol-

lows. The network is optimized with the AdamW optimizer,

an optimizer based on Adam but with weight decay correc-

tions.72 The learning rate begins at 0.001 and then changes

each epoch according to a cosine annealing scheduler. An

early stopping mechanism is included that stops training

when the validation loss does not improve by at least 0.001

for three epochs, otherwise referred to as an early stopping

patience of three. However, for eight-channel networks, a

patience of five epochs, rather than three epochs, was used.

In deep learning, at each epoch, the training data is ran-

domly divided into batches. Preliminary testing of various

batch sizes (number of samples in one batch) indicated that

a larger batch size improved training with ResNet-18. A

FIG. 9. Schematics of Seabeds 12 to 21, 28, and 33 from Table II, similar to Fig. 8. Negative attenuation values indicate units of dB/k. Files listing all the

parameter values are available from the corresponding author, upon request.
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batch size of 512 samples is used for one-channel and two-

channel networks. However, four-channel and eight-channel

networks appear to require a batch size of at least 1024 sam-

ples in order to train properly. Empirical tests to determine

optimal batch sizes and patience indicated that as the num-

ber of channels increases, increasing batch size has a far

greater effect on validation accuracy than changes to the

early stopping patience.

During the fivefold cross-validation, one or more of the

folds might terminate training prematurely via the early

stopping mechanisms and result in an improperly trained

network. In this circumstance, if the validation accuracy for

any of the folds is below 70%, a re-training mechanism is

implemented where the weights in the network receive a dif-

ferent random initialization, and the fold is trained again.

Each fold has a maximum of two tries to reach the 70% vali-

dation accuracy threshold, and the second trained network is

retained if both have low accuracy.

The neural network architecture and training algorithms

are implemented in PyTorch version 1.5.1 and run in Python

3.6.9 on an NVIDIA Tesla T4 GPU. Under these conditions,

the entire process from loading the training dataset to com-

pleting training takes approximately 15 min for one-channel

networks, 18 min for two-channel networks, 40 min for four-

channel networks, and 5.5 h for eight-channel networks.

During this training process, validation is conducted using

the holdout portion of the training dataset as determined by

the k-fold split. After training, the networks are then applied

to the data samples from SBCEX 2017 to test

generalizability.

1. Mapped spectrogram input

In order to enhance learning, data samples are often

scaled or mapped before training. Due to the use of SOO

spectrograms, this study maps each data sample individually

to remove the impact of different source levels. In previous

work,34,35 the levels of the one-channel data samples were

converted to spectral density values in lPa2/Hz, scaled by

the standard deviation of values across the data sample, and

then converted back to relative levels. In this current work, a

different technique is used to map the spectral density levels

to a domain of [0,1]. For each data sample (one ship

recorded on multiple channels), the spectral density levels

(in dB re 1 lPa2/Hz) are adjusted to have zero mean and a

standard deviation of one across all channels. This data

mapping has several purposes. From a deep learning point

of view, the network trains more efficiently when the input

features are in the same range as the initialized weights:

[0,1]. From an acoustical perspective, this mapping removes

information about the source level of the ship and the over-

all impact of the range and seabed attenuation. While this

mapping obfuscates a lot of information typically used in

ocean acoustics, this approach allows the deep learning net-

work to focus on learning the interference pattern in the

striations instead of the overall level.

The second component of the mapping procedure per-

forms imputation on outlier values more than three standard

deviations from the mean. These values are reassigned to

the mean 6 exactly three standard deviations. As a result,

outliers are filtered out, reducing the depth of the nulls in

synthetic spectrograms and the impact of loud intermittent

noise on measured spectrograms. The values are then line-

arly mapped to the domain [0,1]. Visual comparisons of

spectrograms before and after the mapping procedure are

shown in Figs. 3(b) and 3(c) for measured data and Figs.

10(a) and 10(b) for synthetic data.

This imputation has two benefits. First, the nulls in the

synthetic spectrograms are not as deep after the mapping

procedure. Thus, the imputation effectively introduces a

noise floor, which is more realistic to the measured data

samples as they contain ambient noise. An example spectro-

gram of this ambient noise is provided in Fig. 11(a). Second,

imputation on values greater than 3r from the mean reduces

the potential impact of loud interference in the measured

SOO spectrograms.

2. Additive noise

To ensure that networks trained on synthetic data are

learning important patterns rather than memorizing the spe-

cific simulated spectrograms, the data are augmented with

additive noise.73,74 This common deep learning procedure

helps avoid overfitting and improves generalizability.

Specifically, a zero-mean Gaussian white noise75 is utilized.

For each frequency at each time step of a spectrogram, a

value from the Gaussian distribution is randomly drawn, and

its magnitude is added to the point on the spectrogram. A

visual comparison of a spectrogram before and after the

additive noise is shown in Figs. 10(b) and 10(c).

In previous work, simulated wind noise was used, but in

this present study (with the new mapping), Gaussian noise is

used instead. The physical justification for using a Gaussian

TABLE III. Channel combinations for the two-channel and four-channel

networks used in this study. Channel numbers correspond to hydrophone

depths from Fig. 1.

Two channels Four channels

4–8 2–4–6–8

4–10 4–6–8–10

4–12 2–6–10–14

6–8 4–6–10–14

6–10 6–8–10–12

6–12 2–8–12–16

8–10 6–8–12–14

8–12 6–8–12–16

8–14 6–10–12–16

8–16 6–10–14–16

10–12 4–12–14–16

10–14 8–10–14–16

10–16 8–12–14–16

12–14

12–16

14–16
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distribution for additive noise is twofold: (1) The spectro-

gram in Fig. 11(a) shows that the noise exhibits minimal fre-

quency dependence in the 360–1100 Hz band. (2) Statistical

analyses of ambient noise measured during the experiment,

shown in Fig. 11(b), reveal a low skewness value for noise

samples.

An appropriate standard deviation for the distribution,

r, was determined through a hyperparameter search experi-

ment. In this hyperparameter search, first the ideal early

stopping patience length and training batch size were deter-

mined through training networks for combinations of

candidate values spanning a wide range. The evaluation cri-

terion was validation accuracy. Then, the noise r was deter-

mined by training networks with differing r and evaluating

validation accuracy. The largest r value with the highest

accuracy was r ¼ 0:04. In future work, additional forms of

data augmentation could be applied, as described in Castro-

Correa et al.76

The implementation of noise differs between the train-

ing dataset and the validation set. For the training set, new

noise is randomly drawn and added to each spectrogram of

each batch, before each epoch of the training process. The

addition of different noise to the training data each epoch

allows the network to learn to ignore this type of noise. For

the current study, the amplitude of the Gaussian was con-

stant across all noise signals but could be chosen randomly

in future work.

For the validation set of spectrograms, noise is drawn

once and added during the first training epoch. The new

noisy validation spectrograms replace the original validation

spectrograms for use in each subsequent epoch. This

approach allows more consistent monitoring of validation

accuracy during training. The benefits of this approach are

illustrated when the network predicts on measured data.

Although the Hafnia Green (Fig. 5) contains intermittent

FIG. 10. Data preprocessing steps applied to synthetic spectrograms. (a)

The synthetic spectrogram generated at a resolution of 121 time steps by

123 frequencies. (b) Spectrogram mapped to a domain of [0,1]. (c)

Spectrogram with additive Gaussian noise generated from a zero-mean dis-

tribution with r ¼ 0:04.

FIG. 11. Example of ambient noise measured on VLA 1 during SBCEX

2017. (a) Spectral density levels in dB re 1 lPa2/Hz processed in the same

manner as the SOO spectrograms. (b) Statistical analysis of this noise

sample.
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vertical banding, the network is still able to make reasonable

predictions, as discussed in Sec. IV C.

F. Simple ensemble approach

One challenge of real-world applications of machine

learning is obtaining a measure of confidence in the pre-

dicted results. What constitutes a correct versus an incorrect

prediction? In ocean acoustics applications, the correct

answer is usually unknown, and therefore a measure of con-

fidence in the predictions is necessary. To obtain a measure

of confidence, we currently use a simple ensemble

approach.77

In this simple ensemble approach, multiple ResNet-18

networks are trained, each with a different training dataset

from a unique combination of hydrophones (depths shown

in Fig. 1). For each training dataset, fivefold cross-

validation is performed, which produces five trained net-

works. Then, all the trained networks (sometimes referred to

as base learners77) are applied to measured SOO spectro-

grams. The results are analyzed in two ways.

First, for each measured SOO spectrogram, majority

voting is performed across the output of the base learners. In

majority voting, also referred to as hard voting, the seabed

with the highest classifier output for each base learner is

awarded one vote, and the seabed with the majority of the

votes is deemed the selected seabed for that data sample.

Second, soft voting is also used. In soft voting, the full clas-

sifier output vector from all base learners trained on datasets

with the same number of channels is averaged (the lists of

two- and four-channel combinations are shown in Table III).

Soft voting can reveal if two or more seabed classes have

similar predicted probabilities, something which would not

be represented in the majority (hard) voting scheme. The

resulting average classifier outputs for one-, two-, four-, and

eight-channel networks are evaluated in Sec. III A.

These examples of simple ensemble learning yield a

more informed prediction than the application of a single

trained network. Furthermore, ensemble learning yields a

measure of confidence. More complicated methods to apply

ensemble learning are described in Polikar77 and should be

investigated in future work.

III. RESULTS

Two methods are used to evaluate the performance of

trained networks: validation and generalization. Validation

tests are reported in Lau and Neilsen68 to illustrate how

accurately the network predicts synthetic data not used in

training, but drawn from the same statistical distribution as

the training data. This current study performs generalization

testing to determine whether the network can make adequate

predictions on real, measured data. Five-fold cross-valida-

tion was used to train networks, as described in Sec. II E.

Therefore, in the following testing, the mean accuracy and

standard deviation over the resulting five trained folds are

calculated for each channel combination. For generalization

testing, only networks with above 70% validation accuracy

were included to make predictions on measured data sam-

ples. This led to 95% of one-channel networks (38/40 net-

works), 90% of two-channel networks (72/80 networks),

100% of four-channel networks (65/65 networks), and 100%

of eight-channel networks (15/15 networks) used.

A. Generalization

To test the generalizability of the networks, data sam-

ples from the SBCEX 2017 are used. The data come from

hydrophone recordings of passing surface ships at one of

two VLA locations. Seven SOO spectrograms with clear

striations are used to examine how different trained net-

works compare. These seven ships are listed in Table I. The

seabeds predicted by networks trained on each of the differ-

ent channel combinations are shown in Fig. 12. The seabed

classifier output for each testing data sample (i.e., ship) is a

34 element vector containing values that indicates the proba-

bility of a specific seabed being the correct answer. A classi-

fier output is obtained for each trained network. For each of

the five networks obtained through k-fold cross-validation,

the seabed with the highest classifier output is selected, and

then majority voting yields the predicted seabed. Each

majority-voted seabed prediction for a given channel combi-

nation is displayed in Fig. 12 with a unique marker, as indi-

cated in the legend.

However, the majority voting does not mean that the

other seabeds have zero probability of being the correct

answer. To display the probabilities obtained for all seabeds,

the classifier output was averaged over all networks trained

with the same number of channels. Comparisons of the sea-

bed probabilities are shown in Fig. 13 for the trained one-,

two-, four-, and eight-channel networks. For each of the

seven ships, shown along the y-axis, the averaged seabed

probabilities are plotted across the x-axis with the color cor-

responding to the probability of the seabed being the correct

seabed. The colorbar represents the averaged probabilities

over all trained channel combinations for each category of

one, two, four, or eight channels included, normalized so the

total seabed probabilities for each ship sum to one.

To illustrate how this ensemble approach to seabed

classification might work in practice, the average classifier

output for all 32 SOO spectrograms from VLA 1 and VLA 2

recorded during SBCEX 2017 are provided in the Appendix.

IV. DISCUSSION

A. Multichannel network performance

One major goal of this study is to analyze the impact of

using multiple receivers in deep learning seabed classifica-

tion. Results for the validation analysis are in Lau and

Neilsen68 for the case of slightly downward refracting SSP.

The efficacy of using multiple channels for seabed classifi-

cation is evaluated in this current study via the generaliza-

tion results of measured SOO spectrograms (Figs. 12 and

13). Evaluating generalization results is challenging because

the correct seabed is unknown. In such cases, accuracy can-

not be determined, but one can estimate the precision of the
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results. A high level of precision or consistency in the pre-

dictions from an ensemble of trained networks can yield a

measure of confidence in the predictions.

The predicted seabed distributions in Figs. 13 and 18

contain the average classifier output distributions over the

ensembles of networks. To quantify the precision based on

the number of channels, the entropy of the classifier outputs

is computed for each distribution. The entropy of a distribu-

tion yields a measure of the preciseness of the distribution: a

lower entropy indicates a more concentrated distribution

with fewer probable outcomes. The entropy of the predicted

seabed distributions for seven SOO spectrograms is shown

in Fig. 14, and the average entropy over the ship predictions,

grouped by the number of channels used in the networks,

are indicated as horizontal lines. Entropies of the predicted

seabed distributions for all ships are shown in Fig. 19.

The average entropy decreases as the channel number is

increased from one to two to four channels. For the seven

ship example in Fig. 14, the eight-channel average entropy

is slightly higher than four channels, whereas the 32 ship

example in Fig. 19 shows the opposite. Thus, the entropy

appears to converge around four channels. In practice, the

potential increase in precision by including extra channels

must be weighed against practical constraints on data size

and resulting computational costs. For example, the seabed

predictions in Figs. 12 and 13 show that the ensemble

modeling using two, four, and eight channels does not yield

significantly different predicted seabed distributions, so the

added channels may not be worth the computational cost.

For a more complicated depth-dependent SSP, however, the

advantage of using more channels may become more

apparent.

B. Ensemble learning

The next major goal of this study is to evaluate the

effects of ensemble learning. We aim to determine if ensem-

ble learning can increase the precision of the network pre-

dictions, as well as provide a measure of confidence in the

seabed predictions. First, the results shown in Fig. 12 are

analyzed. These plots display the predicted seabed from

majority voting for the networks trained on each

FIG. 12. Generalization results of the

predicted seabeds for seven SOO spec-

trograms for the (a) one-channel, (b)

two-channel, (c) four-channel, and (d)

eight-channel combinations. The sym-

bols indicate the predicted seabed

resulting from majority voting. The

names on the left correspond to the

ship names and VLA listed in Table I.
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combination of channels. These results show that not all

channel combinations yield the same predicted seabed, espe-

cially in the one-channel cases. Therefore, if only one net-

work from a single channel or set of channels is used, no

information is available regarding the likelihood that the

selected seabed represents reality. However, analyzing sea-

bed predictions from multiple networks trained on different

channel combinations provides a measure of precision or

confidence in the most frequently predicted seabed.

For example, consider the ship with the largest spread

in seabed predictions, the MSC Kalamata on VLA 2. For the

one-channel predictions in Fig. 12(a), the predicted seabeds

are split between Seabeds 2, 3, 9, 11, 13, and 17. Fewer sea-

beds are predicted when four or eight channels are used [see

Figs. 12(c) and 12(d)].

A different approach to ensemble learning is to average

the classifier output from all networks trained with a speci-

fied number of channels. The averaged classifier output for

the seven SOO spectrograms is displayed in Fig. 13. With

this type of ensemble learning, even the one and two-

channel predictions show less variation. For example, these

ensemble results from MSC Kalamata on VLA 2 show that

Seabed 9 or 11 has the highest average classifier output for

most of the multichannel cases. The results in Fig. 13 illus-

trate that averaging the classifier output from an ensemble

of networks trained with different channel combinations

yields a more precise result than majority voting or taking

the prediction from a single network. The average classifier

output distributions provide a measure of confidence in the

answer, as shown in Fig. 14.

While effective, the ensemble learning techniques used

in this work are basic, and future work should consider more

advanced ensemble learning approaches.77

C. Seabed predictions

A third goal of this study is to evaluate if the predicted

seabeds are good predictions. The correct seabed is

unknown, so this evaluation is based on the similarity

between predicted seabeds, visual inspection of spectro-

grams, and a discussion of why different ships yield differ-

ent seabed predictions.

FIG. 13. Ensemble generalization

results for seven SOO spectrograms:

average classifier output over the (a)

one-channel networks, (b) two-channel

networks, (c) four-channel networks,

and (d) eight-channel networks. The

names on the left correspond to the

measured data sample: ship name and

which VLA. The x-axis ticks lie to the

left of their corresponding shaded rect-

angular cells. The red vertical dotted

line separates a sound speed ratio

across the water-sediment interface of

less than one to the left (i.e., where the

sound speed at the top of the sediment

is less than the sound speed at the bot-

tom of the water column), and greater

than one to the right of the line.
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The seabeds with the highest average classifier output

over the ensemble of networks are Seabeds 3 and 9 (Fig.

13). These seabeds came from previous geoacoustic inver-

sions done in the same New England Mud Patch area using

data collected during SBCEX 2017, as denoted by the “*” in

Table II. Seabeds 3 and 9 share two key features: (1) similar

sound speed ratio across the water-sediment interface (i.e.,

the sound speed at the top of the sediment layer is less than

the sound speed at the bottom of the water column), and (2)

no sound speed gradient in the top few meters of the sedi-

ment. Deeper features of the sediments are likely less signif-

icant because 360–1100 Hz spectrograms are used in this

work, which contains less information about the deeper sedi-

ment than lower frequency ranges.

To search for visual clues as to why certain seabeds

were selected, the measured spectrograms are mapped

according to Sec. II E 1 and then compared to spectrograms

simulated with different seabed classes. Two examples are

provided. Synthetic spectrograms are generated with the

ship speed and CPA range of the Hafnia Green and the MSC
Kalamata on hydrophone Channel #10 of VLA 2. They are

displayed beside the measured spectrograms in Figs. 15 and

16. Synthetic spectrograms for an additional six seabeds are

represented in Fig. 6.

An examination of the Hafnia Green spectrograms in

Fig. 15 shows that the selected Seabed 9 provides a more

reasonable visual match for the measured data than many of

the other seabeds. Although the measured spectrogram con-

tains intermittent vertical banding not present in the syn-

thetic spectrograms, the predicted seabed still produces the

characteristics of the measured spectrogram overall, indicat-

ing little effect of the banding on prediction accuracy. A dif-

ferent example is shown in Fig. 16 for the measured and

synthetic spectrograms from Channel #10 of MSC Kalamata
on VLA 2. A visual examination of the spectrograms for dif-

ferent seabeds shows that the ensemble-selected Seabeds 9

and 11 (in Fig. 13) not only provide reasonable matches to

the measured spectrogram, but also look remarkably similar

to each other. This similarity illustrates why both seabeds

have high classifier output (Fig. 13).

This qualitative comparison between the spectrograms

provides a preliminary check that the network is learning

key features of the spectrogram. A quantitative comparison

of the measured and synthetic spectrograms would be con-

siderably more useful; however, the best metric for quantify-

ing this comparison is unclear. In deep learning applications

for photographs and videos, the structural similarity index

metric (SSIM) is used to compare the perceptual qualities of

two images.78 These qualities include luminance, contrast,

and structural information. We calculated the SSIM on the

measured and synthetic SOO spectrograms for different sea-

beds, and the results did not follow logical trends based on

the visual evidence. Thus, we conclude that the SSIM is not

a good metric for comparing spectrograms and a useful met-

ric needs to be developed using domain-specific knowledge,

i.e., to consider specific features of spectrograms that are

tied to the seabed. This question will be considered in future

work.

What seabed class, then, is the best prediction from our

networks for the experimental area of the SBCEX 2017? It

appears that some ships have a classifier output with high

probability for Seabed 3, and other ships for Seabed 9. This

difference is neither related to the VLA nor the shipping

lane used. The main correlation between the selection of

Seabed 3 versus Seabed 9 appears to be the date of the SOO

passage. From Table I (corresponding to Fig. 13), the upper

three SOO were recorded on Julian days 83–84 and the

lower four SOO were recorded on Julian days 89–90.

To investigate this trend, the statistics of the ambient

ocean noise were analyzed. Samples of ambient noise on

days 83–84 and 89–90 were identified that were free from

the sound of ships and towed sources. From these ambient

noise samples, recordings closest in time to the ships from

Table I were selected. The statistics across 20-min spectro-

grams of the noise samples in the 360–1100 Hz band are

provided in Fig. 17. The statistics of these noise spectro-

grams reveal that the ambient noise samples had a lower

mean, greater standard deviation, and more variability in

skewness and kurtosis on days 89–90 than noise

samples from days 83–84. These differences may be tied

to the seabeds selected by the trained deep learning

networks.

This potential dependence on ambient noise statistics at

the time of recording could explain why the prior single-

channel study summarized in Fig. 7 of Escobar–Amado

et al.34 found Seabed 3 to be the most commonly predicted

seabed (i.e., single seabed with the highest classifier output)

over 2070 network predictions. Their study included 18 addi-

tional ships that were recorded on the University of Delaware

(UD) VLA prior to Julian day 83, because the UD VLA

started recording on Julian day 66 (March 7, 2017). The UD

VLA was located approximately halfway between VLA 1

and VLA 2 as shown in Fig. 1 of Escobar–Amado et al.34

FIG. 14. Entropy of the predicted seabed distributions for seven SOO spec-

trograms in Fig. 13. Values were calculated over the average classifier out-

puts obtained for networks trained using the same number of channels.

Average entropy values over the ships for each number of channels are

shown as horizontal lines, with values of approximately 2.01 for the ensem-

ble of one-channel networks, 1.60 for two-channel networks, 1.16 for four-

channel networks, and 1.34 for eight-channel networks.
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More research is needed regarding the impact of ambi-

ent noise statistics on the seabed predictions. The encourag-

ing fact is that, although two seabed classes were commonly

predicted instead of just one, the two seabeds share similar

geoacoustic profiles in the upper portion of the sediment.

We anticipate that the role of noise statistics will gain fur-

ther importance when more water sound speed variation is

present during the data collection period, as was the case in

SBCEX 2022 [see Fig. 1(b) of Vardi and Bonnel37 for

examples of measured SSPs].

D. Robust deep learning

Several key decisions were made about the deep learn-

ing process that offered improvements to previous seabed

classification work.4,34,35 With regard to the network archi-

tecture, a convolutional neural network works well for

detecting spectral features such as striations from SOO spec-

trograms. The skip connections in ResNet-18 enable deeper

networks that learn more features. A larger batch size helps

the ResNet-18 train more effectively. The batch size needs

to increase as the number of channels increases to obtain the

same validation accuracy during training. Early stopping

helps guard against overfitting and helps the networks train

faster. Similar seabed predictions are obtained with and

without early stopping.

Our new approach to mapping has a positive impact on

the performance. The spectral density levels allow the net-

works to be trained in fewer epochs. Previously, each data

sample was scaled to have a standard deviation of one in

Pascals and then converted back to decibels, as is conven-

tional in acoustics. In this current work, the spectral density

levels are mapped to lie between zero and one, as explained

in Sec. II E 1, which is a common deep learning data scaling

procedure. The validation performance is not impacted by

this change, but this new mapping allows the networks to

train faster. The generalization results, however, are

impacted by the choice of mapping. The multichannel

results with the previous scaling in Pascals do not appear to

be learning the subtler features associated with different

ships.

Another preprocessing step is the addition of Gaussian

noise to help the networks learn to separate signal from

noise. This additive noise is a minor form of data

FIG. 15. (a) Mapped SOO spectrogram

for Hafnia Green from Channel #10 on

VLA 2, and (b)–(h) mapped synthetic

SOO spectrograms generated with the

listed seabeds using the ship speed and

CPA range of Hafnia Green. The

ensemble results of the multichannel

networks predict Seabed 9. Additional

synthetic spectrograms for seabeds not

chosen are shown in the right column

of Fig. 6.
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augmentation, and a unique noise signal is randomly added

to each data sample at each epoch. In subsequent tests, we

observed that the average classifier output results were simi-

lar between networks trained with and without this additive

noise, for the ships with clear striation (Fig. 13). The benefit

is seen, however, when a wider range of ships is considered,

as in Fig. 18. For ships with less clear striations, the average

seabed classifier output shows less uncertainty when using

networks trained with the additive noise. Future work should

be done to identify cases where the Gaussian additive noise

is essential. Additionally, in this work, the amplitude of the

Gaussian distribution was not varied but could be randomly

selected in future work.

In this study, data leakage is avoided by strategically

selecting a smaller dataset with more independent samples.

Specifically, nearly duplicate data samples with the same

source properties are not included in the training dataset.

While this dramatically decreased the total number of data

samples (from 137 000 in Escobar–Amado et al.34 to

41 000), it helped reduce data leakage, which led to trained

networks that generalize better to measured data samples.

Additionally, a representation of the spectrograms that is

FIG. 16. (a) Mapped SOO spectrogram

for MSC Kalamata from Channel #10

on VLA 2, and (b)–(h) mapped syn-

thetic SOO spectrograms generated

with the listed seabeds using the ship

speed and CPA range of MSC
Kalamata. The ensemble results of the

multichannel networks predicted

Seabeds 9 and 11. Additional synthetic

spectrograms for seabeds not chosen

are shown in the left column of Fig. 6.

FIG. 17. Statistical analysis of five different noise samples recorded at

times where no obvious ship noise or tones were present. The days and

times are chosen to be close to the transits of the ships in Table I. The val-

ues calculated were (a) mean, (b) standard deviation, (c) skewness, and (d)

kurtosis.
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coarser in time proves to be sufficient and allows data from

multiple hydrophone channels to be used. The spectrograms

in this work are half as large as in previous work (only 121

time steps instead of 241).

This sparse time sampling still contains enough infor-

mation for the networks to train well, as shown by Amos

et al.41 For the multichannel networks, we hypothesize that

the impact of the reduced time resolution will be offset by

FIG. 18. Generalization results for 32 SOO spectrograms recorded during SBCEX 2017: average classifier output over all folds for all trained networks (similar to

Fig. 13) for (a) one-channel networks, (b) two-channel networks, (c) four-channel networks, and (d) eight-channel networks. Ships are listed in chronological order

from top to bottom. The red vertical dotted line is the same as in Fig. 13 (additional details about the ships are provided in Table II of Escobar et al. Ref. 34).
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using multiple channels. Specific applications will need to

determine if the spatial variation due to multiple channels is

more or less important than increased temporal resolution.

Decisions regarding the size of the spectrograms and the

number of channels must be balanced with the increased

memory requirements and computational time required to

train larger networks.

Our decision to use ensemble learning to compare the

results from different channel combinations provides an

estimate of the precision of the results and a measure of con-

fidence when the correct seabed answer is not known. The

advantages of an ensemble of networks trained on different

combinations of channels are anticipated to increase as the

variability in the water sound speed increases.

V. CONCLUSIONS

This work has presented seabed classification results

using multichannel SOO spectrograms via deep learning

with ResNet-18. The networks, trained with relatively sparse

synthetic spectrograms, have been applied to data samples

of transiting ships measured in the New England Mud Patch

during SBCEX 2017. The trained networks used data from

one, two, four, or eight hydrophone channels on a VLA, and

a catalog of 34 seabeds in the training data. In this work, we

have illustrated the benefits of ensemble learning in provid-

ing a measure of precision and confidence, while evaluating

the impact of using multiple receivers in the training data.

We additionally obtain an estimate of which seabed class

provides a reasonably effective description of the seabed.

This study demonstrated how the ensemble approach

increases the precision of seabed predictions. Our current

preferred method is to average the classifier output over

multiple networks, which have been trained using different

combinations of channels on the VLA. The resulting classi-

fier output provides an estimate of the precision of the

results, which may be quantified by calculating the entropy

of the distribution. The entropy of the ensemble-averaged

distribution can then be used as a measure of confidence in

the predictions. Future work should consider more advanced

ensemble learning approaches.77

The results in this study show the advantages of using

multiple channels in deep learning. These multiple channels

are fed into the ResNet-18 network in parallel, similar to the

RGB channels of a picture. In this work, a slight decrease in

the entropy (increase in precision) is obtained when more

channels are used. The resulting seabed predictions do not,

however, change as the number of channels increases from

two to four to eight. Thus, the increased computational time

required to use more channels needs to be balanced with the

resulting increase in precision.

The answer for the optimal number of channels to use

in the deep learning networks likely depends on the variabil-

ity in the water SSPs used in generating the synthetic train-

ing data. For the work presented in this paper, the SSPs

were slightly upward refracting, similar to those measured

FIG. 19. Entropy of the predicted seabed distributions for each ship in Fig. 18. Values were calculated over the average classifier outputs obtained for net-

works trained using the same number of channels. Average entropy values over all ships for each number of channels are shown as horizontal lines, with val-

ues of approximately 2.34 for the ensemble of one-channel networks, 2.14 for two-channel networks, 1.83 for four-channel networks, and 1.58 for eight-

channel networks.
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during SBCEX 2017. We anticipate that when more SSP

variability is present in both the synthetic and the measured

data samples, the advantages of using more channels will

increase. One approach to finding optimal channel combina-

tions has been introduced in Kurniawan et al.79

The seabed predictions from SOO spectrograms mea-

sured during SBCEX 2017 separate into two main groups,

depending on what day the measurements were made. In

both cases, however, the chosen seabeds were obtained from

geoacoustic inversions of data from SBCEX 2017 and share

similar properties. In particular, all chosen seabeds shared

the similarity of having a sound speed ratio of less than one

across the water-sediment interface and no large gradients

of sound speed in the first sediment layer.

The lessons learned from this study can help guide

development of more advanced networks for seabed classifi-

cation or other applications in underwater acoustics. As

more data samples become available from more recent

experiments, the impact of changing SSPs and bathymetry

should be investigated.
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APPENDIX: ADDITIONAL GENERALIZATION
RESULTS

For an indication of how the seabed classifier would

perform in real-world applications, the average classifier

outputs examined for 32 ships recorded on the two VLAs

during SBCEX 2017 are shown in Fig. 18. The complete list

of ships is found in Table II of Escobar–Amado et al.34

Some of these spectrograms have unclear striations, chang-

ing speed, irregular striations, or additional artifacts. The

performance of the seabed classifier on all the ship spectro-

grams illustrates how this method is likely to perform in
situ. To facilitate the discussion of ambient noise statistics

in Sec. IV C, the ships are listed chronologically from top to

bottom.

Some of the SOO predictions in Fig. 18 clearly show

Seabeds 3 and 9 with the highest classifier output. The SOO

spectrograms that do not yield a strong preference for a sin-

gle seabed were less clear than the others. For example, they

may have less distinct SOO interference patterns (striations)

or contain extraneous noise resulting in vertical or horizon-

tal banding. Even for ships with less clear striations, the sea-

beds with the highest ensemble classifier output largely lie

to the left of the red vertical dotted line. This line separates

the seabeds with a sound speed ratio of less than one to the

left, and greater than one to the right. With the exception of

a few outliers, the predicted seabeds have a sound speed

ratio of less than one.

The entropy of the distributions in Fig. 19 show a simi-

lar decrease in entropy as in Fig. 14. In this case, however,

the eight-channel results have a slightly lower average

entropy than the four-channel results. Because the generali-

zation results are similar between the two cases, the use of

four-channel models is recommended due to the reduced

memory requirements.
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