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We experimentally study two-dimensional (2D) Coulomb crystals in the “radial-2D” phase of a linear
Paul trap. This phase is identified by a 2D ion lattice aligned entirely with the radial plane and is created by
imposing a large ratio of axial to radial trapping potentials. Using arrays of up to 19 171Ybþ ions, we
demonstrate that the structural phase boundaries of such crystals are well described by the pseudopotential
approximation, despite the time-dependent ion positions driven by intrinsic micromotion. We further
observe that micromotion-induced heating of the radial-2D crystal is confined to the radial plane. Finally,
we verify that the transverse motional modes, which are used in most ion-trap quantum simulation
schemes, are well-predictable numerically and remain decoupled and cold in this geometry. Our results
establish radial-2D ion crystals as a robust experimental platform for realizing a variety of theoretical
proposals in quantum simulation and computation.
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Laser-cooled ions in radio-frequency (rf) and Penning
traps form Coulomb crystals, spatially ordered structures
that arise due to a balance between trapping fields and
Coulomb repulsion. Decades of advancements in the
preparation and control of cold ion crystals have allowed
for the precise manipulation of their internal and external
degrees of freedom [1], giving rise to applications spanning
plasma physics [2,3], high-precision spectroscopy [4,5],
cold molecules [6–8], and quantum computation [9–11]
and simulation [12–14]. In these experiments, achieving the
desired level of control has typically required an initial
characterization of ion positions, structural phases, normal
mode frequencies, and sources of crystal heating.
Over the last decade, one-dimensional (1D) ion chains in

rf traps have seen remarkable success in engineering high-
fidelity quantum gates [15,16] and simulating 1D quantum
spin systems [17]. If a comparable ability to control and
probe two-dimensional (2D) crystals in rf traps can be
achieved, then the native 2D interactions between ions
would provide an inherent advantage over 1D systems for
the quantum simulation of complex 2Dmaterials [18–21]. In
addition, 2D arrays can hold larger numbers of qubits more
efficiently than 1D strings, with a higher error threshold for
fault tolerance [22,23], andmay simplify preparations of 2D
cluster states for one-way quantum computing [24,25].
Already, 2D arrays of ions in Penning traps have led to
successes in simulating and studying quantum spin models
[26,27], though the fast crystal rotation in such traps poses a
significant challenge to individual ion addressing.
In rf traps, there are two primary ways to orient a 2D

crystal. The first of these, which is an extension of the

well-known “zigzag” phase, spans a 2D plane defined by
one radial and one axial trap direction [28]. In this case, rf-
driven micromotion is present along one of the in-plane
directions as well as transverse to the plane. Ion crystals in
this phase, which we refer to as the “lateral-2D” geometry,
were first realized in rf traps over 20 years ago [29]. More
recent work has measured the vibrational spectrum of
lateral-2D crystals [30], and further experiments have
demonstrated coherent operations in this regime [31].
In contrast, the “radial-2D” phase, defined as the

configuration for which the ion plane is coincident with
the trap’s radial plane, remains largely unexplored exper-
imentally. In this phase, the longitudinal in-plane modes lie
along the radial direction and experience micromotion,
while the transverse modes lie along the axial direction and
remain micromotion-free. This radial-2D phase has been
the primary interest for most theoretical studies of 2D ion
crystals, which have made predictions of crystal stability,
lifetimes, heating rates, phase boundaries, and gate fidel-
ities [18–20,22,23,32,33]. To date, however, experiments
performed with radial-2D crystals have only demonstrated
Doppler cooling [34] and probed the radial-2D phase
boundary with 3–4 ions [30].
Notably, lateral-2D and radial-2D crystals are each

expected to exhibit distinct behavior due to the different
relative orientations of micromotion with respect to the
crystal plane. Thus, previous studies of the structural and
dynamical properties of lateral-2D crystals are not directly
applicable to the radial-2D regime [18,19]. Moreover, for
radial-2D crystals, it is experimentally unknown the degree
to which micromotion may obscure site-specific imaging
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resolution, or worse, lead to fast absorption of energy from
the rf drive [32,35,36] and melting of the ion lattice [37].
In this Letter, we report the experimental characterization

and coherent control of radial-2D crystals in a linear Paul
trap. We map the full range of structural phases for
Coulomb crystals as a function of ion number using arrays
of up to 19 ions, and we investigate the transverse vibra-
tional mode spectrum in the radial-2D phase. Next, we
measure the time-dependent temperature of the crystal as it
experiences micromotion-induced heating, and we extract
the center-of-mass heating rate along the micromotion-free
direction perpendicular to the radial plane. Finally, we
discuss the implications for future quantum information
processing experiments.
Experiments are performed with 171Ybþ ions confined in

a four-rod linear Paul trap with two “needle” end caps along
the axial (ẑ) direction (see Supplemental Material for
detailed trap information [28]). A slight asymmetry is
introduced between the radial x̂ and ŷ directions to prevent
a zero-frequency rotational mode; for specificity, we define
the radial secular trap frequency as ωr ≡max½ωx;ωy�
throughout. Doppler cooling of the ions is accomplished
by irradiating the 369.5 nm 2S1=2jF ¼ 0i → 2P1=2jF ¼ 1i
and 2S1=2jF¼1i→ 2P1=2jF¼0i transitions; ions are imaged
by capturing the fluorescence from these transitions on an
EMCCD camera.
Structural phase transitions.—When the aspect ratio

α≡ ωz=ωr of the trap’s axial and radial secular frequencies
is small, ions form a 1D chain along the trap’s central
axis [Fig 1(a)]. As α is increased (by increasing the axial
frequency), the ions pass through a zigzag phase [Fig. 1(b)]
and a number of three-dimensional (3D) spheroidal con-
figurations [Fig. 1(c)], before forming a radial-2D crystal.
This last configuration occurs in Fig. 1(d), where the single
plane of ions is viewed on-edge. Figure 1(e) simulates the

same crystal rotated perpendicularly to the plane. For these
higher-α phases, ions that lie away from the trap’s central
axis are subject to rf-driven micromotion, the amplitude of
which increases linearly with an ion’s radial coordinate
[28]. Though the equilibrium ion positions are no longer
stationary due to micromotion, the observed time-averaged
positions closely correspond to predictions obtained from
pseudopotential theory calculations (red crosses in Fig. 1).
Varying the axial confinement over such a large

range enables the precise experimental determination of
structural phase transition boundaries at both small and
large α, as shown in Fig. 2(a). Ions starting in a 1D chain
exhibit a sudden transition to a zigzag configuration at a
critical value of α dependent on particle number N [38].
Since micromotion plays no role in this transition, numeri-
cal estimates of the phase boundary are straightforward
[39–41] and have been previously verified with up to ten
ions [42]. Our measurements confirm this behavior for up
to 19 ions and are compared to the theoretical prediction
(lowest blue dashed line) in Fig. 2(a).
For the 3D to radial-2D transition, the presence of

micromotion complicates theoretical estimates of the phase
boundary. One calculation, shown as the upper blue dashed
line in Fig. 2(a), predicts the phase transition using only the
time-averaged pseudopotential [39]. A more complete
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FIG. 1. Crystals of 13 ions are shown for increasing values of
the trap aspect ratio α≡ ωz=ωr. The structure transforms from a
1D chain (a) to zigzag (b) and 3D spheroidal phases (c), before
ending in a 2D triangular lattice in the radial plane (d). Crosses
show the ion positions predicted by the pseudopotential approxi-
mation. Panel (e) shows the same calculation as the crosses in (d),
rotated to better display the lattice structure. Simulated ion sizes in
(e) correspond to the diffraction-limited spot size of our imaging
optics and include effects from rf-driven micromotion.
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FIG. 2. (a) Phase diagramof ionCoulomb crystals in a linear Paul
trap.Data show themeasuredα that separate the 1D/zigzag and 3D/
radial-2D phases as a function of ion number. Three theory
predictions (with no adjustable parameters) are plotted for com-
parison. Blue dashed, pseudopotential [39]; red solid, Floquet-
Lyapunov [43]; orange dotted, micromotion-destabilized [22].
(b) Axial mode spectrum for seven ions in a radial-2D crystal at
α ¼ 2. Vertical lines show predicted mode frequencies. Blue
dashed, pseudopotential; red solid, Floquet-Lyapunov.
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description, which accounts for the fully coupled and time-
dependent dynamics of the ion positions, is shown as the
solid red line in Fig. 2(a). Here, a Floquet-Lyapunov (FL)
transformation is invoked to convert the periodic, time-
dependent problem to a time-independent formulation and
find the decoupled modes of oscillation [43,44]. A third
analysis of this phase boundary, shown as the orange dotted
line in Fig. 2(a), suggests the existence of a micromotion-
destabilized region due to a downward shift in transverse
mode frequencies [22]. Our measurements of the 3D to
radial-2D phase boundary in Fig. 2(a) confirm the validity
of the FL approach in this regime, as opposed to the
micromotion-destabilized theory. In addition, our data
demonstrate that the pseudopotential approach provides
a close approximation of the transition for up to 19 ions,
even in the presence of increasing radial micromotion with
larger crystal sizes.
As a further investigation of micromotion effects, we

measure the vibrational spectrum of a seven-ion crystal
deep in the radial-2D regime. Global, far-detuned Raman
transitions at 355 nm allow for spin-motion coupling and
coherent excitation of the crystal modes [45]. The two
Raman beams have a frequency difference near the 171Ybþ
hyperfine ground state splitting ωhf , with the precise
frequencies, amplitudes, and relative phases controlled
by acousto-optic modulators [46]. In our experiment, the
wave vector difference of our Raman beams is aligned
perpendicularly to the crystal plane, resulting in strong
coupling to the axial (transverse) modes and suppression of
coupling to the radial (in-plane) modes.
In Fig. 2(b), we compare the measured axial mode

frequency spectrum to frequencies calculated using the
pseudopotential (blue dashed) and FL (red solid)
approaches. These methods largely agree with the mea-
sured data and with each other to within 2 kHz, though the
pseudopotential approximation mispredicts the lowest fre-
quency mode by over 10 kHz. Nevertheless, the pseudo-
potential approximation may still provide reasonable
accuracy for many experiments. For instance, in quantum
simulations of spin-lattice Hamiltonians [17], the pseudo-
potential approach correctly predicts the 2D-Ising inter-
action range to within 0.5% for up to 19 ions.
rf heating effects.—The presence of micromotion may

have strong effects on crystal lifetimes and temperatures.
When multiple ions are confined in an rf trap, ion-ion
collisions can transfer micromotion energy into secular
kinetic energy and result in rapid rf heating [35,36]. As the
collision rate increases, ion motion becomes less correlated,
and a sudden jump in temperature occurs at an inflection
point which corresponds to a “melting” of the crystal [37].
This rf heating mechanism is expected to dominate over
other sources of noise, such as electric field fluctuations
[47] and collisions with background gas molecules [32].
Though molecular dynamics simulations indicate that large
numbers of ions could be maintained for long times without

continuous cooling [32], this presumes the existence of
ideal traps; no prior studies have established the lifetime
and heating rates of radial-2D crystals in experimentally
realizable systems.
To begin investigating the effects of micromotion-

induced heating, we measure the trapping lifetimes of
radial-2D crystals in the absence of active cooling. After the
ions are Doppler cooled, the cooling beams are switched off
and the ions are allowed to heat for a specified amount of
time. If the crystal melts during this period, one or more
ions may escape the trap confining potential or remain
uncooled when the Doppler beams are reapplied. We define
the trapping lifetime as the time for which all ions remain in
the crystal with 1=e probability, and find that it is in excess
of 5 s for lattices of up to 19 ions. This lifetime is
exceptionally long compared to the typical millisecond
timescales of quantum computation or simulation experi-
ments [10,13].
To further study rf heating effects, we determine the

temperature of the radial-2D crystal by analyzing the ions’
fluorescence line shape. The ion resonance, which is
described by a Voigt distribution, is a convolution of
Lorentzian and Gaussian profiles. The Lorentzian contri-
bution comes from the power-broadened natural linewidth
ΔνL¼Γ

ffiffiffiffiffiffiffiffiffiffi

1þs
p ¼2π×22MHz, where Γ ¼ 2π × 19.6 MHz

is the natural linewidth of the 171Ybþ 369.5 nm 2S1=2 →
2P1=2 transition and s ¼ 0.3 is the laser saturation param-
eter. The Gaussian contribution results from Doppler
broadening, with a full-width at half-maximum of ΔνG ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð2 ln 2ÞkB�=mλ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Trcos2θ þ Tzsin2θ
p

. This expression
arises since our fluorescence beam intersects the crystal
plane at an angle (θ ¼ 45°) and is therefore sensitive to both
the radial and axial temperatures Tr and Tz. Later we will
show that keeping independent radial and axial temper-
atures is well justified, and that the axial temperature adds
negligible contribution to the overall linewidth.
To extract the radial crystal temperature, we fit the

measured Voigt fluorescence profile to a Lorentzian of
constant width ΔνL and a Gaussian of variable width ΔνG.
When the crystal is Doppler cooled to 3 mK (as confirmed
with sideband Raman spectroscopy), the Gaussian contri-
bution is small and the line profile is essentially Lorentzian
[Fig. 3(a)]. However, if the cooling beams are extinguished
and the crystal acquires radial energy through rf heating,
the fluorescence profile spreads due to an increase in
thermal motion [Figs. 3(b) and 3(c)]. By performing many
temperature measurements at increasing heating times, as
shown in Fig. 3(d), we determined the radial heating rate to
be _Tr ¼ 1.04� .08 K=s. Previous work has predicted
nonlinear heating near the melting point of Coulomb
crystals; the linear nature of our data implies that short
timescales, large ion masses, and low initial temperatures
keep crystals far from this limit [36,37].
To look for evidence of heat transfer between the radial

and axial directions, we measure the heating rate of the
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axial center-of-mass (COM) mode using resolved sideband
spectroscopy [48]. Following Doppler cooling, our 355 nm
Raman beams are used to sideband cool the axial COM
mode to n̄≲ 2.5 as well as to induce stimulated Raman
transitions at the axial COM red and blue sideband
frequencies, ωhf � ωz. The number of quanta in the axial
COM mode is determined by taking the ratio r of red to
blue sideband transition probability amplitudes [Fig. 4(a)]
for several different sideband drive times and finding the
mean occupation number n̄ ¼ ½r=ð1 − rÞ�. Finally, the axial
COM heating rate _̄n is determined by leaving the crystal
uncooled for increasing time periods and repeating the
sideband measurements.
We compare the axial COM heating rate of a single ion to

that of a radial-2D crystal with seven ions, under the same
trapping conditions (ωz ≈ 2π × 900 kHz and α ¼ 2). As
shown in Fig. 4(b), we find a single-ion ambient heating
rate of _̄n ¼ 100� 20 motional quanta=s. This measure-
ment, which corresponds to temperature heating rate _Tz ¼
0.004� 0.001 K=s and a spectral density of electric field
noise SE ¼ 2.65 × 10−12 V2m−2 Hz−1, is comparable to
heating rates observed in other room-temperature rf traps of
similar size [47]. We then repeat these measurements for
the axial COM mode of a seven-ion crystal, finding a
heating rate of _̄n ¼ 125� 75 quanta=s [Fig. 4(c)]. In
temperature units, this rate is over 200 times smaller than
the measured radial heating (Fig. 3) and justifies our earlier
assumption of nonequilibration between axial and radial
directions.

Our measurements with one and seven ions further
suggest that electric field noise is not the dominant heating
mechanism in our trap. This is because electric field
fluctuations, which are largely correlated across the ions,
are expected to preferentially heat the COMmode and scale
linearly with ion number [47]. Our results instead indicate
largely uncorrelated noise,which has likewise been observed
in Penning traps using the analog of a radial-2D crystal [49].
In the limit of perfectly uncorrelated noise, wewould expect
other axial modes (indexed by k) to exhibit heating rates
_̄nðkÞ ¼ ðωCOM=ωkÞ _̄nCOM [47], giving at worst an estimated
∼50% larger heating rate for the lowest-frequency (zigzag)
axial mode. Whether the noise in our system is correlated or
not, our observations of objectively low axial temperatures in
the presence of rapid radial heating demonstrate that the axial
modes of a radial-2D crystal remain cold, isolated, and well
suited for quantum simulation experiments.
Discussion and outlook.—Our experiments establish that

micromotion effects on radial-2D crystals are largely con-
strained to the radial plane: phase boundaries and axial
vibrational spectra are well predicted by micromotion-free
pseudopotential theory, and only the in-plane radial degrees
of freedom experience micromotion-induced heating. In
contrast, the axial (transverse) degrees of freedom remain
decoupled and cold. Furthermore, we have enacted ∼5-μm
ion-ion spacings in this geometry, which will enable fast
ion-ion coupling rates while allowing for future individual
addressing with low cross talk.
Our demonstration of stable, isolated, and low-noise axial

modes establishes radial-2D crystals in linear Paul traps as a
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realistic platform for implementing several proposals in
quantum simulation [18,19]. This system is especially
well suited for studies of highly frustrated quantum spin
models [19–21,50], since long-range antiferromagnetic
interactions are routinely implemented between cotrapped
ions [17], and since ions in the radial-2D phase self-
assemble into a triangular lattice. Using only global laser
beams, we will be able to characterize the ground state and
dynamical properties of frustrated 2D spin models by
measuring their excitations [21] and correlation functions
(which can distinguish, for instance, between Néel states
or valence bond solid states [51]), and by tuning the
relative contributions of inherent geometric and long-range
frustration.
Realization of such proposals with radial-2D crystals

will demand several future developments. First, the imag-
ing optics should be moved perpendicularly to the crystal
plane to facilitate site-resolved detection of the ion lattice.
Next, methods to cool radial-2D crystals near the motional
ground state should be applied, as they have been for
lateral-2D crystals [52]. Evidence of entanglement gener-
ation via Mølmer-Sørensen interactions [53] (or equivalent)
should then be demonstrated before implementing full
spin-lattice simulations. Finally, the possibility of main-
taining 100+ ions in the radial-2D crystal phase for long
times [32], and the limits of crystal stability in the presence
of rf heating, should be experimentally explored as the
system is scaled to larger sizes.
The possibility to perform individual ion addressing in rf

traps, which is already well established for 1D ion chains
[10,11,46], will further expand the capabilities of the radial-
2D platform. Shelving of specific ions will allow for the
quantum simulation of more complex lattice geometries,
such as kagome, which are believed to support spin-liquid
phases [19–21,54,55]. Furthermore, radial crystals with
individual addressing could provide a naturally scalable
solution for fault-tolerant quantum computing [22,23] or
simplify preparations for one-way quantum computing
schemes [24,25].
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