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Resolved sideband cooling is a standard technique for cooling trapped ions below the Doppler limit to
near their motional ground state. Yet the most common methods for sideband cooling implicitly rely on low
Doppler-cooled temperatures and tightly confined ions and they cannot be optimized for different experimental
conditions. Here we introduce a framework which calculates the fastest possible pulsed sideband cooling
sequence for a given number of pulses and set of experimental parameters and we verify its improvement
compared to traditional methods using a trapped 171Yb+ ion. After extensive cooling, we find that the ion
motional distribution is distinctly nonthermal and thus not amenable to standard thermometry techniques. We
therefore develop and experimentally validate an improved method to measure ion temperatures after sideband
cooling. These techniques will enable more efficient cooling and thermometry within trapped-ion systems,
especially those with high initial temperatures or spatially extended ion wave packets.
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I. INTRODUCTION

The cooling of mechanical oscillators to near their mo-
tional ground state is of fundamental importance in fields
as varied as atomic clocks [1–3], quantum computation and
simulation [4–7], quantum sensing and transduction [8–10],
and even gravitational wave detection [11]. Particularly for
atom-based platforms, Doppler laser cooling provides a fast
and straightforward method for reducing the kinetic energy
of the system by orders of magnitude to reach the quantum
regime [12,13]. Even so, recoil effects during photon emis-
sion typically prevent Doppler-cooled systems from achieving
their absolute motional ground state, requiring the implemen-
tation of sub-Doppler cooling methods [14–17].

For trapped-ion experiments, resolved sideband cooling
(SBC) is the most popular sub-Doppler cooling technique
used to prepare systems near their motional ground state
[18–21]. Its widespread use stems largely from its applicabil-
ity to most trapped-ion setups, since its effectiveness does not
rely on using a specific ion species or trap geometry [22,23].
In practice, SBC allows trapped ions to be initialized in a
nearly pure state of motion, with a typical average harmonic
occupation n̄ � 0.05 [18]. However, SBC is often the longest
time component in an experimental cycle by a significant
factor [4], especially when many motional modes need to be
cooled. Although individual addressing can facilitate some
speedups in long ion chains [23], to date no general method is
known for determining the optimal SBC protocol.

Accurate ion thermometry goes hand in hand with near-
ground-state cooling techniques such as SBC. Estimating ion
temperatures and heating rates are essential characterizations
in ion-trap experiments [22,24] since they inform the efficacy
of cooling protocols and potential sources of noise. Yet stan-
dard methods for measuring n̄ near the ground state implicitly

assume the motion is well described by a thermal distribution
of harmonic-oscillator levels [18,20]. When this assumption
is violated, as is the case for Fock states, coherent states, or
states following significant SBC [25,26], more sophisticated
thermometry methods must be employed to accurately char-
acterize ion motional temperatures.

Here we present a framework for calculating the optimal
sequence of SBC pulses for near-ground-state cooling and we
develop an improved thermometry technique to more accu-
rately measure n̄ following SBC. Our optimal cooling strategy
is applicable to any trapped-ion experiment using pulsed SBC
and flexible enough to incorporate decoherence effects or
heating models if desired. Likewise, our method to determine
ion temperatures requires only the experimental hardware
needed for implementing pulsed SBC. We benchmark both
our optimized SBC sequences and our thermometry tech-
nique using a trapped 171Yb+ ion, finding close experimental
agreement with theory predictions as well as significant
improvements compared with traditional cooling and ther-
mometry protocols.

The article is structured as follows. Section II reviews the
standard theory of pulsed resolved SBC. In Sec. III we recast
the pulsed SBC problem into a matrix formalism that allows
for efficient numerical optimization of SBC pulse sequences.
Section IV introduces an experimental technique to accurately
measure ion temperatures following sub-Doppler cooling, fol-
lowed by experimental validation in Sec. V. We summarize
with concluding remarks in Sec. VI.

II. RESOLVED SIDEBAND COOLING THEORY

When a trapped ion of mass m is confined to a one-
dimensional harmonic potential of frequency ω, resolved SBC
allows for sub-Doppler cooling of the ion temperature. Prior
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to the onset of SBC, we assume that the ion has been Doppler
cooled using a transition of linewidth � to the Doppler cooling
limit [27,28]

n̄i ≈ �

2ω
. (1)

Following Doppler cooling, the probability of finding the ion
in the nth harmonic-oscillator level is well described by the
thermal distribution

pth(n) = n̄n

(n̄ + 1)n+1
, (2)

which is solely parametrized by the average harmonic state of
the ion n̄.

Sideband cooling protocols may be implemented for both
optical and hyperfine qubits; here we begin by focusing on the
latter. Typically, far-detuned Raman transitions of wavelength
λ and linewidth γrad � ω are used to manipulate the electronic
and motional states of the ion. When the Raman transition
frequency is in resonance with the qubit splitting, it drives
a carrier transition between qubit levels |↓〉 and |↑〉 at Rabi
frequency �, with no change to the motional state. Detuning
the Raman frequency by integer multiples of the trap secular
frequency ω excites a sideband transition, coupling spin flips
to a change in motional state from |n〉 to |n′〉, at Rabi rate
[22,29]

�n,n′ = �e−η2/2

√
n<!

n>!
η|n−n′|L|n−n′ |

n<
(η2), (3)

where n< (n>) is the lesser (greater) of n and n′,
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is the generalized Laguerre polynomial, and

η ≡ 	kx0 = 2 sin

(
θ

2

)
2π

λ

√
h̄

2mω
(5)

is the Lamb-Dicke parameter for counterpropagating Raman
beams which intersect at an angle θ . In this article, we will
refer to an n − n′ = 1 transition as a first-order red sideband
(RSB) transition and an n − n′ = −1 transition as a first-order
blue sideband (BSB) transition.

Sideband cooling of hyperfine qubits is typically charac-
terized by a sequence of discrete RSB pulses interleaved with
optical pumping. A traditional pulsed SBC protocol (which
we will call the “classic” protocol) is executed as follows
[18,20]. After Doppler cooling to an average harmonic oc-
cupation n̄i and optical pumping to the qubit state |↓〉, an
initial motional level ni 	 n̄i is selected as the entry point
for SBC. A first-order RSB π pulse is then applied for t =
π/�ni,ni−1 followed by fast optical pumping, to drive the
transition |↓, ni〉 → |↓, ni − 1〉. Then another iteration is per-
formed using t = π/�ni−1,ni−2, and so on, until the sequence
concludes with a final t = π/�1,0 pulse. In principle, this
protocol sweeps the fraction of population for which n � ni

into the motional ground state.
By starting at larger ni and iterating for more pulses, the

classic SBC protocol can theoretically reach the SBC limit of
n̄min ≈ (γrad/2ω)2 � 1 [22,29–31]. In practice, the achievable

final n̄ may be limited by effects such as imperfect RSB π

pulses, motional heating, and nearly infinite RSB π times
(Sec. III D); this is indeed the case for several trapped-ion
experiments [26,32,33]. Nevertheless, post-SBC temperatures
of n̄ � 0.05 are routinely achieved with the classic method
[18,20], particularly when the initial state before SBC is in
the low-η–low-n̄i regime: η � 1 and n̄i � 10.

For optical qubits, continuous SBC is the preferred pro-
tocol for achieving near-ground-state cooling [34]. In this
approach, a RSB is driven continuously on a narrow op-
tical transition while optical pumping is accomplished by
spontaneous emission from the excited state. Given the slow
decay rate of narrow transitions, spontaneous emission may
be enhanced by temporarily coupling the excited state to a
dipole-allowed transition. In 40Ca+, for instance, coupling the
quadrupole D5/2 qubit level to the dipole-allowed P3/2 state
can lead to a cooling rate of ˙̄n = 5 ms−1 when strongly satu-
rating the RSB transition [34]. As we will show in Sec. III, this
rate is comparable to the pulsed SBC rate in hyperfine qubits
driven by a carrier Rabi frequency � ≈ 2π × 10 kHz. For our
experiments in Sec. V we set � = 2π × 65 kHz, leading to
an initial cooling rate of ˙̄n ≈ 30 ms−1.

Continuous SBC has been well described via detailed theo-
retical models [19,28] and validated in experiments [34]. For a
given optical pumping rate, the optimum RSB parameters for
achieving the lowest final n̄ may be estimated from the full set
of atomic rate equations [19] or determined experimentally by
scanning over different values of RSB power and frequency
[35]. In contrast, the discreteness of pulsed SBC protocols
prevents a similar rate-equation-type analysis while greatly
expanding the parameter space of possible cooling sequences.
For these reasons, finding a pulsed SBC model that allows
for efficient determination of optimal sequences has remained
elusive to date; we seek to address this open question in the
remainder of this article.

III. OPTIMIZED PULSED SBC PROTOCOLS

For hyperfine qubits, the intuitive classic protocol intro-
duced in Sec. II is not the most efficient pulsed SBC method
for reducing ion temperatures. Given a chosen ni, which sets
the number of pulses, there are no adjustable parameters that
may be used to optimize the cooling rate per pulse or per unit
time. When starting from small Doppler-cooled n̄i, only a few
pulses are needed and the deviation from optimal is small;
when n̄i is large (�10), the deviation from optimal widens
considerably. If n̄i is large enough, the classic method will
fail to prepare ions in the motional ground state as mentioned
previously in Sec. II.

In this section we introduce two globally optimized pulsed
SBC protocols: a single-parameter protocol called the “fixed”
method and a full-parameter protocol called the “optimal”
method. For a given number of pulses, the optimal method
provides the lowest possible n̄ after first-order SBC. When
n̄i is large, we show how these protocols can be extended
to higher-order SBC to avoid the limitations of first-order
cooling. To compute these optimized SBC protocols we must
first numerically simulate the complicated interplay between
each π pulse and its effect on the entire harmonic-oscillator
population p(n). Below we develop a graph-theoretic
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FIG. 1. Graph G representing first-order SBC. The set of vertices
V is represented by circles and weighted by the current harmonic
probability distribution p(n). The set of edges E is represented by
lines: loops weighted by an(t ) and directed edges weighted by bn(t ).

description of pulsed SBC to accomplish this task and provide
a framework for fast optimization of pulse sequences.

A. Graph-theoretic description of pulsed sideband cooling

We embed SBC into a graph G = (V, E ) with a set of ver-
tices V and edges E . The vertices V represent a truncated set
of the harmonic states n = [0, nmax] where nmax 	 n̄i is well
satisfied. Each vertex is weighted by the probability corre-
sponding to its harmonic state V = {p(0), p(1), . . . , p(nmax)},
as shown in Fig. 1. Each vertex has an undirected edge
loop weighted by the probability of not cooling: an(t ) =
cos2(�n,n−1t/2) in the case of first-order cooling shown in
Fig. 1. The probability of cooling bn(t ) = sin2(�n,n−1t/2)
weights a directed edge from the n to n − 1 vertices. For mth-
order cooling, the directed edges would connect to their mth
leftmost neighbor with the associated Rabi frequency �n,n−m.

To model one SBC pulse of time t0, all vertex weights
take one traversal of their respective edges resulting in a
new set of vertex weights: V (1)

n = an(t0)V (0)
n + bn+1(t0)V (0)

n+1.
To model N SBC pulses, the graph is traversed N times. In
general, each traversal may have its own associated pulse time
{t0, t1, . . . , tN−1}.

We numerically represent the graph and SBC process as
a matrix equation. The initial vertex values map to the vec-
tor �pth = {pth(0), . . . , pth(nmax)}, where pth(n) is the initial
thermal distribution following Doppler cooling [Eq. (2)]. One
traversal of the graph maps to the upper triangular matrix

W (t ) =

⎛
⎜⎜⎝

1 b1(t ) 0 · · ·
0 a1(t ) b2(t ) · · ·
0 0 a2(t ) · · ·
...

...
...

. . .

⎞
⎟⎟⎠, (6)

which is shown graphically in Fig. 2(a) for t = 1.016 ×
2π/�. Here W (t ) acting on �pth results in an updated prob-
ability vector �p = {p(0), . . . , p(nmax)},⎛

⎜⎜⎝
p(0)
p(1)
p(2)

...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 b1(t ) 0 · · ·
0 a1(t ) b2(t ) · · ·
0 0 a2(t ) · · ·
...

...
...

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

pth(0)
pth(1)
pth(2)

...

⎞
⎟⎟⎠. (7)

To encode the effects of multiple SBC pulses, all
individual pulse matrices W (t ) are multiplied together:
W (tN−1) · · ·W (t1)W (t0). In the simplest case, when all pulses
are of the same duration t0, the SBC interaction is encoded
as a matrix power of W (t0). For example, the final harmonic
level occupation after 25 identical pulses can be calculated as

FIG. 2. The first 30×30 matrix elements of the weight matrix
[Eq. (6)] are shown graphically for (a) a single pulse and (b) 25 repet
of the pulse applied in (a).

�p = W 25(t0) �pth, with the low-n matrix elements of W 25 shown
in Fig. 2(b).

B. Fixed protocol

Optimized pulse sequences may be efficiently computed
within the graph-theoretic framework introduced above. To
begin, we consider a single-parameter optimization that we
call the fixed protocol. Each of the SBC pulses is chosen to
have the same duration Tfixed = {t0, . . . , t0}, similar to SBC
schemes implemented in some trapped-ion studies [32,36,37].
Here we explicitly seek to minimize the function

n̄(t0) =
nmax∑
n=0

n[W N (t0) �pth]n (8)

to find the time t0 which yields the lowest possible n̄ given N
identical SBC pulses.

The optimal pulse time for the fixed method can be com-
puted quickly since there is only one parameter to optimize for
any number of pulses N . The most costly step in minimizing
Eq. (8) is the calculation of [W N (t0) �pth]n for different t0. How-
ever, standard numerical packages, such as PYTHON’s NUMPY

module [38], can exponentially reduce the number of matrix
multiplications needed when computing a power of a matrix
through binary decomposition. Assuming N > 3, a binary
decomposition recursively squares the matrix, exponentially
increasing the matrix power: 2, 4, 8, and so on. The imple-
mentation is adapted to allow for arbitrary matrix powers, with
a computation time scaling with N as O(log2(N )) and with
system size nmax as O(n3

max).

C. Optimal protocol

We now consider the optimal protocol, which is a full-
parameter optimization where each pulse time is treated as an
independent variable. Given a set of experimental parameters
and for now restricting the study to first-order RSB pulses,
the remaining degrees of freedom are the durations of each
SBC pulse. The optimal protocol searches the full available
parameter space of N distinct pulse times, yielding the lowest
possible n̄ for any given value of η, n̄i, �, and N .

The optimal protocol, using first-order RSBs, is executed
as follows. First, the initial harmonic populations �pth and Rabi
frequencies �n,n−1 are calculated over a truncated range of
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FIG. 3. The classic, fixed, optimal, and multiorder protocols are
compared for an initial temperature of n̄i = 15.36 and η = 0.18 (see
the text for definitions). (a) Total sideband cooling time (excluding
optical pumping) and (b) cooled n̄ as a function of the number of
SBC pulses. (c) Scaled frequencies for the first-order (solid line)
and second-order (dash-dotted line) RSB showing the near-zero
frequency of the first-order RSB at n = 112. (d) Initial thermal
distribution (light red solid line) and distributions after 50 pulses
of first-order fixed (black solid line) and multiorder fixed (purple
dash-dotted line) protocols.

harmonic states [0, nmax] (nmax 	 n̄i), based on the exper-
imental parameters η, n̄i, and �. Next, a gradient descent
algorithm is applied to minimize the equation

n̄(t0, t1, . . . , tN−1) =
nmax∑
n=0

n[W (tN−1) · · ·W (t1)W (t0) �pth]n (9)

to find the pulse schedule Toptimal = {t0, t1, . . . , tN−1}
that gives the lowest average harmonic occupation
n̄(t0, t1, . . . , tN−1) following N SBC pulses.

Since each pulse time in the pulse schedule Toptimal is an
independent variable, computing the optimal Toptimal scales
exponentially with the number of pulses. For large nmax or N ,
this can cause calculations to exceed readily available compu-
tational resources. However, we find that careful bounding of
the gradient descent minimization can help reduce computa-
tion times. For example, using a standard laptop, we observe
that a 50-pulse SBC optimization takes less than 90 s to
compute, which is a factor of 2 faster than for the unbounded
case.

The predicted performances of the optimal, fixed, and
classic protocols are compared in Fig. 3. Simulations are per-
formed using the parameters n̄i = 15.36 and η = 0.18, which
are similar to those of our experimental system described in
Sec V. For fewer than ∼50 SBC pulses, the classic method not
only takes the longest absolute time to implement [Fig. 3(a)],
but also yields the highest final n̄ [Fig. 3(b)]. In comparison,
the fixed (black solid line) and optimal (gray dashed line)
methods perform nearly identically, in both overall cooling
time and final ion temperature. For larger n̄i, the classic

method drifts further away from optimal, while the fixed
method retains its near-optimal behavior.

D. Multiorder optimization

When outside of the low-η–low-n̄i regime, the trapping of
harmonic population in high-n states can limit first-order RSB
cooling [26,32,37]. As shown in Fig. 3(c), the first-order RSB
Rabi frequency approaches zero for specific high-n harmonic
levels (approximately n = 112 for our chosen parameters). As
a consequence, any initial population n � 112 will be trapped
in these high-n states, even while the remaining population
n � 112 is swept towards the ground state.

This population trapping effect is visible in Fig. 3(d),
which shows the harmonic population distribution follow-
ing 50 first-order SBC pulses. A significant population near
n = 112 remains uncooled, contributing approximately 0.3
motional quanta to the final value of n̄: an order of magnitude
higher than the SBC cooling limit and large compared to
what is considered near-ground-state cooling. This effect also
explains why the three first-order methods in Figs. 3(a) and
3(b) begin to converge at large numbers of pulses: The trapped
population contributions to n̄ dominate at colder temperatures.

To avoid population trapping at high-n, higher-order RSB
pulses can be incorporated into the SBC protocol. We refer
to this scheme as “multiorder” cooling. Particularly in exper-
imental regimes where η or n̄i is large, trapped populations
may be so significant that multiorder cooling is required to
achieve near-ground-state temperatures [26,32,37]. This is
because the harmonic levels with near-zero RSB Rabi fre-
quencies shift to smaller n as η increases and because larger
fractions of the initial population will be trapped at high-n as
n̄i increases.

Multiorder cooling circumvents population trapping since,
for different RSB orders, the Rabi frequencies approach zero
at different values of n. This is illustrated in Fig. 3(c), where it
can be seen that higher RSB orders exhibit their first zeros at
higher values of n. This allows for multiorder pulse sequences
which first move population from high to intermediate n and
then employ first-order pulses to reach the ground state.

The graph-theoretic framework we introduced in Sec. III A
can easily incorporate higher-order pulses. For an mth-order
pulse of time t , the probability of not cooling is an(t ) =
cos2(�n,n−mt/2) and is mapped to the diagonal of the weight
matrix W (t ). Likewise, the probability that the mth-order
pulse takes |n〉 → |n − m〉 is bn(t ) = sin2(�n,n−mt/2) and is
mapped to the mth upper diagonal of W (t ). Both the fixed
and optimal protocols may then be calculated for multiorder
cooling once the W (t ) matrices are constructed.

We simulate and optimize a multiorder fixed protocol with
N3 third-order pules, N2 second-order pulses, and N1 first-
order pulses fixing the total number of SBC pulses N =
N1 + N2 + N3 and allowing the pulse time to vary per order
n̄(t1, t2, t3) = ∑nmax

n=0 n[W N1 (t1)W N2 (t2)W N3 (t3) �pth]n. Here N1,
N2, and N3 were selected by brute-force optimization of a
block sequence (detailed in the next paragraph). Figure 3(b)
shows multiorder cooling (purple dash-dotted line) work-
ing significantly faster than the optimal first-order method,
cooling from n̄i = 15.36 to a final n̄ = 0.06 after only 50
pulses. In addition, the multiorder protocol avoids the high-n
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population trapping present in the first-order sequences. This
can be seen in Fig. 3(d), where population is much more
efficiently transferred from high n to low n when multiorder
pulses are used.

Multiorder cooling introduces further optimization and
experimental challenges. For an N-pulse SBC protocol that
includes km pulses of order m, there are a factorial number of
permutations (N!/

∏
km!) in which the pulse orders may be

sequenced and an exponential number of {km} choices which
satisfy

∑
km = N . For small numbers of pulses (N � 20),

we used a brute-force computation to conclude that a block
sequence is best: All km pulses of the same order m stay
together in a block and higher-order m blocks are applied
before lower orders. Under this restriction, the number of
possible sequences becomes polynomial in the number of
applied orders m, scaling as O(Nm−1).

In practice, applying pulses with arbitrarily high orders
is not experimentally feasible. Transition linewidths narrow
for higher orders, making resonant excitation difficult. In
addition, transition rates decrease, making pulse times im-
practically long [Eq. (3)]. In our experimental demonstration
(Sec. V), we reliably address RSB transitions up to third order.
If higher RSB orders are needed but not possible to apply,
alternation between lower orders may still remove trapped
population [32] at the cost of longer pulse sequences.

IV. THERMOMETRY OF SIDEBAND-COOLED
DISTRIBUTIONS

In the quantum regime, full ion thermometry requires
knowledge of the probabilities p(n) for occupying each har-
monic level n so that the average occupation n̄ = ∑

np(n)
may be calculated. Given the impracticality of measuring
dozens or hundreds of probabilities p(n) to high accuracy,
thermometry techniques must make assumptions about the
underlying distribution p(n). The most common one is to
assume that p(n) is thermal, in which case n̄ may be extracted
by taking the ratio of first-order RSB and BSB transition prob-
abilities [18]. However, Sec. III and Fig. 3(d) demonstrated
that sideband-cooled ions can have dramatically nonthermal
distributions p(n), depending on the cooling protocol, the
number of RSB orders, and the number of cooling pulses.
Thus common ion thermometry methods may give widely
inaccurate results following extensive sideband cooling, mo-
tivating development of an alternative approach.

In this section we begin by outlining two common ion
thermometry methods, their underlying assumptions, and the
reasons they fail to correctly measure ion temperatures fol-
lowing significant sideband cooling. We then introduce a
technique for ion thermometry which has been specifically
tailored to reveal ion temperatures after sideband cooling and
depends only on the time-average value of RSB transitions.

A. Existing methods

Nearly all experiments measuring trapped-ion tempera-
tures deep in the quantum regime follow the approach used
in Ref. [18], which we call the ratio method. The ion is first
initialized in the state |↓〉, and the first-order red and blue
sidebands are then driven with the same power for the same

time. If the ion motional distribution is thermal, then the ratio
of RSB to BSB transition probabilities can be related to the
average harmonic level occupation n̄ (Appendix A):

r ≡ PRSB
↑ (t )

PBSB
↑ (t )

= n̄

n̄ + 1
. (10)

This ratio r may be experimentally determined by fitting ab-
sorption line shapes to frequency scans over the red and blue
sidebands (as in [18]) or by driving red and blue sidebands on
resonance and taking the ratio of the resulting time series.

The ratio method is powerful due to its direct dependence
on n̄ and experimental ease. However, the ratio method relies
on the assumption of a thermal harmonic distribution which
is inherently mismatched to the motional distribution of ions
following significant sideband cooling [see Fig. 3(d)]. As we
will show in Sec. V, this assumption can lead to an order-of-
magnitude underestimate of the final n̄ after only moderate
sideband cooling.

When the underlying motional distribution is known to
be nonthermal, alternative thermometry methods may pro-
vide a better estimate of n̄. One popular method performs a
frequency-domain analysis of a BSB Rabi oscillation, using
singular value decomposition (SVD) to extract the harmonic
level probabilities p(n) [25]. In this method, a BSB oscillation
is described as a matrix of transition probabilities bn(ti ) =
sin2(�n,n−1ti/2) acting on the level probability vector �p to
yield the measured fluorescence at each time step ti. Singular
value decomposition is then used to pseudoinvert the transi-
tion probability matrix and isolate �p (see Appendix B for more
detail). This technique has been successfully implemented to
measure n̄ for both thermal states and coherent states [25].

Although SVD is a flexible method for measuring n̄ in
nonthermal distributions, there are several drawbacks. First,
data acquisition can take a long time since long-oscillation
time series are necessary to accurately determine as many
harmonic state probabilities as possible. This is further com-
pounded by the need to perform many thousands of repetitions
to keep quantum projection noise low and avoid potential
overfitting during the SVD. Additionally, the output prob-
abilities from SVD have no physical boundary constraints
such as 0 � p(n) � 1 or

∑
p(n) = 1. This has been found to

produce large errors when applied to distributions with many
non-negligible probabilities at high harmonic level n [25], as
is the case for the distributions shown in Fig. 3(d).

B. Modeling post-SBC distributions

The primary reason that the ratio and SVD methods fail
to accurately estimate n̄ following SBC is that they are not
well matched to the motional state distributions shown in
Fig. 3(d). After SBC, the largest contributions to n̄ are often
driven by the residual population remaining at large n, which
is neglected when using a simple thermal approximation or
when focusing on only the low-n populations. Thus, improved
modeling of the probability distribution p(n) following SBC
is a prerequisite for higher-accuracy estimation of ion temper-
atures.

To date, the most detailed modeling of post-SBC motional
distributions was outlined in [26]. Using simulated multiorder
SBC pulses, it was found that the harmonic level populations
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were well approximated by a double thermal distribution

pdouble(n) = αpth(n|n̄l ) + (1 − α)pth(n|n̄h), (11)

where n̄l captures the distribution for low-n states, n̄h cap-
tures the distribution for high-n states, and the total average
occupation is n̄ = αn̄l + (1 − α)n̄h. Our numeric simulations
of multiorder SBC in Fig. 3(d) likewise demonstrate that the
final-state populations are well described by this double ther-
mal model. In [26], n̄ was experimentally determined by first
fitting the simulated distribution to extract n̄h and then fitting
the experimental data to Eq. (11) with n̄h as a fixed parameter.

Here we seek to generalize Eq. (11) and develop a measure-
ment protocol that avoids dependence on numeric simulations.
To begin, we propose direct measurement to find the harmonic
level populations pmeas(n) up to n = k, where k > n̄l . Using
this, we compute the remaining population fraction in all
levels n > k:

prem(n > k) = 1 −
k∑

n=0

pmeas(n). (12)

Next we propose direct measurement of the initial thermal
state n̄i before SBC, which we identify as n̄h in Eq. (11). Once
again the quantity p(n > k) is calculated, this time for the
initial thermal distribution

pth(n > k) =
∞∑

n=k+1

n̄n
i

(n̄i + 1)n+1
. (13)

The ratio of Eqs. (12) and (13) estimates the fraction of states
remaining in an approximate thermal distribution of average
occupation n̄i. The final n̄ is then estimated as

n̄ ≈
k∑

n=0

npmeas(n) + prem(n > k)

pth(n > k)

∞∑
n=k+1

n
n̄n

i

(n̄i + 1)n+1
. (14)

The advantage of Eq. (14) is that it leverages the most
information available from measurement with no direct de-
pendence on simulation. The only remaining element needed
is a robust method to measure the individual probabilities
of the low-lying harmonic levels p(n � k). In the following
section we introduce a simple technique that reveals these
desired motional state populations.

C. Time-average thermometry

We propose a time-average measurement protocol which,
when combined with Eq. (14), provides a high-accuracy es-
timate of n̄ following SBC. This approach is constructed to
measure the individual probabilities of the first few harmonic
levels. Suppose a trapped ion is initialized in the state |↓〉.
Then the expected probability of finding the ion in the |↑〉
state when driven with an mth-order RSB is given by

PRSB
↑,m (t ) =

∞∑
n=0

1

2
[1 − e−γ t cos(�n+m,nt )]p(n + m), (15)

where no assumptions have been made about the probability
distribution p(n) and decoherence effects at rate γ have been
included for generality.

The running time average of Eq. (15) is

P̄RSB
↑,m (t ) = 1

t

∫ t

0
PRSB

↑,m (t ′)dt ′

= 1

2

∞∑
n=0

p(n + m)

[
1 − γ(

�2
n+m,n + γ 2

)
t

+ e−γ t [γ cos(�n+m,nt ′) − �n+m,n sin(�n+m,nt )](
�2

n+m,n + γ 2
)
t

]
.

(16)

We observe that for long times [t 	 1/(�2
n+m,n + γ 2)], the

time average converges to a partial sum of motional state
probabilities

P̄RSB
↑,m (t ) ≈ 1

2

∞∑
n=0

p(n + m). (17)

To extract the individual harmonic probabilities, consider
driving with a first-order RSB

P̄RSB
↑,1 (t ) ≈ 1

2

∞∑
n=0

p(n + 1)

≈ 1

2
[1 − p(0)], (18)

from which p(0) can be directly estimated

p(0) ≈ 1 − 2P̄RSB
↑,1 (t ). (19)

Higher harmonic state probabilities may then be estimated by
driving with sequentially higher-order RSBs and applying the
recursion relation

p(m − 1) ≈ 2(P̄↑,m−1 − P̄↑,m). (20)

This time-average approach provides an efficient and
robust method for extracting motional state populations. Com-
pared with existing methods, relatively few points are needed
to determine the time average of the RSB oscillation. Al-
though these points should be taken at long times (relative
to the RSB Rabi frequency), we note that Eq. (17) does not
depend on the decoherence rate γ and indeed converges faster
when decoherence is included. Rather, we anticipate that the
largest errors in time-average measurements will arise from
real-time changes in p(n) driven by motional heating. Such
trap heating effects have been comprehensively studied [24]
and can be incorporated into the motional state analysis if
needed.

V. EXPERIMENTAL THERMOMETRY

In this section we demonstrate experimentally the effec-
tiveness of our time-average thermometry method. We begin
by measuring the temperature of a trapped ion following
Doppler cooling and comparing the time-average method to
several existing techniques. We then repeat our measurements
and comparisons using an optimized sideband cooling se-
quence from Sec. III, finding that the time-average method
most closely agrees with theory predictions.

Thermometry experiments are performed on a single
171Yb+ ion confined in a linear Paul trap with axial frequency
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ωz = 2π × 0.670 ± 0.008 MHz. In our setup, the Lamb-
Dicke parameter η = 0.18 ± 0.01, the Rabi carrier frequency
� = 2π × 64.9 ± 0.5 kHz, and the optical pumping time
is 5 μs. Doppler cooling is performed with 369.5-nm light
along the 2S1/2|F = 0〉 → 2P1/2|F = 1〉 and 2S1/2|F = 1〉 →
2P1/2|F = 0〉 transitions (linewidth � = 2π × 19.6 MHz),
while red and blue sideband transitions are performed with
far-detuned Raman beams at 355 nm. After each experi-
ment, the qubit state is determined by irradiating the ion with
369.5-nm light resonant with the 2S1/2|F = 1〉→2P1/2|F = 0〉
transition and capturing the spin-dependent fluorescence on a
photomultiplier tube.

A. Thermal distribution

When an ion is cooled to its Doppler-limited tempera-
ture, the motional state is well characterized by a thermal
distribution [Eq. (2)]. Given our axial trap frequency, this
temperature corresponds to an average harmonic occupation
n̄Dop = 14.6 ± 0.2 [Eq. (1)]. We take this value as the theo-
retical prediction, against which we compare several different
methods for trapped-ion thermometry.

We begin by using the ratio method to estimate the
Doppler-cooled ion temperature. Figures 4(a) and 4(b) show
frequency scans over the red and blue sidebands, respec-
tively, with error bars smaller than the size of the markers.
Sinc squared functions are fit to the data with excellent
agreement and shown as solid lines. Taking the ratio of the
RSB and BSB transition strengths [Eq. (A3)] yields n̄ratio =
14.3 ± 1.5, in good agreement with the Doppler-limited
prediction.

Two additional estimates of the Doppler-limited tempera-
ture may be extracted by driving a first-order BSB oscillation.
In the first method, the data are fitted to a thermally weighted
Rabi oscillation PBSB

↑ (t ) = ∑800
n=0 pth(n) sin2(�n,n+1t/2),

shown as the light blue solid curve in Fig. 4(c). This
single-parameter fit finds an estimated n̄thermal fit = 14.9 ± 0.7.
Using the same BSB data set, we also employ the SVD
method to estimate n̄SVD = 16.4 ± 2.1. In Fig. 4(c) the black
dashed curve is calculated by weighting a BSB oscillation
function PBSB

↑ (t ) = ∑nSVD
n=0 pSVD(n) sin2(�n,n+1t/2) with the

SVD-computed probabilities pSVD(n).
Finally, the first (dark green) and second (dark purple)

RSBs are driven over a long period of time, with their re-
spective running time averages (light green and light purple)
shown in Figs. 4(d) and 4(e). We take an excess of data
points in our demonstration to confirm the accuracy of this
technique, though we note that only ∼20 data points at long
times are needed to find the same n̄ to within 5%. From the
first-order RSB time average in Fig. 4(d), we estimate p(0)
using Eq. (19). Using the second-order RSB time average in
Fig. 4(e) and the value for p(0), p(1) may be obtained from
Eq. (20). Finally, fitting p(0) and p(1) to a thermal distribution
yields n̄time avg = 14.6 ± 1.2.

All extracted values of n̄ are compared to the Doppler-
limited prediction in Fig. 4(f). We conclude that all ap-
proaches studied here are viable methods for extracting the
average harmonic occupation n̄ when applied to thermal dis-
tributions. In the following section we will reapply these
measurement techniques to sideband-cooled ions, whose

FIG. 4. Thermometry comparisons of thermally distributed ion
motional states. (a) Red and (b) blue sideband frequency scans used
to determine n̄ from the ratio method. (c) BSB Rabi oscillation
data (blue points) fit by both a thermally weighted Rabi oscillation
function (solid blue) and a SVD analysis (black dashed line). Also
shown are long Rabi oscillations of the (d) first- and (e) second-order
RSBs, with their running time-average values shown as solid lines.
(f) Comparison of these different thermometry methods against the
calculated Doppler cooling limit of n̄Dop = 14.6.

motional distributions are predicted to be significantly non-
thermal.

B. Sideband-cooled distribution

In this set of experiments, the ion is initially cooled to
the Doppler limit of n̄ = 14.6 and then further cooled using
25 first-order fixed SBC pulses (see Sec. III B). As shown in
Fig. 3(b), this small number of pulses cannot reach the ground
state using any SBC protocol when starting from such a large
initial n̄. Nevertheless, we will show that 25 SBC pulses is
already sufficient to induce large discrepancies between dif-
ferent thermometry techniques.

The inherent nonthermal distribution of the sideband-
cooled ion is predicted to cause a significant bias in the ratio
method’s estimation of n̄. Figure 5 illustrates this point for
the given experimental parameters. In Fig. 5(a) a simulated
distribution after 25 first-order fixed SBC pulses (solid line)
is compared to a thermal distribution with the same n̄ (dashed
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FIG. 5. (a) Simulated motional state distribution after 25 first-
order fixed pulses (solid line) and a thermal distribution with the
same n̄ (dashed line). (b) For any number of SBC pulses, the
estimated n̄ from the ratio method (dashed line) is predicted to sig-
nificantly underestimate the true n̄ as calculated from the simulated
distribution (solid line).

line). The wide discrepancy indicates that a thermal state is a
poor approximation for the post-SBC distribution.

To quantify the potential error in assuming a thermal distri-
bution, Fig. 5(b) compares the n̄ of the simulated distribution
(solid line) to the predicted result from the ratio method
(dashed line). The ratio method drastically underestimates n̄
after just a few pulses, with almost a full order of magnitude
difference by 25 pulses. We caution that when ratio-method
thermometry is applied after significant SBC, it may result in
misleadingly low estimates of ion temperatures and motional
heating rates.

Following SBC, we show the Rabi oscillations of first-
order red and blue sidebands in Fig. 6(a). The data points
are connected (not fitted) to guide the eye and errors at each
point are the size of the marker. Under the assumptions of the
ratio method, the ratio of the RSB to BSB at any point in time
provides a valid estimate of n̄. We have calculated this ratio
for all points in Fig. 6(a) and have plotted the corresponding
n̄ in Fig. 6(b).

For thermal distributions, as assumed by the ratio method,
n̄ should be constant at all times. In Fig. 6(b) the substantial
differences in extracted n̄ with time provide experimental ev-
idence that the underlying state distribution is nonthermal. To
estimate n̄ in Fig. 6(b), we average over the varying n̄ to find
n̄ratio = 0.58 ± 0.56. This value is a drastic underestimate of
the predicted value n̄sim = 3.57 ± 0.58, by almost a full order
of magnitude. Furthermore, the simulated n̄ does not account
for ion heating or noise effects, which if included would make
the discrepancy even larger.

Next we apply a SVD analysis to the first-order BSB in
Fig. 6(a). Since the tail of the SBC distribution is predicted
to be long, we choose the length of the level probability
vector �p to maximize the number of physically constrained
probabilities 0 � p(n) � 1. Nevertheless, the BSB time-series

FIG. 6. Thermometry comparisons of a sideband-cooled ion.
(a) Measured first-order RSB and BSB time series. Points are con-
nected to guide the eye. (b) Estimation of n̄ at each time point using
the ratio method (excluding the first few time steps). Long-time Rabi
oscillations are shown for the (c) first, (d) second, and (e) third
RSBs, with their running time averages drawn as solid lines. (f)
Population distributions as estimated by numeric simulation (black),
the time-average method (blue), and SVD (gray). (g) Measurements
of n̄ from the ratio method, SVD, and the time-average method are
compared to a numeric simulation of SBC. Only the time-average
method closely estimates n̄sim.

data remain poorly fit for any length of �p and the most accurate
SVD result (n̄SVD = 8.0 ± 1.3) still significantly disagrees
with the simulated average harmonic occupation.

Finally, we apply our time-average measurement technique
to a sideband-cooled ion. We begin by driving the first (dark
green), second (dark purple), and third (dark orange) RSBs
for a long time period, as shown in Figs. 6(c)–6(e). Following
the time-average procedure outlined in Sec. IV C, p(0), p(1),
p(2), and p(n > 2) are estimated from the measured time
averages. Substituting these probabilities into Eq. (14) results
in a measured n̄time avg = 4.1 ± 0.7.

The estimated level distributions from the simulation, time-
average method, and SVD method are compared in Fig. 6(f).
The numerically simulated distribution (black) follows a
monotonic decrease in population for increasing n. The time-
average method (blue) finds similar monotonic behavior, with
a relative excess of population in the n = 1 and n = 2 levels
which we attribute to ion motional heating out of the n = 0

043108-8



OPTIMIZED PULSED SIDEBAND COOLING AND … PHYSICAL REVIEW A 104, 043108 (2021)

state [24]. In contrast, the distribution estimated by the SVD
method (gray) is nonmonotonic and exhibits a steep dropoff
in population between n = 7 and n = 8, suggesting unphys-
ical behavior which cannot be explained by standard heating
models [24]. Of all the considered thermometry techniques,
the time-average method best matches the simulated level dis-
tributions and it is the only method that does not significantly
disagree with the simulated prediction n̄sim [Fig. 6(g)].

VI. CONCLUSION

Sideband cooling has been a popular and powerful tech-
nique for the near-ground-state preparation of trapped ions.
Yet historical approaches to SBC can be made more effi-
cient and the measurement of cooled ion temperatures can
be performed with less error. In this work we have shown
how to calculate the optimal pulsed SBC protocol for any
experimental setup characterized by a cooling laser geometry
and wavelength, an ion wave-packet width (which depends
upon the ion mass and trap frequency), and an initial ion
temperature (which depends on the trap frequency and atomic
linewidth). We have additionally argued that careful under-
standing of the expected state distributions is a necessary
precondition for accurate thermometry.

Our efficient numeric simulations and optimizations were
enabled by expressing pulsed SBC within a graph-theoretic
framework. This approach is powerful for optimizing SBC
pulse sequences and is particularly important in regimes with
high Doppler-limited initial temperatures n̄i or extended ion
wave packets (which correspond to a large η). We observed
that repeated SBC pulses with a single optimized time perform
nearly identically to fully optimized pulse sequences, while
traditional protocols were the least efficient per pulse and
per unit time. We have likewise introduced a thermometry
technique which more closely models the state distribution
after SBC and experimentally validated its performance. In
contrast, we observed that the most common measurement
technique can severely underestimate ion temperatures if ex-
tensive SBC is performed.

In future work we anticipate that the graph representation
of pulsed SBC may be expanded to include noise models for
ion heating, decoherence, off-resonant couplings, and effects
of rf-driven micromotion. Such additions could be smoothly
incorporated into the matrix formalism and would allow for
further SBC optimization in the face of realistic experimental
imperfections. Extension to multiple ions and multiple modes
is another natural direction that fits nicely within the matrix
representation of pulsed SBC.

Finally, the time-average technique can open new possibili-
ties for improved thermometry. With this method, for instance,
it should be possible to probe the time-dependent population
dynamics of trapped-ion motional states and observe how the
harmonic level distribution changes in response to external
noise sources. Such experiments would provide an additional
set of characterizations which may help elucidate mechanisms
responsible for anomalous ion heating.
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APPENDIX A: RATIO THERMOMETRY

The ratio method [18] estimates the average harmonic state
n̄ of a thermal distribution pth(n) = n̄n/(n̄ + 1)n+1 by using
the unique property pth(n + 1) = pth(n)n̄/(n̄ + 1). Given a
RSB Rabi oscillation

PRSB
↑ (t ) =

∞∑
n=1

pth(n) sin2

(
�n,n−1t

2

)

= n̄

n̄ + 1

∞∑
n=0

pth(n) sin2

(
�n+1,nt

2

)
(A1)

and a BSB Rabi oscillation

PBSB
↑ (t ) =

∞∑
n=0

pth(n) sin2

(
�n+1,nt

2

)
, (A2)

their ratio is a function of n̄ for any time t or frequency
detuning

r ≡ PRSB
↑ (t )

PBSB
↑ (t )

= n̄

n̄ + 1
. (A3)

We note that in the presence of decoherence, as introduced in
Sec. IV C, the RSB and BSB transition probabilities may be
written

PRSB
↑ (t ) = n̄

n̄ + 1

∞∑
n=0

pth(n)
1 − e−γ t cos(�n,n+1t )

2
, (A4)

PBSB
↑ (t ) =

∞∑
n=0

pth(n)
1 − e−γ t cos(�n,n+1t )

2
. (A5)

Thus, under this standard model of decoherence, the ratio of
RSB to BSB transition probabilities remains identical to the
decoherence-free case r = n̄/(n̄ + 1).

APPENDIX B: SVD THERMOMETRY

The SVD method [25] is a frequency-domain analysis
of a RSB or BSB Rabi oscillation. In this method, �n,n′

is independently calculated and its contribution to the over-
all Rabi oscillation is constructed into a rectangular matrix
(dimension M × N) with M time steps taken in the experi-
ment, considering N harmonic states of interest, and elements
bn(t ) = sin2(�n,n−1t/2). This matrix acts on the harmonic
distribution vector (N × 1) to produce a vector represent-
ing the measured fluorescence at each experimental time
step. For example, a BSB oscillation would be constructed
as ⎛

⎜⎜⎝
b1(t0) b2(t0) · · ·
b1(t1) b2(t1) · · ·
b1(t2) b2(t2) · · ·

...
...

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p(0)
p(1)
p(2)

...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

PBSB
↑ (t0)

PBSB
↑ (t1)

PBSB
↑ (t2)

...

⎞
⎟⎟⎟⎟⎠. (B1)
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Using singular value decomposition, the rectangular matrix is
pseudoinverted to solve for the harmonic distribution vector.

Once this vector of p(n) is known, the average occupation is
found by calculating n̄ = ∑

np(n).
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