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Modern superconducting radio frequency (SRF) applications demand precise control over material properties
across multiple length scales—from microscopic composition, to mesoscopic defect structures, to macroscopic
cavity geometry. We present a time-dependent Ginzburg-Landau (TDGL) framework that incorporates spatially
varying parameters derived from experimental measurements and ab initio calculations, enabling realistic,
sample-specific simulations. As a demonstration, we model Sn-deficient islands in Nb3Sn and calculate the field
at which vortex nucleation first occurs for various defect configurations. These thresholds serve as a predictive
tool for identifying defects likely to degrade SRF cavity performance. We then simulate the resulting dissipation
and show how aggregate contributions from multiple small defects can reproduce trends consistent with high-
field Q-slope behavior observed experimentally. Our results offer a pathway for connecting microscopic defect
properties to macroscopic SRF performance using a computationally efficient mesoscopic model.
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I. INTRODUCTION

Superconducting radio-frequency (SRF) cavities are a cru-
cial component of particle accelerators because they utilize
AC electromagnetic fields to accelerate beams of charged par-
ticles. Nb has been the industry standard for SRF applications
for decades due to its high critical temperature (≈9K) rela-
tive to the other elemental superconductors. Within the past
decade, the need for SRF cavities with capabilities beyond
the limits of Nb cavity performance has led to the study of a
variety of alternative SRF materials. Among these materials,
Nb3Sn has emerged as a promising candidate; Nb3Sn boasts
both a higher critical temperature (≈18 K) and higher critical
fields [1,2]. One particular advantage of SRF cavities (as
compared with traditional normal conducting rf cavities) is
their high quality factors (Q) [3]. A major benefit of Nb3Sn
SRF cavities compared with their Nb counterparts is that they
can maintain similar Q′s (on the order of 1010) at higher tem-
peratures (4.2 K vs 2 K) [2], significantly reducing cryogenic
costs. NbZr is another promising alternative SRF material
which has seen recent attention [4,5], with most existing NbZr
samples exhibiting critical temperatures between 10 and 13 K
(the theoretical maximum is 17.7 K), but this material has
not yet been tested at cavity scale. The simulations in this
paper focus on Nb3Sn, but the methods we present can be
generalized to any material of interest.

The oscillating electric fields used for acceleration in SRF
cavities induce magnetic fields parallel to the cavity surface,
so for large accelerating gradients, the critical magnetic fields
of the cavity material are the fundamental limits on cavity
performance. Type-II superconductors such as Nb and Nb3Sn
have two critical fields, Hc1 and Hc2. For fields below Hc1, the
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Meissner state is stable and magnetic flux is expelled from
the cavity. Between Hc1 and Hc2, there is a mixed state in
which superconducting vortices trap lines of magnetic flux,
forming normal cores inside the otherwise superconducting
state. Under an AC field, as is the case for SRF cavities, the
vortices quickly move in and out of the cavity over the course
of an AC cycle. This vortex motion leads to large amounts of
dissipation [6]. For fields above Hc2, the mixed state becomes
unstable and in this state SRF cavities will quench (i.e., go
normal conducting). It is important to note that this is not
the only mechanism for SRF cavity quench, the dissipation
caused by moving vortices in the mixed state can cause heat-
ing in the cavity, which can also lead to quenching through a
change in cavity temperature. As such, for SRF applications,
it is important that the cavity remain within the Meissner state
during operation.

While the Meissner state is no longer thermodynami-
cally stable above Hc1, it can remain metastable up until
the so-called superheating field, Hsh [7]. It is well known
that many high-power SRF cavities operate in this metastable
Meissner state [8]. As such, Hsh is the theoretical limit-
ing field for operation of SRF cavities, since the dissipative
vortices which are detrimental to SRF performance become
unavoidable for fields above Hsh. Hsh has been studied for
decades by condensed-matter theorists. These studies have
most commonly been within a Ginzburg-Landau (GL) frame-
work [9–12], but the superheating field has also been studied
extensively utilizing the Eilenberger equations [13–15].

Hsh provides the maximum possible field (and therefore
the maximum accelerating gradient) for SRF cavity operation,
but local features of a material such as impurities or surface
geometries can act as nucleation sites for vortices. This means
that in practice, realistic material samples will be limited
by what we call the vortex penetration field Hvort, which
is the lowest field at which the material nucleates vortices.
This quantity can vary greatly between different samples and
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depends on a large variety of different effects, so estimation
of Hvort for realistic sample materials remains a rich area of
research. For the case of Nb3Sn in particular, theoretical Hsh

calculations suggest that Nb3Sn cavities could reach acceler-
ating gradients as high as around 100 MV/m, yet the highest
accelerating field achieved so far by a Nb3Sn SRF cavity
is around 24 MV/m [16], with most other cavities reach-
ing their quench field well below this. Additionally, many
existing cavities exhibit a phenomenon in which Q signifi-
cantly degrades as the cavity approaches its quench field, a
phenomenon dubbed “Q-slope” [17], also sometimes called
high-field Q-slope (HFQS) when it occurs primarily at higher
fields near the quench field. These performance degradations
are the result of material defects introduced during the Nb3Sn
growth process, so understanding how different defects seen
within samples affect things like Hvort or dissipation more
generally is critical to developing better growth techniques.

The need to accurately model specific features such as ma-
terial impurities within superconducting materials motivates
us to develop a framework which will allow us to directly
model the spatial variations of superconducting properties
due to the material compositions observed in realistic sample
materials. To do this, we use time-dependent Ginzburg-
Landau (TDGL) theory. TDGL has already proven itself to
be a powerful tool for mesoscopic-scale simulations rele-
vant to SRF applications [18–21]. Besides SRF simulations,
TDGL has broad application such as in single-photon detec-
tors [22,23], superconducting quantum interference devices
(SQUIDs) [24,25], weak links [26–30], or superconducting
nanowires [31–33]. The methods we present in this paper
are investigated with full three-dimensional (3D) simulations.
While prior work has studied vortex dynamics in 3D [34–40],
the majority of TDGL research, especially in the context of
SRF cavities, has been limited to two dimensions (2D).

Whenever working with TDGL, it is important to ac-
knowledge its limitations. TDGL is a mesoscopic-scale model
which abstracts the microscopic details of superconductivity
into quantities which can be used to describe things such as
vortex dynamics. Much of this abstraction is the direct result
of restricting the quantitative validity to gapless supercon-
ductivity at temperatures near Tc. This means that outside of
this fairly restrictive regime, the quantitative predictions of
TDGL are not accurate in general. Despite this, there are three
main reasons that TDGL is still has considerable value in a
variety of studies, such as those referenced above. First, it is
well known that the solutions to the Ginzburg-Landau equa-
tions have a much wider range of quantitative applicability
when under the dirty limit and so properties of the TDGL
equations which can be derived from steady-state dirty-limit
solutions, such as Hsh, are still valuable quantitative outputs
of the theory. Second, theories of superconductivity with
larger ranges of quantitative accuracy (such as the Eilenberger
equations [13–15] or other quasiclassical approaches) scale
extremely poorly in terms of computational complexity when
it comes to numerical simulations, whereas TDGL is at least
feasible for larger mesoscopic-scale simulations. And finally,
TDGL offers qualitative and semiquantitative predictions that
provide useful insight into phenomena which may be difficult
or impossible to measure experimentally. For example, it can
be used to compare how variations in the size and depth of

stoichiometric defects relative to the superconductor’s surface
affect SRF-relevant metrics such as vortex nucleation and
energy dissipation—enabling prioritization of which defect
characteristics are most critical to address when perfect con-
trol is not possible. In what follows, we apply this approach to
a specific class of such defects relevant to Nb3Sn-coated SRF
cavities.

To model sample-specific materials and investigate mech-
anisms behind Q-slope and other quenching phenomena in
Nb3Sn SRF cavities, we draw on both experimental and the-
oretical studies that characterize the microscopic properties
of Nb3Sn. There has been a large body of work experimen-
tally characterizing SRF grade vapor-diffused Nb3Sn samples.
The primary suspect for SRF performance degradation comes
from defects or other imperfections in the Nb3Sn surface
significantly lowering the barrier to flux penetration [8]. In
particular, defects which have been studied are abnormally
thin or patchy grains [41–43], Sn-segregated grain boundaries
[19,44,45], and Sn-deficient regions [41,42,46,47]. In addition
to experimental characterizations, there have also been a vari-
ety of ab initio calculations for Nb3Sn using density functional
theory. In addition to calculations of general properties of
Nb3Sn [48], such as the electron and phonon density of states
and Eliashberg spectral function, these quantities have also
been estimated with respect to varying intrinsic strain [49]
as well as normal resistivity [50]. Variations in the supercon-
ducting Tc as well as electron density of states have also been
calculated with respect to varying tin concentration [51,52],
which applies to both Sn-segregation at grain boundaries and
Sn-deficient regions. These Sn-deficient regions, which we
call Sn-deficient islands, are the primary material defect we
study in order to validate our methods.

Experimental characterizations can give data about the ma-
terial compositions and physical structure of superconducting
materials, and ab initio calculations provide detailed descrip-
tions of the electronic and phononic structure and the resulting
superconducting properties, both of these on a microscopic
scale. TDGL plays the role of modeling mesoscopic scale
phenomena (such as vortex dynamics), which are difficult
or even impossible to measure directly via experiment and
are too large to easily model with microscopic scale theories
such as density-functional theory (DFT). There have been
a number of studies which have used TDGL to model ma-
terial inhomogeneities [18,19,53–57], but these studies did
not use the explicit dependencies of the TDGL parameters
on microscopic material properties to inform their choice
of parameters. The limitation to the approach used in these
references is that it requires either looking through a large
portion of the TDGL parameter space in order to find values
which lead to expected predictions, or more commonly, pick-
ing somewhat arbitrary values, which limits confidence in the
results.

In this paper, we outline a framework in TDGL the-
ory which allows us to directly calculate the values of
the TDGL parameters based on local properties of the
superconductor. This framework enables modeling of re-
alistic features of superconductor samples and supports
estimation of critical fields and energy dissipation under
dynamic electromagnetic conditions. Under our framework,
TDGL serves as a bridge between experimental material
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characterizations and ab initio calculations of material-
specific parameters, allowing us to further connect these
microscopic characterizations with macroscopic SRF per-
formance metrics in a sample-specific way. Because SRF
cavity development is inherently multidisciplinary—bringing
together accelerator physicists, materials scientists, and
condensed-matter theorists—a framework that integrates in-
sights across these domains is particularly valuable. The
method presented here enables such integration, offering a
pathway to sample-specific predictions grounded in both mi-
croscopic characterization and macroscopic application.

This paper is organized as follows: In Sec. II, we present
the TDGL equations and show how to calculate TDGL param-
eters from material properties. We then describe how spatial
variations in these parameters are estimated by combining
results from DFT calculations with experimental material
characterizations. The section concludes with a discussion
of how dissipation can be computed from TDGL solutions
and how SRF cavity quality factors can be derived from this
dissipation. In Sec. III, we apply our framework to estimate
the critical fields associated with Sn-deficient islands of vary-
ing size, position, and stoichiometric composition. We then
examine dissipation in the context of Nb SRF cavities and
analyze a representative simulation in detail to probe the limits
of TDGL. Finally, we demonstrate how combining critical
field and dissipation results enables us to estimate high-field
Q-slope behavior for Nb3Sn SRF cavities. Section IV con-
cludes the paper with a discussion of the justification for using
TDGL despite its known limitations and the implications of
our findings for future SRF cavity research.

II. METHODS

A. The time-dependent Ginzburg-Landau equations

Ginzburg-Landau (GL) theory is one of the oldest the-
ories of superconductivity, and it remains relevant today
owing to its relative simplicity and direct physical insights
into the electrodynamic response of superconductors under
static applied fields and currents [58]. The time-dependent
Ginzburg-Landau (TDGL) equations were originally pro-
posed by Schmid [59] in 1966 and Gor’kov and Eliashberg
[60] derived them rigorously from BCS theory later in 1968.
The TDGL equations (in Gaussian units) are given by

�

(
∂ψ

∂t
+ iesφ

h̄
ψ

)
+ 1

2ms

(
−ih̄∇ − es

c
A

)2
ψ

+ αψ + β|ψ |2ψ = 0, (1)

4πσn

c

(
1

c

∂A
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+ ∇φ

)
+ ∇ × ∇ × A

− 2π iesh̄

msc
(ψ∗∇ψ − ψ∇ψ∗) + 4πe2

s

msc2
|ψ |2A = 0. (2)

These equations are solved for the complex superconducting
order parameter ψ and the magnetic vector potential A. The
magnitude squared of ψ is proportional to the density of
superconducting electrons. The parameters α and β are phe-
nomenological and were originally introduced as coefficients
of the series expansion of the Ginzburg-Landau free energy.
Additionally, φ is the scalar potential; σn is the normal elec-

tron conductivity; � is the phenomenological relaxation rate
of ψ . Furthermore, es = 2e and ms = 2me represent the total
charge and total effective mass of a Cooper pair, respectively.
The TDGL equations are subject to boundary conditions(

ih̄∇ψ + es

c
Aψ

)
· n = 0, (3)

(∇ × A) × n = Ha × n, (4)(
∇φ + 1

c

∂A
∂t

)
· n = 0, (5)

where n is the outward normal vector to the boundary surface
and Ha is the applied magnetic field. Equation (3) ensures no
current flows out of the superconducting domain, and noting
that E = −∇φ − 1

c
∂A
∂t , Eqs. (4) and (5) are electromagnetic

interface conditions with an applied magnetic field.
The parameters α, β, and � were originally introduced

into the theory as phenomenological, temperature-dependent
constants [61]. It is worth noting that α < 0 corresponds to the
superconducting state whereas α � 0 corresponds to the nor-
mal state; β is strictly positive regardless of the system’s state.
The TDGL equations can also be derived from microscopic
theory using the time-dependent Gor’Kov equations [60]. A
useful consequence of this derivation is that it allows the
TDGL parameters to be directly related to experimentally
observable properties of the material in question. The material
dependencies are given by Ref. [62]:

α(ν(0), Tc, T ) = − ν(0)

⎛
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c
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c

⎞
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8π2T 2
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⎝ 1
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T 2
c

⎞
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≈ 7ζ (3)ν(0)

8π2T 2
c

, (7)

�(ν(0), Tc) = ν(0)π h̄

8Tc
, (8)

where ν(0) is the density of states at the Fermi-level, Tc is
the critical temperature, T is the temperature, and ζ (x) is the
Riemann zeta function. Additionally, the effective mass can
also be expressed in terms of these same quantities in addition
to the Fermi velocity v f and electron mean-free path �:

ms = 12h̄Tc

πν(0)v f �
. (9)

Equation (9) gives the effective mass under the dirty limit.
A major contribution of this paper is to introduce

a framework for modeling sample-specific features of
superconducting materials by connecting ab initio calcula-
tions of the material’s properties to experimental characteri-
zations of the material. Equations (6)–(9) determine how the
parameters of TDGL depend on the underlying material prop-
erties. We allow these parameters to vary spatially to capture
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the sample-specific features observed from experimental char-
acterizations. When converting these constant coefficient into
a spatially varying ones, it is important to consider how this
may alter the TDGL equations due to potential alterations to
the functional derivatives of the free energy. In the case of α,
β, and �, they do not appear on terms of the free energy with
spatial gradients. However, ms does appear in terms including
gradients, and so when including spatially varying effective
mass, Equation (1) should be augmented with an additional
term:

ih̄

2
∇ 1

ms
·
(

ih̄∇ + e

c
A

)
ψ.

Additionally, when solving the TDGL equations numer-
ically, it is standard to normalize all the parameters of the
model in order to obtain dimensionless quantities. To satisfy
the above requirements, the steps are as follows: Pick a ref-
erence value for each of α, β, �, ms, and σn, these will most
often just be the corresponding values for the bulk material.
Label these reference values α0, β0, �0, m0, and σn0. Define
dimensionless spatially varying functions, a(r), b(r), γ (r),
μ(r), and s(r), relative to their reference values. Apply the
following transformations to Eqs. (1) and (2):

α −→ α0a(r), (10)

β −→ β0b(r), (11)

� −→ �0γ (r), (12)

ms −→ m0μ(r), (13)

σn −→ σn0s(r). (14)

Then proceed with standard nondimensionalization proce-
dures for TDGL (see the Appendix for more details). The
advantage of this approach is that the nondimensionalization
procedures, when used on these transformed equations, leave
behind only the dimensionless functions which capture the
spatial variation of the sample material in natural units. The
resulting equations are
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+ 1

μ

(−i

κ0
∇ − A

)2

ψ

+ 1

κ0
∇ 1

μ
·
(

1

κ0
∇ − iA

)
ψ − aψ + b|ψ |2ψ = 0, (15)
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(
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)
+ ∇ × ∇ × A + i

2κ0μ
(ψ∗∇ψ − ψ∇ψ∗)

+ 1

μ
|ψ |2A = 0, (16)

where κ0 = λ0/ξ0 is the Ginzburg-Landau parameter of the
reference material. The quantity λ0 = ( m0c2β0

4πe2
s |α0| )

1/2 is the pen-

etration depth of the reference material, and ξ0 = ( h̄2

2m0|α0| )
1/2

is its coherence length. The parameter u0 = τψ0/τ j0 is a ratio
of characteristic timescales in the reference material, where
τψ0 = �0/|α0| is the characteristic relaxation time of ψ in
the reference material and τ j0 = σn0m0β0

e2
s |α0| is the characteristic

relaxation time of the current. We have also inserted a minus

in front of a, which is just a convention to make positive
values of a correspond to the superconducting state (note that
this is the opposite of how α is usually interpreted within
Ginzburg-Landau theory; however, it is standard to make this
change when performing nondimensionalization). The bound-
ary conditions become

(
i

κ0
∇ψ + Aψ

)
· n = 0, (17)

(∇ × A) × n = Ha × n, (18)(
∇φ + ∂A

∂t

)
· n = 0. (19)

It should be noted that γ (r) and s(r) allow the local character-
istic time relaxations to vary, which only affects the dynamics
of the solutions. Where the time dynamics are relevant these
parameters cannot be ignored; however, in many cases, the
primary interest of TDGL calculations is in determining the
energetic stability and critical fields, such as the superheating
field. In these cases, the time dynamics are not relevant and
γ and s can be safely set to arbitrary constant values, such as
unity.

B. Determining spatial variation of TDGL parameters

In the previous section, we have shown how to intro-
duce spatial variation to the TDGL parameters. The process
of calculating the values of a(r), b(r), γ (r), and μ(r) is
where we bring in experiment and ab initio theory. From
Eqs. (6)–(8), we know these parameters mostly depend on
well-defined microscopic quantities, namely, ν(0), Tc, and v f .
These quantities can be calculated using density-functional
theory (DFT). Local densities of states and Fermi velocities
are straightforward to compute in DFT, providing local val-
ues for ν(0) and v f . Superconducting quantities such as Tc

are calculated by applying Eliashberg theory within a DFT
framework and directly calculating electron-phonon coupling
from first principles. Experiment can then give information
about the compositions of sample materials, and DFT calcula-
tions can determine the ν(0), v f , and Tc associated with these
compositions. Using these values in addition to estimates of
the electron mean-free path (which can be derived from DFT
or can come from experimental characterizations), a(r), b(r),
γ (r), and μ(r) are calculated from Eqs. (6)–(9), and the
material geometries from the experimental results determine
the spatial variation.

In this paper, we demonstrate our framework on Sn-
deficient islands. These defects have been studied extensively
[41,42,46,47] so it is straightforward to find estimates of the
general size of these islands and their material compositions
in the literature. DFT has also been used to calculate ν(0), v f ,
and Tc for Nb-Sn systems of different concentrations. In this
paper we use the DFT values from Ref. [52] to construct a(r),
b(r), γ (r), and μ(r) for islands of different Sn concentration.
This paper will primarily focus on the results of our TDGL
calculations, for further information regarding the details and
results from the DFT calculations used in this paper, we refer
the interested reader to Refs. [51,52].
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FIG. 1. Schematic of simulation geometry. Like-colored surfaces
(yellow and light-blue outlines) have periodic boundary conditions.
The red and green surfaces indicate the faces where external mag-
netic field is applied; in simulations, a field is applied to the red
surface in the x direction (indicated by the red arrow), with no field
applied on the green surface. The Sn-deficient island is shown as
a dark blue ellipsoid, with dotted lines indicating its projections into
the xy, xz, and yz planes. The distance d is measured from the surface
to the outer edge of the ellipsoid.

C. Simulation geometry and numerical implementation

The simulations in this paper were solved using a finite
element formulation of the TDGL equations proposed by Gao
[63], under the temporal gauge, which sets the scalar potential
φ = 0 (see Du [64] for a more detailed overview of gauge
choices in TDGL). All computations were carried out using
the open-source finite element software FENICS [65].

The simulation domain consists of a rectangular cuboid
with periodic boundary conditions applied in the x and y
directions, as indicated by the yellow and light-blue highlights
in Fig. 1. An external magnetic field of constant magnitude Ha

is applied in the x direction on the red surface, while no field
is applied on the opposing green surface. For simulations that
include Sn-deficient islands, the island geometry is also shown
in Fig. 1. These defects are modeled as ellipsoids with equal
radii in the x and y directions and a z radius equal to half of
the x radius. The island’s distance from the surface, denoted
by d , is measured from the surface to the outer edge of the
ellipsoid.

All meshes were generated using the open-source mesh
generation software Gmsh [66], with cubic tetrahedral el-
ements. For simulations involving Sn-deficient islands, the
OpenCASCADE geometry kernel in GMSH was used to en-
sure that the mesh conforms to the ellipsoidal shape of the
defects.

D. Dissipation in TDGL

When simulating SRF materials, dissipation is often a
physical quantity of interest. Under TDGL, a formula for
dissipation can be derived by considering the time derivative
of the free energy and the free-energy current flux density. A
more detailed derivation is found in Ref. [62], but we quote

the final result here:

D = 2�

∣∣∣∣
(

∂ψ

∂t
+ iesφψ

h̄

)∣∣∣∣
2

+ σnE2. (20)

This quantity is a power density, with the first term corre-
sponding to the superconducting dissipation arising from the
relaxation of the order parameter. The second term is the dis-
sipation of normal currents which are largest near the surface
where magnetic field can still appreciably penetrate.

It is worth considering how this expression for the dissi-
pation density is related to existing theories of rf power loss
and surface resistance. The first term in Eq. (20) is associated
with the dissipation due to the rate of change of ψ . This term
is typically small, except in the vortex state where it becomes
the dominant source of dissipation. A dissipation of this form
is similar to that proposed by Tinkham [67], who suggested
the vortex dissipation should be proportional to (∂ψ/∂t )2. The
additional term within the parenthesis in Eq. (20) is a result of
the gauge invariance of TDGL.

The second term in Eq. (20) can be directly related to
the phenomenological “two-fluid model,” which was first pro-
posed by Gorter and Casimir [68] in 1934 and was applied by
London [69] later that year to calculate the power loss of a su-
perconductor. The two-fluid model approximates the electrons
of the system as consisting of two noninteracting “fluids”:
the superconducting electrons, in the form of Cooper pairs
which carry lossless supercurrent, and the normal electrons,
which exist as thermally excited quasiparticles that produce
typical dissipative currents. Under the two-fluid model, the
normal-fluid losses produce dissipation of the form [70,71]

P ∝ σnE2,

which is identical to the second term of Eq. (20). For AC
applied currents, the electric field is proportional to the fre-
quency and magnetic field, E ∝ ωH , meaning that overall the
power loss will be of the form

P ∼ ω2H2. (21)

It is also well known that, within rf cavities, the power loss is
given by

P = 1

2

∮
A

Rs|H (r)|2dA, (22)

where Rs is the surface resistance of the cavity walls and A is
the surface area. Comparing Eqs. (21) and (22), we have that
the second term of Eq. (20) directly leads to a surface resis-
tance proportional to the square of the frequency, Rs ∝ ω2. In
the late 1950s, Mattis and Bardeen [72] as well as Abrikosov,
Gor’Kov, and Khalatnikov [73] independently derived the
now well-known “BCS resistance.” Under the low-frequency
and low-field limit, the BCS resistance reduces to the form
[3,74]

Rbcs 	 ω2

T
e

−�
kBT , (23)

where � = 1.76kBTc is the superconducting energy gap [62].
We thus see that our calculated expression for the surface
resistance has the same ω2 frequency dependence of the BCS
prediction in the low-frequency and -field limit, although the
quantitative values may differ.
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Given this connection to surface resistance, we now con-
sider how our dissipation estimates can be used to calculate
the cavity quality factor Q, a standard figure of merit in SRF
cavity performance.

E. Estimating cavity quality factor

While TDGL allows us to estimate dissipation, it is im-
portant to emphasize that both the dissipation calculations
and the quality factor estimates that follow lie well outside
the regime of quantitative validity for the theory. In par-
ticular, TDGL is strictly valid only near Tc in the gapless
limit, and its predictions for dissipation under rf-like dy-
namic fields at low temperatures should be interpreted with
caution. Despite this, we believe the calculations presented
here remain qualitatively valuable. They provide a means of
linking mesoscopic-scale simulations to macroscopic cavity
performance metrics and enable relative comparisons between
different material configurations that may inform experimen-
tal priorities.

A particularly relevant quantity that can be estimated from
the dissipation is the cavity quality factor Q, which is given by

Q = 2πE

�E
. (24)

Here, E is the energy stored in the cavity, and �E is the
energy dissipated in the cavity walls during each rf cycle. It is
common to express the quality factor in terms of the surface
resistance as

Q = G

Rs
, (25)

where Rs is the cavity surface resistance and G is a geometric
factor that depends only on quantities which are determined
by the cavity geometry. For a typical 1.3 GHz 9-cell Nb
TESLA cavity, G = 270 � [75]. The surface resistance is
given by

Rs = μ0ωλ3

H̃2
a LxLy

(
Iψ + ω

ω̃
σnμ0λ

2IA

)
, (26)

where μ0 is the permeability of free space, ω is the cavity fre-
quency, λ is the penetration depth, H̃a is the maximum applied
magnetic field value in simulation units, Lx and Ly are the size
of a simulation domain in the X and Y directions, respectively,
σn is the normal conductivity, and ω̃ is the frequency of the
applied field in simulation units. Iψ and IA are integrals over
the squared time derivatives of ψ and A:

Iψ ≡
∫

dt̃
∫

dx̃
∫

dỹ
∫

dz̃

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

, (27)

IA ≡
∫

dt̃
∫

dx̃
∫

dỹ
∫

dz̃

(
∂Ã
∂ t̃

)2

, (28)

where the tilde variables denote ones which are in simulation
units. A much more detailed derivation of these equations can
be found in the Appendix.

The σn appearing in Eq. (26) refers specifically to the
conductivity of the normal quasiparticles. In general, calcu-
lating this quantity from first principles is a complex task that
depends sensitively on microscopic material properties and is

largely orthogonal to the rest of the quality factor calculation.
For this reason, we choose to treat σn as a free parameter in
our model, which allows us to explore how dissipation and
quality factor vary across a range of plausible conductivity
values without relying on potentially oversimplified assump-
tions. For completeness, we outline a possible approximate
derivation of σn based on the Drude model in the Appendix,
although we emphasize that this is intended primarily as a
qualitative reference.

In the derivation of Eq. (26), it is assumed that the cav-
ity surface is partitioned into small fractional areas, and the
dissipated energy is calculated over one of these areas, and
then multiplied by the total number of them. If some defect
is present in the simulation domain, it would mean that a
Q calculation based purely on that value would implicitly
assume that such a defect is uniformly distributed over the
surface of the cavity. In Eq. (26), the only thing that changes
when simulating a different material or different defect is
the value of the quantity in parentheses, every other part of
the process for calculating Q remains the same. This means
that we can calculate a more realistic cavity surface resis-
tance by calculating Rs with Eq. (26) for a few different
simulations, and then taking a weighted average of these
values. Let Ri be the surface resistance of the ith simula-
tion, and let pi be the percentage of the fractional areas
partitioning the cavity surface which are represented by this
simulation. Then,

Rtot =
∑

i

piRi, (29)

where
∑

i pi = 1. The simplest application for Eq. (29) is
to perform two simulations, one baseline simulation with no
defects or material inhomogeneity, and then another simu-
lation containing some defect of interest. Choosing a value
p to represent the percentage of fractional areas containing
the defect and then following through with the rest of the
quality factor calculation provides a simple way to estimate
Q for different average defect densities by simply changing
the value of p.

The value of Q calculated from TDGL outputs will typ-
ically be underestimated at low field. This is because of
the assumption of gapless superconductivity, which results
in higher surface resistances than is predicted with the BCS
surface resistance [Eq. (23)]. Despite this, our approach still
often predicts quality factors within an order of magnitude of
the experimental values. Additionally, the relative behavior
of Q at different applied fields, especially when averaging
the impact of multiple kinds of defects as described above,
qualitatively captures effects such as high-field Q-slope.
Nonetheless, we emphasize that this quality factor calculation
is best treated as a qualitative tool; for quantitatively accurate
predictions, more rigorous superconductivity theories should
be used.

III. VALIDATION STUDY

A. Sn-deficient islands in Nb3Sn

There has been a considerable amount of work both exper-
imentally and theoretically understanding the various defects
present in Nb3Sn [8,19,41–47]. For the purposes of this paper,
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TABLE I. A summary of the TDGL parameter and material
values used in the results of this paper. All TDGL parameters were
calculated from Eqs. (6)–(8) using the higher-order temperature de-
pendence and normalized with respect to the bulk value. The Tc and
ν(0) values were taken from Ref. [52] assuming a Sn concentration
of 18% for the island. The v f values came from private correspon-
dence [76], and the bulk value of � was taken from Ref. [77]. We
set the island value to half of the bulk value. The normal electron
conductivity s was assumed to remain constant throughout the simu-
lation domain.

TDGL parameter and material values
Quantity Bulk value Island value

Tc (K) 18 6
ν(0) [states/(eVnm3)] 101.33 40.53
v f (105 m/s) 1.25 1.4
� (nm) 5.5 2.25
a (unitless) 1 0.15
b (unitless) 1 1.8
γ (unitless) 1 1.2
s (unitless) 1 1
μ (unitless) 1 1.79

we focus on Sn-deficient islands, small regions within Nb3Sn
grains that have lower than expected Sn concentrations. To
demonstrate the use of our sample specific TDGL framework,
we estimate the potential impact to SRF performance by
determining the vortex penetration field Hvort. This field repre-
sents the lowest applied field at which a vortex nucleates and
generalizes the concept of the superheating field to surfaces
containing defects. In the limit of a uniform, flat surface, Hvort

is equal to the superheating field.
To simulate Sn-deficient islands, we require estimates of

the material properties within these regions. Such estimates
are provided in Ref. [52], which reports values of Tc and ν(0)
for Nb-Sn systems at 18.7, 20.8, and 23.4 at.% Sn. Our v f

estimates for these compositions were obtained via private
communication [76]. We first choose a Sn concentration of
18.7 at.% for our islands. Using the corresponding values
of Tc and ν(0), we construct a(r), b(r), and γ (r); the values of
these quantities in the bulk as well as in the island are reported
in Table I. The simulation geometry is the same as depicted in
Fig. 1, with the domain a cube of side length 10λ. The applied
field for these simulations is held constant.

Figure 2 depicts vortex nucleation occurring at Hvort for
a particular island. We find that varying the distance of the
island from the surface between 0.1 and 2 penetration depths
(i.e., between ≈10-200 nm for Nb3Sn), we observe a reduc-
tion in Hvort by as much as ≈60% below the bulk value of the
superheating field for islands very near the surface, as shown
in Fig. 3. We did this for several different island sizes and
found that the severity of this drop in Hvort increases with
increasing island size. As such, we conclude that large islands
within 200 nm of the cavity surface are a potential cause for
concern when it comes to SRF performance, particularly ones
within 1–2 penetration depths of the surface. Figure 4 shows
how these effects change with respect to the Sn at.% inside
each island. We see that as the Sn deficiency becomes weaker,
so does the impact on vortex penetration, although it is worth

FIG. 2. Example of a Sn-deficient-island simulation. The domain
is a cube with side length 10λ, this particular simulation is for an
island 0.5λ from the surface, with an X and Y radius of 2λ and a
Z radius of 1λ. The applied field is Ha/

√
2Hc = 0.38, which is the

value of Hvort for this island size and distance from the surface. Panel
(a) depicts a volume plot of |ψ |2 over the whole domain during a
vortex nucleation event. Panel (b) is a 2D slice in the XZ plane at
y/λ = 5. Panel (c) is the |ψ |2 = 0.1 isosurface, which shows the
shape of the vortex as well as the island that induced the nucleation.

noting that even an island with 23.4% Sn (only 1.6% off a
perfect stoichiometric ratio) has a ≈30% reduction in Hvort
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FIG. 3. Vortex penetration field versus distance from surface for
different island size. We plot our calculated vortex penetration field
estimates, varying the distance of the Sn-deficient island from the
superconductor surface. The field values are reported in units of√

2Hc and the distances are in units of penetration depths. We did
this for three different islands, with x radii of 0.5, 1, and 2 penetration
depths. The black dotted line denotes the superheating field of bulk
Nb3Sn. Smaller volume islands have a diminishing impact on Hvort .

for islands near the surface. Currently, Nb3Sn-coated SRF
cavities are only achieving at most ≈25% of their theoretical
maximum accelerating fields. There are likely many factors
which contribute to this outcome, but these results indicate
that Sn-deficient islands are among the defects which con-
tribute to SRF performance degradations.

B. Sources of dissipation in Nb SRF cavities

In the previous section, we focused on steady-state proper-
ties of TDGL in the dirty limit, where the theory is known to
have broader quantitative validity. We now extend this frame-

FIG. 4. Vortex penetration field versus distance from surface for
different island Sn%. We plot our calculated vortex penetration field
estimates, varying the distance of the Sn-deficient island from the
superconductor surface. The field values are reported in units of√

2Hc and the distances are in units of penetration depths. We did this
for three different island Sn percentages, 18.7%, 20.8%, and 23.4%.
The black dotted line denotes the superheating field of bulk Nb3Sn.

work to examine the two dissipation terms that naturally arise
in TDGL simulations. While these calculations fall outside the
strict regime of TDGL’s quantitative accuracy, particularly at
the low temperatures and high frequencies relevant for SRF
cavities, they remain qualitatively informative. In particular,
they allow us to interpret distinct contributions to rf dissipa-
tion in a way that parallels the conventional decomposition of
surface resistance into BCS and residual components. More
broadly, they provide a means of linking mesoscopic TDGL
behavior to macroscopic cavity losses, and of understanding
how steady-state properties, such as Hvort for individual de-
fects, can collectively influence large-scale phenomena like
the high-field Q slope.

It is standard in SRF literature to decompose surface resis-
tance into two components: the BCS resistance, which arises
from thermally excited quasiparticles, and a more poorly
understood residual resistance, which dominates at low tem-
peratures and is often attributed to trapped flux, impurities, or
surface defects. In our TDGL framework, these two types of
dissipation emerge naturally. Specifically, in Eq. (26), the term
proportional to σn (involving IA) captures dissipation due to
normal current response, and is the TDGL analog of the BCS
resistance. The second term (Iψ ), which arises from relaxation
of the superconducting order parameter, reflects dissipation
mechanisms not captured by traditional two-fluid or BCS
models and can be viewed as a proxy for residual resistance in
our simulations. Studying the behavior and interplay of these
two terms as a function of applied field and conductivity pro-
vides insight into which mechanisms dominate under different
conditions.

To establish a baseline for comparison, we simulate a
uniform Nb domain subjected to a sinusoidal applied field
with period 2000τψ . This choice is motivated by the fact
that, for Nb at 2 K, we estimate τψ ≈ 3.7 × 10−13 s using
Eqs. (6) and (8) and a value of ν(0) = 90 states/(eV nm3)
[76], corresponding to a driving frequency of approximately
1.3 GHz—typical of elliptical SRF cavities. The simulation
domain is a cube of side length 20λ. In these calculations, we
treat the normal conductivity σn as a free parameter, and define
the dimensionless ratio σn/σrt , where σrt = 6.7 × 106 S/m is
the room-temperature conductivity of Nb.

Figure 5 plots the two dissipation terms as functions of
applied field for several values of σn/σrt . The IA term scales
linearly with σn, while Iψ is independent of conductivity and
increases more steeply with field. Although we treat σn as a
free parameter in these simulations, we are nominally model-
ing Nb, for which a physically meaningful value of σn exists.
Rigorously determining this value at cryogenic temperatures
and GHz frequencies lies beyond the scope of this paper, but
physical intuition provides useful bounds: at low field, the
BCS-like (i.e., IA) term should dominate in clean Nb cavities,
while at high field, particularly once vortices nucleate, the
residual-like (i.e., Iψ ) term should become dominant. These
trends imply that the true conductivity is unlikely to differ
from σrt by more than an order of magnitude in either di-
rection. This observation motivates our use of σn = σrt in the
simulations presented in the following section.

While our primary emphasis is on the dissipation terms
themselves, we can also use them to estimate quality factors
via Eqs. (25) and (26). As shown in Fig. 6, the shape of
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FIG. 5. Dissipation contributions from current response and
order-parameter dynamics. The two dissipation terms from Eq. (26)
are plotted separately as functions of applied field, for several values
of the normal conductivity σn, shown here as ratios to the room-
temperature conductivity σrt of Nb. The term proportional to σn and
involving IA represents dissipation from normal current response,
while the Iψ term reflects dissipation due to relaxation of the su-
perconducting order parameter. As field increases, Iψ grows more
rapidly and eventually overtakes IA. The crossover point depends on
the value of σn/σrt : for small values (e.g., 0.1), Iψ dominates even
at low field, while for large values (e.g., 10), the current-induced
dissipation remains dominant until vortex nucleation occurs near the
superheating field Hsh. While σn is varied here as a free parameter,
this analysis helps illustrate how the relative importance of the two
dissipation mechanisms depends on conductivity and field strength
within the TDGL framework.

FIG. 6. Nb SRF cavity quality factor vs applied field. A plot of
quality factor for a uniform Nb simulation versus the applied field
(in units of

√
2Hc) for several different values of the normal con-

ductivity, given by σn = σn1σ
′
n, where σn1 is the room-temperature

conductivity of Nb. The quality factor is calculated using Eqs. (25)
and (26) with G = 270 �. The calculation for several different values
of σ ′

n change the low-field value and the shape of the curves but has
much less of an impact near Hsh. The dotted black line indicates the
superheating field of Nb. Because it is above Hsh, vortex nucleation
occurred for H̃a = 1.0 which is the reason for the sharp drop in Q.

the resulting Q curves depends on the choice of σn/σrt . For
moderate and large values (e.g., 1 or 10), the quality factor
remains relatively flat at low fields and drops sharply near
the superheating field—consistent with expectations for clean
Nb cavities. In contrast, for small conductivity values (e.g.,
0.1), Q decreases too rapidly with field, indicating unrealis-
tic dissipation behavior. Although lower σn values shift the
low-field Q magnitude closer to the experimental range of
1010–1011, this comes at the cost of distorting the overall
field dependence. Due to the gapless nature of TDGL, we
generally expect Q to be underestimated. While we do vary
σn in these calculations, it is not used as a fitting parameter in
the traditional sense—namely, we do not select σn to match
the low-field Q magnitude from experiment, as we see that
doing so would yield qualitatively inaccurate results. Instead,
we explore a range of values to identify physically plausible
regimes and to qualitatively interpret the resulting dissipation
behavior.

These reference simulations validate the dissipation de-
composition and demonstrate how our framework reproduces
key qualitative features of SRF performance. In the following
section, we apply the same methodology to simulations of
Sn-deficient islands in Nb3Sn to investigate how localized
stoichiometric defects affect the balance between current-
induced and order-parameter-related dissipation. Building on
this, we introduce an approach for estimating cavity-level
losses by linking local vortex nucleation behavior to global
quality factor trends.

C. Dissipation and quality factor for Nb3Sn
cavities with Sn-deficient islands

To explore how localized stoichiometric defects alter rf
dissipation, we now apply our framework to a representa-
tive simulation of a Sn-deficient island in Nb3Sn. This case
illustrates how such inhomogeneities can shift the balance
between current-induced and order-parameter-related losses.

To evaluate dissipation in the presence of Sn-deficient
islands, we simulate a time-dependent applied field with pe-
riod 1000τψ0 , corresponding to a frequency of approximately
5GHz. This is higher than the ≈1.3 GHz typically used in
Nb3Sn cavities, but was chosen to reduce simulation time
for these computationally intensive cases. Each simulation
required roughly five weeks of continuous runtime on a com-
puting cluster, making longer periods prohibitively expensive.
While quantitative estimates of dissipation will differ at lower
frequency, we expect the qualitative features of the results
to remain representative. To manage computational cost, we
model a single island with radius 0.5λ located 0.5λ beneath
the surface, using a reduced domain size of 5λ × 2.5λ × 2.5λ

oriented to align the applied field and potential vortex motion
along the x axis.

Figure 7 shows the dissipation terms Iψ and IA for sim-
ulations with and without a Sn-deficient island. Below the
vortex penetration field (Hvort ≈ 0.525), both simulations
yield nearly identical dissipation, indicating that embedded
islands have minimal effect in the Meissner state. Once Ha ex-
ceeds Hvort, however, the island simulation exhibits an abrupt
and sustained increase in both dissipation terms—particularly
in Iψ , which becomes the dominant contribution and rises
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FIG. 7. Dissipation terms for Sn-deficient-island simulations.
Dissipation terms Iψ (solid lines) and IA (dotted lines) from Eq. (26)
are plotted as functions of applied field for simulations with (blue)
and without (red) a Sn-deficient island. The ellipsoidal island has
in-plane radii of 0.5λ, a vertical radius of 0.25λ, and its top edge
located 0.5λ beneath the surface. In the island case, vortices nucleate
at Ha ≈ 0.525, causing both dissipation terms—especially Iψ—to
increase sharply by several orders of magnitude. In contrast, the
no-island simulation exhibits smoother behavior with more modest
growth, and Iψ exceeds IA by a smaller factor (typically 2 × –5×)
at high field. These results highlight how local vortex penetration
dramatically enhances both forms of dissipation, with Iψ becoming
the dominant contribution.

by several orders of magnitude. The dissipation values above
Hvort also appear somewhat noisy, which we attribute to nu-
merical variations in vortex entry and dynamics. This binary
behavior—where dissipation remains low until vortex entry—
appears characteristic of embedded Sn-deficient regions in
Nb3Sn. Whether other types of defects, such as surface-
connected grain boundaries, show similar trends remains an
open question. Exploring such cases is a clear next direction
for future studies.

Building on this result, we develop an approximate method
for estimating how a distribution of Sn-deficient islands could
collectively affect the quality factor. The dissipation behav-
ior observed in Fig. 7 suggests that embedded islands have
negligible impact below their respective vortex penetration
fields, but trigger a sharp increase in dissipation once vortices
begin to nucleate. This motivates a two-state approximation:
for each island geometry, we assume dissipation follows the
defect-free case up to Hvort, and then transitions abruptly
to constant, elevated values beyond that point. For the vor-
tex state, we use fixed dissipation values of Iψ = 2 and
ω
ω̃
σnμ0λ

2IA = 0.1, based on the average values from the sim-
ulation in Fig. 7.

Using this approximation, we construct dissipation profiles
for each of the simulated island geometries shown in Fig. 3,
focusing on the cases with Sn concentration 18.7%. For each
defect, the dissipation follows the defect-free simulation up
to its corresponding vortex penetration field Hvort, and then
transitions to constant values of Iψ = 2 and ω

ω̃
σnμ0λ

2IA = 0.1
once vortices nucleate. To estimate the aggregate dissipation

FIG. 8. Estimated quality factor curves based on weighted dis-
sipation from different Sn-deficient islands. The black curve shows
the quality factor for a defect-free cavity. The red curve represents a
hypothetical quality factor obtained by averaging dissipation profiles
from multiple Sn-deficient-island geometries, each transitioning to
fixed dissipation values of Iψ = 2 and ω

ω̃
σnμ0λ

2IA = 0.1 above their
respective Hvort . The weighting assumes all island sizes are equally
likely and that the depth d from the surface to the island edge follows
an exponential distribution, p(d ) ∝ e−d , normalized so the weights
sum to one. The blue curve uses the same assumptions, except that
p(d ) = 0 for the r = 0.5λ island when d � 0.1λ, and for the r = λ

and r = 2λ islands when d < λ. All remaining weights are renor-
malized so the distribution still sums to unity. Removing these large,
near-surface defects in the model delays the onset of dissipation and
improves high-field performance.

and resulting quality factor, we assign weights to each defect
based on an assumed distribution and compute a weighted
average of the dissipation terms. For the red curve in Fig. 8,
we assume all three island sizes are equally likely and that
the depth d from the surface to the outer edge of the island
follows an exponential distribution p(d ) ∝ e−d , normalized so
the total probability sums to unity.

To evaluate the hypothetical benefit of eliminating large,
near-surface defects, we also construct the blue curve in Fig. 8
using a modified piecewise distribution. In this case, the prob-
ability p(d ) is defined as

p(d ) ∝
⎧⎨
⎩

0 for r = 0.5λ and d � 0.1λ

0 for r = λ or 2λ and d < λ

e−d otherwise,

and the resulting weights are renormalized to ensure they sum
to one. Comparing the red and blue curves illustrates how
removing such high-impact defects can delay the onset of
increased dissipation and improve the high-field behavior of
the cavity.

While the estimated quality factors in Fig. 8 provide
valuable qualitative insight, they should not be interpreted
quantitatively. The low-field Q magnitude in our simulations
is just under 108, significantly lower than the ≈1010 typically
observed in Nb3Sn cavities. This discrepancy is primarily due
to the higher simulation frequency (≈5 GHz versus 1.3 GHz
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in practice), although the quantitative limitations of TDGL—
such as the assumption of gapless superconductivity and its
reduced validity far below Tc—also contribute. Furthermore,
we approximate the dissipation above Hvort as constant, which
neglects the increasing losses and possible thermal effects that
would realistically occur as more vortices enter. In practice,
such heating could trigger early cavity quench, while in our
simulations the dissipation simply continues to increase with
field without ever initiating a quench. Despite these simpli-
fications, the structure of the estimated quality factors still
captures important qualitative features.

In particular, the onset of high-field Q slope in these plots
arises directly from vortex nucleation, a steady-state property
with broader validity in the dirty limit where TDGL is more
appropriate. While the precise drop in Q is uncertain, the
onset of declining Q in our aggregated curves is governed
by the lowest vortex penetration field (Hvort) among the de-
fect types with nonzero probability, highlighting how vortex
entry from local defects could plausibly contribute to high-
field Q slope in at least some Nb3Sn cavities. More broadly,
our results demonstrate a mechanism in which HFQS can
emerge from the collective behavior of many small defects.
Each defect follows a binary dissipation pattern—remaining
nearly inert below Hvort and sharply increasing in loss once
vortex nucleation occurs—and as the field increases, more
defects transition into this high-loss state. The aggregated
effect produces a decline in Q that qualitatively resembles
the high-field Q slope observed experimentally. While this is
unlikely to be the sole mechanism underlying HFQS, it offers
a plausible explanation for how distributed subsurface defects
may contribute to performance degradation in certain cavities,
as we elaborate further in the conclusion.

IV. CONCLUSION

In this paper, we have demonstrated a framework for in-
corporating sample-specific information into time-dependent
Ginzburg-Landau (TDGL) simulations of superconducting
radio-frequency (SRF) cavities. While TDGL is inherently
suited for mesoscopic modeling, its application to nonuni-
form materials often involves arbitrary parameter choices.
Our approach addresses this gap by linking TDGL parame-
ters to well-defined microscopic material properties, allowing
simulations to reflect characteristics obtained from density
functional theory (DFT) or experimental measurements. This
enables more realistic modeling of sample-specific features
while preserving the computational tractability of TDGL on
mesoscopic domains.

In addition to the sample-specific framework, we in-
troduced a method for estimating dissipation and quality
factor directly from TDGL simulations. While these esti-
mates are subject to limitations—such as TDGL’s quantitative
inaccuracy far below Tc and the computational necessity
of simulating at higher frequencies—they offer a valuable
qualitative connection between mesoscopic defect behavior
and macroscopic performance degradation. By decomposing
dissipation into physically meaningful components and link-
ing vortex nucleation to high-field Q slope, our approach
provides insight into how distributed material inhomo-

geneities may impact SRF cavity performance. This type of
dissipation-based analysis remains relatively uncommon in
the TDGL literature and may serve as a useful tool for future
studies aiming to bridge simulation and experiment.

We applied our framework to model Sn-deficient islands
in Nb3Sn and found that they can reduce the vortex penetra-
tion field by as much as 60% when located near the surface.
This suggests that such subsurface defects may play a role
in limiting the achievable accelerating gradients in Nb3Sn
cavities, particularly given that experimentally observed gra-
dients remain well below the theoretical maximum. To explore
this further, we computed the dissipation for representative
island configurations and observed sharp increases in both
dissipation terms above Hvort due to vortex-induced losses.
These effects are expected to be even more pronounced for
larger or more exposed defects, and in future simulations that
incorporate thermal feedback to model cavity quenching. Our
method can also be readily extended to other defect types,
such as grain boundaries, which are widely believed to impact
cavity performance.

To illustrate how these mesoscopic effects might collec-
tively influence macroscopic cavity behavior, we constructed
hypothetical quality factor curves by assigning defect-specific
Hvort thresholds and aggregating their dissipation using simple
assumptions about defect size and depth distributions. The re-
sulting Q curves qualitatively resemble the high-field Q slope
observed in experimental measurements, offering a plausi-
ble explanation in which HFQS emerges from the collective
activation of many small, embedded defects. This analysis
highlights the potential of TDGL-based simulations to inform
defect mitigation strategies and guide the development of
higher-performance SRF materials.

A recent experimental study by Viklund et al. [78] found
that applying centrifugal barrel polishing (CBP) to Nb3Sn
SRF cavities decreased the overall quality factor, lowered the
field at which the Q slope began, and reduced the quench
field. After an additional Sn vapor deposition, however, the
cavity recovered its previous Q performance and reached a
higher quench field. Our results offer a potential explana-
tion for these findings. CBP is known to smooth the cavity
surface but also removes surface material, which may ex-
pose previously buried Sn-deficient islands. As shown in
our simulations, bringing such defects closer to the surface
significantly enhances their dissipation and lowers Hvort, po-
tentially triggering early vortex entry, high-field Q slope,
and premature quenching. The follow-up Sn coating likely
fills in these exposed islands, eliminating the source of addi-
tional dissipation. This healing process restores Q and enables
higher accelerating gradients, consistent with our finding that
suppressing near-surface Sn-deficient regions improves both
quality factor and vortex-related performance limits.

Whenever TDGL equations are used to model experimen-
tal systems, it is important to consider their limitations. The
standard TDGL formalism is derived under the assumption
of gapless superconductivity, since a gapped density of states
introduces a singularity that precludes expansion in powers of
the energy gap [79]. Additionally, the equations are only quan-
titatively valid near the superconducting critical temperature.
The former limitation can be addressed by using a generalized
TDGL formulation developed by Kramer and Watts-Tobin
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[80], which extends validity to gapped superconductors. How-
ever, several studies have observed conditions in SRF cavities
that support the use of conventional TDGL. For example,
Proslier et al. [81] reported a broadened density of states at
the surface of Nb cavities due to oxide layers, resulting in
gapless surface superconductivity. Further work by Gurevich
and Kubo [74,82] demonstrated that typical material composi-
tions and SRF operating conditions often produce a broadened
density of states and suppressed energy gap, reinforcing the
relevance of TDGL for SRF applications. Nevertheless, such
gapless behavior may come at a cost: broader density of states
near the surface could contribute to increased dissipation and
reduced quality factors.

The methods presented here for simulating realistic,
sample-specific defects and estimating their impact on quality
factor provide a framework for linking microscopic material
features to macroscopic SRF performance. While the un-
derlying simulations are conceptually straightforward, their
successful application depends on two critical inputs: accurate
theoretical models of a material’s microscopic properties, and
detailed experimental characterization of the defects present
in real samples. For this reason, our method is best suited
to research contexts where both inputs are available—either
in well-studied materials systems or through interdisciplinary
collaborations like those found in the NSF Center for Bright
Beams, which helped motivate this work. SRF research is par-
ticularly well positioned for such integration. SRF cavities are
inherently macroscopic devices whose performance depends
sensitively on microscopic structure, yet direct experimental
probing of such features is often infeasible. The approach
we describe enables mesoscopic-scale simulations rooted in
real material data, offering a valuable tool for designing and
optimizing future generations of SRF cavities.
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APPENDIX A: TDGL NONDIMENSIONALIZATION

To nondimensionalize the TDGL equations, we start
with Eqs. (1) and (2), and make the following coordinate

transformations:

∇ −→ 1

λ0
∇̃,

∂

∂t
−→ 1

τψ0

∂

∂ t̃
,

A −→
√

2Hc0λ0Ã,

ψ −→
√

|α0|
β0

ψ̃,

φ −→ φ0φ̃.

If we substitute in Eqs. (10), (11), (12), and (14) for α, β, �,
and σn, respectively, we can then define the quantities

λ0 =
√

msc2β0

4πe2
s |α0| ,

ξ0 =
√

h̄2

2ms|α0| ,

κ0 = λ0

ξ0
,

Hc0 =
√

4πα2
0

β0
,

τψ0 = �0

|α0| ,

τ j0 = σn0msβ0

e2
s |α0| ,

u0 = τψ0

τ j0

,

φ0 = h̄κ0

esτψ0

.

Using these relations, the resulting equations under the above
coordinate transformations simplify into Eqs. (15) and (16)
(where we then drop the tildes).

APPENDIX B: APPROXIMATE ESTIMATION
OF NORMAL-STATE CONDUCTIVITY

We outline here a possible route to estimate σn using the
Drude model [83], where the electrical conductivity is given
by

σ = ne2τ

m
, (B1)

with e and m the electron charge and mass, n the carrier
density, and τ the mean-free collision time. For the normal
quasiparticle density at low temperatures, we adopt the ap-
proximation from Ref. [84],

nn = 8ne−�/kbT , (B2)

which leads to an expression for the normal-state conductivity
in the Meissner regime:

σn = ne2τ

m

(
8e−�/kbT

)
. (B3)
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We emphasize that this expression is approximate, and more-
over that the energy gap � is inferred from the TDGL order
parameter ψ , which is known to overestimate � at low
temperatures [85]. Given these limitations, we regard this es-
timation primarily as a qualitative reference and have proceed
with treating σn as a free parameter in the main text.

APPENDIX C: QUALITY FACTOR DERIVATION

We start with the quality factor

Q = 2πE

�E
. (C1)

These quantities (working in SI units for this section) can be
expressed as integrals:

E = 1

2
μ0

∫
V

dV H2, (C2)

�E =
∫ T

0
dt

∫
Vsurf

dVsurf D, (C3)

where V is the cavity volume, T is the rf period, and D is
given by Eq. (20). Vsurf is the volume in the first few penetra-
tion depths of the cavity surface where essentially all of the
dissipation occurs. TDGL simulation outputs are unit-free, so
it is helpful to pull constants with units out of these integrals,
leaving behind dimensionless functions which can be calcu-
lated from TDGL solutions. We start by expressing Eq. (C2)
in cylindrical coordinates:

E = 1

2
μ0

∫
rdr

∫
dφ

∫
dzH2.

We then define some dimensionless quantities:

r̃ = r

R
, (C4)

z̃ = z

L
, (C5)

H̃ = H
Ha

, (C6)

where R is the maximum radius of the cavity, L is the length
of the cavity in the axial direction, and Ha is the maximum
value of the applied field at the surface of the cavity during
an rf period. These quantities allow the definition of a unitless
integral that only depends on the cavity geometry:

IH ≡
∫

r̃d r̃
∫

dz̃H̃2. (C7)

Using these definitions with Eq. (C2) and assuming that H has
azimuthal symmetry results in

E = πμ0H2
a LR2IH . (C8)

Turning to the dissipated energy integral, suppose all of the
dissipation occurs within a distance d below the cavity sur-
face, where d � R. This allows the cylindrical integral to
be converted into Cartesian coordinates, with the azimuthal
direction becoming the new x direction, the axial direction
becoming the new y direction, and the radial direction becom-
ing the new z direction. A diagram of these transformations is
found in Fig. 9.

FIG. 9. Schematic of transformations for the quality-factor cal-
culation. The cylindrical geometry is shown on the left, with the
cavity radius R and length L depicted, and the coordinate directions
r̂, φ̂, and ẑ. Under the transformation (on the right) the coordinates
become cartesian, with the r̂ direction becoming the new ẑ direction,
the φ̂ direction becomes the x̂ direction, and the old ẑ direction
becomes the ŷ direction.

With these transformations, we have

�E =
∫ T

0
dt

∫ 2πR

0
dx

∫ L

0
dy

∫ d

0
dzD. (C9)

When calculating this from simulation outputs, the integral is
necessarily calculated over a small region of the overall cavity
surface. Let Lx and Ly be the simulation domain size in the x
and y directions, respectively, and let N be the total number of
simulation areas needed to fully partition the cavity surface.
Then the dissipation integral becomes

�E = N
∫ T

0
dt

∫ Lx

0
dx

∫ Ly

0
dy

∫ d

0
dzD, (C10)

and N can be approximated as

N = 2πRL

LxLy
. (C11)

Continuing as before we again define dimensionless
coordinates:

x̃ = x

λ
, (C12)

ỹ = y

λ
, (C13)

z̃ = z

λ
, (C14)

t̃ = Tsim

T
t, (C15)

where λ is the penetration depth and Tsim is the period in units
of simulation time. These convert the integral to

�E = λ3 T

Tsim
N

∫ Tsim

0
dt̃

∫ Lx
λ

0
dx̃

∫ Ly
λ

0
dỹ

∫ d
λ

0
dz̃D. (C16)

Additionally, under the temporal gauge (φ = 0), Eq. (20) can
be expressed as

D = 2μ0H2
c

Tsim

T

⎡
⎣∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ σnμ0λ
2 Tsim

T

(
∂Ã
∂ t̃

)2
⎤
⎦, (C17)
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where ψ̃ and Ã are the unit-free versions of the vector poten-
tial and order parameter that are solved for with Eqs. (15) and
(16) [a derivation of Eq. (C17) can be found in the next Ap-
pendix]. Finally, we define some more dimensionless integrals
over the TDGL solutions:

Iψ ≡
∫ Tsim

0
dt̃

∫ Lx
λ

0
dx̃

∫ Ly
λ

0
dỹ

∫ d
λ

0
dz̃

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

, (C18)

IA ≡
∫ Tsim

0
dt̃

∫ Lx
λ

0
dx̃

∫ Ly
λ

0
dỹ

∫ d
λ

0
dz̃

(
∂Ã
∂ t̃

)2

. (C19)

Combining everything and noting that ω = 2π/T , we get

�E = 2μ0H2
c λ3 2πRL

LxLy

(
Iψ + ω

σnμ0λ
2Tsim

2π
IA

)
. (C20)

Now using Equations (C1), (C8), and (C20) we get an expres-
sion for the quality factor,

Q = H̃2
a RLxLyIH

2λ3
(

Iψ + ω
σnμ0λ2Tsim

2π
IA

) , (C21)

where H̃a ≡ Ha/
√

2Hc is the applied field in simulation units.
It is common to express the quality factor as

Q = G

Rs
, (C22)

where Rs is the cavity surface resistance and G is a geometric
factor that depends only on quantities which are determined
by the cavity geometry. We can define these quantities under
the framework we have presented as

G = 1

2
μ0ωRIH , (C23)

Rs = μ0ωλ3

H̃2
a LxLy

(
Iψ + ω

σnμ0λ
2Tsim

2π
IA

)
. (C24)

For a typical 1.3 GHz 9-cell Nb TESLA cavity, G = 270 �

[75], so in practice we can just use this value or other known
values of G, and only calculate Rs from Eq. (C24).

APPENDIX D: NONDIMENSIONALIZING
THE TDGL DISSIPATION

We start with Equation (20),

D = 2�

∣∣∣∣
(

∂ψ

∂t
+ iesφψ

h̄

)∣∣∣∣
2

+ σnE2,

choosing the temporal gauge (φ = 0) we have

D = 2�

∣∣∣∣∂ψ

∂t

∣∣∣∣
2

+ σn

(
∂A
∂t

)2

.

Next, we make the same coordinate transformations as from
the previous section (and the same time transformation as
from the methods section) and use the expressions for τψ and
Hc on the first term:

D = 2�α

β

T 2
sim

T 2

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ 2σnH2
c λ2 T 2

sim

T 2

(
∂Ã
∂ t̃

)2

= 2τψα2

β

T 2
sim

T 2

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ 2σnH2
c λ2 T 2

sim

T 2

(
∂Ã
∂ t̃

)2

= 2H2
c

4π

Tsim

T

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ 2σnH2
c λ2 T 2

sim

T 2

(
∂Ã
∂ t̃

)2

,

where in the last line we used the fact that T = τψTsim. Finally,
this expression is in Gaussian units so we convert to SI units
so that it is compatible with the other expressions in Sec. II E:

D = 2τψμ0H2
c

T 2
sim

T 2

∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ 2σnμ
2
0H2

c λ2 T 2
sim

T 2

(
∂Ã
∂ t̃

)2

= 2μ0H2
c

Tsim

T

⎡
⎣∣∣∣∣∂ψ̃

∂ t̃

∣∣∣∣
2

+ σnμ0λ
2 Tsim

T

(
∂Ã
∂ t̃

)2
⎤
⎦.
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