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Angle-of-arrival fluctuations in a turbulent atmosphere

Vladimir E. Ostashev,1,a) Michael B. Muhlestein,1 D. Keith Wilson,1 Sergey N. Vecherin,1

Michelle L. Eggleston,2 Matthew J. Kamrath,1 and Kent L. Gee2
1U.S. Army Engineer Research and Development Center, 72 Lyme Road, Hanover, New Hampshire 03755, USA
2Brigham Young University, Provo, Utah 84602, USA

ABSTRACT:
Atmospheric turbulence causes fluctuations in the angle-of-arrival (AOA) of sound waves. These fluctuations

adversely affect the performance of sensor arrays used for source detection, ranging, and recognition. This article

examines, from a theoretical perspective, the variance of the AOA fluctuations measured with two microphones. The

AOA variance is expressed in terms of the propagation range, transverse distance between two microphones, acoustic

frequency, and effective spectrum of quasi-homogeneous and isotropic turbulence, with parameters dependent upon

the height above the ground. The effective spectrum is modeled with the von K�arm�an and Kolmogorov spectral mod-

els. In the latter case, the results simplify significantly, and the variance depends on the path-averaged effective

structure-function parameter, which characterizes the intensity of temperature and wind velocity fluctuations in the

inertial subrange of turbulence. The standard deviation of the AOA fluctuations is studied numerically for typical

meteorological regimes of the daytime atmospheric boundary layer. For the cases considered, the standard deviation

varies from a fraction of degree to around 1�–2�, and increases with increasing friction velocity and surface heat flux.
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I. INTRODUCTION

Sound waves in the atmospheric boundary layer (ABL)

are significantly affected by turbulence. The turbulence

causes variations in the amplitude and phase fluctuations of

acoustic signals, coherence loss, and scattering at large

angles. These phenomena have been studied in the literature,

e.g., Refs. 1–3 and references therein, and are important in

practical applications such as source localization,4 auraliza-

tion of flying aircraft,5–7 sonic boom propagation,8–10 sound

propagation in the near-ground atmosphere,11 and acoustic

remote sensing of the atmosphere with sodars (sonic detec-

tion and ranging).12

Turbulence also causes random refraction of sound,

which leads to fluctuations in the angle-of-arrival (AOA)

that can be observed on sensor arrays. This phenomenon has

been investigated experimentally.13–16 The AOA fluctua-

tions impose performance bounds on the acoustic sensor

arrays for source detection, ranging, and recognition.17,18

The main goal of the present article is to formulate

the AOA variance of a spherical monochromatic sound wave

in a turbulent atmosphere. The AOA fluctuations depend on

the microphone geometry and signal processing algorithm.

Here, we assume that the phase of an incoming sound wave

is measured with two microphones, i.e., with an acoustic

interferometer. In this case, the AOA variance is proportional

to the structure function of the acoustic phase fluctuations.

Using this approach, the AOA variance is expressed in

terms of parameters of the problem, such as the propaga-

tion range, distance between two microphones, acoustic

frequency, and effective spectrum of the turbulence, which

is assumed here to be statistically quasi-homogeneous and

isotropic. Then, the AOA variance is specified for the von

K�arm�an and Kolmogorov effective spectra. The latter leads

to a significantly simpler formulation. These new results

and turbulence models in the ABL from Ref. 3 are then

used to study the standard deviation of the AOA fluctua-

tions for typical daytime meteorological regimes of the

ABL.

With this Introduction, the remaining part of the article

is organized as follows. Section II explains the geometry of

the problem and expresses the AOA variance in terms

of the structure function of the phase fluctuations. In

Sec. III, the variance of the AOA fluctuations is formulated

for the von K�arm�an and Kolmogorov effective spectra.

Section IV numerically analyzes the AOA standard devia-

tion for different meteorological conditions in the ABL.

Results are summarized in Sec. V. The Appendix presents

the derivation of the AOA variance of a plane sound wave.

II. VARIANCE OF THE AOA FLUCTUATIONS

A. Geometry of the problem

Let us consider AOA fluctuations for a plane mono-

chromatic sound wave incident on two microphones at the

points A and B, see Fig. 1. The Cartesian coordinates ofa)Email: vladimir.ostashev@colorado.edu
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the microphones are RA and RB, respectively, and the dis-

tance between them is denoted d ¼ jRA � RBj. The solid

lines with arrows (which are parallel) indicate the direction

of sound propagation at the points A and B. Point C is a pro-

jection of point A on one of these lines so that the dashed

line connecting points A and C is perpendicular to the solid

lines with arrows. The angle between the propagation direc-

tion and the dashed line connecting two microphones is

denoted h.
With this geometry, the difference in the phase / of the

sound wave at the points B and A is given by

/ðRBÞ � /ðRAÞ ¼ kd cos h; (1)

where k is the sound wavenumber. In the right-hand side of

this equation, d cos h can be recognized as the distance

between points C and B in Fig. 1.

Equation (1) is valid in a non-turbulent atmosphere.

It is also valid approximately in a turbulent atmosphere

if we ignore the phase change due to turbulence along

the path from C to B. In a turbulent atmosphere, the phase

of a sound wave /ðRÞ becomes a random field; it can be

written as /ðRÞ ¼ /0ðRÞ þ ~/ðRÞ, where /0 is the mean

value of the phase and ~/ is the phase fluctuation from that

mean value. Similarly, h ¼ h0 þ ~h, where h0 if the mean

value of the propagation angle and ~h is the AOA fluctuation.

Substituting these results into Eq. (1), assuming that

j~hj � h0, and keeping terms of order ~/ and ~h yields

~h ¼
~/ðRAÞ � ~/ðRBÞ

kd sin h0
: (2)

This formula expresses the AOA fluctuation in terms of

the phase fluctuations in a plane wave at the points A and

B. Equation (2) also describes the AOA fluctuation of a

spherical wave, provided that the distance to the point

source is much larger than d. Indeed, for such geometry,

the angles h at the points A and B differ only slightly, and

the wavefront deviates insignificantly from the dashed line

in Fig. 1.

Equation (2) is applicable only to the direct path from

the source to the microphones. In outdoor applications, there

might also be the ground-reflected path. In some cases, the

latter path can be eliminated by beamforming.

B. AOA variance

The variance of the AOA fluctuations, r2h, is obtained

by squaring both sides of Eq. (2) and averaging over an

ensemble of turbulence realizations. The result is

r2h ¼ h~h2i ¼ D/ðL;RA � RBÞ
k2d2 sin2h0

: (3)

Here, the brackets h i denote ensemble averaging and D/ðL;
RA � RBÞ ¼ h½~/ðRAÞ � ~/ðRBÞ�2i is the structure function

of phase fluctuations between two observation points. The

first argument L in the structure function is the propagation

range of the sound wave. Equation (3) is known in electro-

magnetic wave propagation, e.g., Refs. 19–21; the deriva-

tion of this equation is presented here for completeness. The

phase structure functions for electromagnetic and acoustic

waves generally differ because the former is affected by sca-

lar random fields (temperature and humidity fluctuations),

while the latter is affected both by scalar and vector random

fields (temperature and wind velocity fluctuations). For

details, see Part II in Ref. 3.

The decorrelation of the phase fluctuations along the

direction of sound propagation is much less than in the

transverse direction.22 Therefore, the phase structure func-

tion calculated at points A and B is approximately equal to

that calculated at points A and C; that is, D/ðL;RA � RBÞ
� D/ðL;RA � RCÞ. The latter structure function is termed

the transverse structure function (points A and C are in

the plane perpendicular to the propagation direction).

Hereinafter, we consider statistically isotropic turbulence,

for which the transverse structure function depends only on

the magnitude of its second argument and can be written as

D/ðL; rÞ, where r ¼ d sin h0 ¼ jRA � RCj is the distance

between the points A and C. The distance r can also be

termed the transverse distance between the points A and B.

With these results, Eq. (3) takes the form

r2h ¼
D/ðL; rÞ
k2r2

: (4)

This formula expresses the AOA variance in terms of the

transverse phase structure function. The dependence of r2h
on r is determined by the dependence of D/ðL; rÞ on r.
Equation (4) is valid for both plane and spherical propaga-

tion. The former case corresponds to a point sound source

located significantly above the ABL and is considered in the

Appendix. Spherical propagation is attained when a point

source is located within the ABL. Unless stated otherwise, a

spherical wave is considered in the remaining part of this

article.

The phase structure function can be written as (e.g.,

Refs. 3 and 19)

D/ðL; rÞ ¼ 2 B/ðL; 0Þ � B/ðL; rÞ
� �

; (5)

where B/ðL; rÞ ¼ h~/ðRAÞ~/ðRCÞi is the correlation function

of the phase fluctuations. For anisotropic turbulence, theFIG. 1. Geometry of the AOA fluctuations.
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phase correlation function of a spherical wave is given by

Eq. (7.95) in Ref. 3. For isotropic turbulence, the two-

dimensional integral over the transverse turbulence wave

vector in that equation can be reduced to a one-dimensional

integral. Substituting the result into Eq. (5) yields

D/ðL; rÞ ¼ p2k2L
ð1
0

dg
ð1
0

UeffðgL; jÞ 1� J0ðgjrÞ½ �

� 1þ cos
gð1� gÞj2L

k

� �� �
j dj: (6)

Here, J0 is the Bessel function of the first kind of zero order

and j is the turbulence wavenumber, which is inversely pro-

portional to the scale l of turbulent eddies, i.e., j � 1=l. In
Eq. (6), the integral over g corresponds to integration along

the normalized sound propagation path from the point

source to the center between points A and C in Fig. 1.

Furthermore, UeffðgL; jÞ is the effective spectrum of turbu-

lence, which accounts for both temperature and velocity

fluctuations. The effective spectrum is explained in detail

in Refs. 3, 23, and 24 and is specified in Sec. III A for the

von K�arm�an and Kolmogorov spectral models. The first

argument gL in the effective spectrum indicates that the

parameters of UeffðgL; jÞ can vary gradually along the prop-

agation path; this assumption corresponds to propagation

through statistically quasi-homogeneous turbulence. For sta-
tistically homogeneous turbulence, Ueff remains constant

along the path and Eq. (6) coincides with Eq. (7.101) in

Ref. 3. Note that Eq. (6) is still valid even if B/ðL; 0Þ does
not exist because it can be derived without using Eq. (5).3

If jr � 1, the difference 1� J0ðgjrÞ in Eq. (6) is small

compared to 1. This means that turbulent eddies with

j � 1=r, or equivalently l 	 r, do not contribute signifi-

cantly to the phase structure function. Since Ueff decreases

rapidly with increasing j [see Eqs. (8) and (13)], turbulent

eddies with l � r (or j 	 1=r) also do not contribute to

D/ðL; rÞ. Thus, the phase structure function is mainly

affected by turbulent eddies with scales l � r.
Another important consideration is that Eq. (7.95) in

Ref. 3 and Eq. (6) in the present article are derived assuming

that random inhomogeneities with scales l� k, where k is

the sound wavelength, do not significantly affect the phase

structure function. This implies that Eq. (6) is valid only if

the transverse distance between two microphones is greater

than the wavelength, i.e., r� k.
Substituting Eq. (6) into Eq. (4) yields

r2h ¼
p2L
r2

ð1
0

dg
ð1
0

UeffðgL; jÞ 1� J0ðgjrÞ½ �

� 1þ cos
gð1� gÞj2L

k

� �� �
j dj: (7)

This formula expresses the AOA variance of a spherical

wave propagating through quasi-homogeneous and isotropic

turbulence in terms of the propagation range (L), transverse
distance between two microphones (r), sound wavenumber

(k), and effective spectrum of turbulence (Ueff ). Similar to

the phase structure function, r2h is affected by turbulent

eddies with scales l � r and is valid if r� k.

III. VARIANCE IN THE ABL

In this section, the AOA variance is calculated for

sound propagation in the ABL when parameters of the effec-

tive spectrum Ueff depend on the height z above the ground.

A. Effective turbulence spectra

1. von K�arm�an effective spectrum

The von K�arm�an effective spectrum accounts for

temperature and velocity fluctuations in the inertial and

energy-containing subranges of turbulence and has been

used in a number of recent studies.4–6,23,24 This spectrum is

given by3

UvK
eff ðz; 0; jÞ ¼

Cð11=6Þ
p3=2Cð1=3Þ

r2TðzÞL3TðzÞ
T2
0 1þ j2L2TðzÞ
� 	11=6

"

þ 22

3

r2v;sL
5
v;sðzÞj2

c20 1þ j2L2v;sðzÞ
� 	17=6

þ 22

3

r2v;bL
5
v;bj

2

c20 1þ j2L2v;b

 �17=6

3
75; (8)

where C is the gamma function, and T0 c0 are the mean

temperature and sound speed. Moreover, r2TðzÞ, r2v;s, and r2v;b
are the variances of the temperature fluctuations, shear-

produced velocity fluctuations, and buoyancy-produced

velocity fluctuations, respectively, and LTðzÞ, Lv;sðzÞ, and
Lv;b are the corresponding outer scales. Some variances and

outer scales depend on z, while others do not. Section 6.2.4

in Ref. 3 expresses these variances and scales in terms of the

meteorological parameters of the ABL,

r2TðzÞ ¼
4:0 T2



1� 10z=Loð Þ2=3

; r2v;s ¼ 3:0 u2
;

r2v;b ¼ 0:35w2

; (9)

LTðzÞ ¼ 2:0 z
1� 7:0z=Lo
1� 10z=Lo

; Lv;sðzÞ ¼ 1:8 z;

Lv;b ¼ 0:23 zi: (10)

Here, u
 is the friction velocity and zi is the ABL height.

In Eqs. (9) and (10), Lo is the Obukhov length, T
 is

the surface-layer temperature scale, and w
 is the mixed-

layer velocity scale, which are defined by the following

equations:

Lo ¼ � cP.aTsu
3



jvgQH
; T
 ¼ � QH

.acPu

;

w
 ¼ gziQH

.acPTs

� �1=3

: (11)
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In these formulas, cP is the specific heat of air at constant

pressure, .a is the air density, Ts is the air temperature near

the ground, jv ¼ 0:40 is the von K�arm�an constant, g is the

gravitational acceleration, and QH is the surface sensible

heat flux.

Equations (9)–(11) express the variances and outer

scales of temperature and velocity fluctuations in the von

K�arm�an effective spectrum UvK
eff ðz; jÞ in terms of the

meteorological parameters of the ABL. The dependence of

UvK
eff ðz; jÞ on the height z corresponds to statistical quasi-

homogeneity.

2. Kolmogorov effective spectrum

In practical applications, the transverse distance r
between two microphones is usually on the order of a meter.

On the other hand, the outer scales LTðzÞ and Lv;sðzÞ increase
approximately linearly with the height z, while Lv;b does not
depend on z and is greater than 100m for a typical ABL.

Therefore, in many applications,

r � LTðzÞ; Lv;sðzÞ; Lv;b: (12)

Here, the first two inequalities are considered for horizontal

sound propagation, when LTðzÞ and Lv;sðzÞ are constant

along the path. For vertical and slanted propagation, z in Eq.

(12) should be replaced with a weighted average height

along the propagation path.

If the inequalities in Eq. (12) are fulfilled, the AOA

variance is affected mainly by eddies in the inertial subrange

of turbulence with scales l � LT ; Lv;s; Lv;b. For such eddies,

jLT 	 1, jLv;s 	 1, and jLv;b 	 1 in the von K�arm�an
effective spectrum given by Eq. (8). In this case, the von

K�arm�an spectrum simplifies significantly and reduces to the

Kolmogorov spectrum,3,25

UK
effðz; jÞ ¼ QC2

effðzÞj�11=3: (13)

Here, Q ¼ 5=½18pCð1=3Þ� � 0:0330 is a numerical coeffi-

cient and C2
eff is the effective structure-function parameter,

C2
effðzÞ ¼

C2
TðzÞ
T2
0

þ 22

3

C2
v;sðzÞ
c20

þ 22

3

C2
v;b

c20
: (14)

In this formula, C2
T , C

2
v;s, and C2

v;b are the structure-function

parameters of the temperature fluctuations, shear-produced

velocity fluctuations, and buoyancy-produced velocity

fluctuations, which characterize the intensity of the corre-

sponding fluctuations in the inertial subrange. They are

given by

C2
TðzÞ ¼

3Cð5=6Þffiffiffi
p

p r2TðzÞ
L
2=3
T ðzÞ

; C2
v;sðzÞ ¼

3Cð5=6Þffiffiffi
p

p r2v;s

L
2=3
v;s ðzÞ

;

C2
v;b ¼

3Cð5=6Þffiffiffi
p

p r2v;b

L
2=3
v;b

: (15)

Replacing the variances and outer scales in these formulas

with Eqs. (9) and (10) yields

C2
TðzÞ ¼

2:5AT2



z2=3 1þ 1� 7:0 z=Loð Þ½ �2=3
;

C2
v;sðzÞ ¼

2:0Au2

z2=3

; C2
v;b ¼ 0:93A

gQH

.acPTs

� �2=3

; (16)

where A ¼ 3Cð5=6Þ= ffiffiffi
p

p � 1:9 is a numerical coefficient.

Equation (16) determines C2
T , C2

v;s, and C2
v;b in terms of

meteorological parameters of the ABL. It follows from this

equation that C2
T and C2

v;s decrease with increasing height z,
while C2

v;b remains constant.

B. AOA variance

1. Von K�arm�an effective spectrum

Substituting Eq. (8) into Eq. (7) yields the AOA vari-

ance of a spherical wave for the von K�arm�an effective

spectrum

r2h ¼
ffiffiffi
p

p
Cð11=6ÞL

Cð1=3Þr2
ð1
0

dg
ð1
0

r2Tð�zÞL3Tð�zÞ
T2
0 1þ j2L2Tð�zÞ
� 	11=6 þ 22

3

r2v;sL
5
v;sð�zÞj2

c20 1þ j2L2v;sð�zÞ
� 	17=6 þ 22

3

r2v;bL
5
v;bj

2

c20 1þ j2L2v;b

 �17=6

2
64

3
75

� 1� J0ðgjrÞ½ � 1þ cos
gð1� gÞj2L

k

� �� �
j dj: (17)

Here, the function �z ¼ �zðgLÞ in the arguments of the var-

iances and outer scales of temperature and velocity fluctua-

tions returns the height above the ground along the

propagation path. This function depends on the geometry

of sound propagation. For horizontal propagation at the

height h,

�zðgLÞ ¼ h: (18)

For sound propagation from an elevated source to the micro-

phones on the ground,

�zðgLÞ ¼ ð1� gÞhs: (19)
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In this formula, hs ¼ L cos a is the source height, where a is

the angle between the propagation path and vertical. The

case a ¼ 0 corresponds to vertical propagation. Finally, for

sound propagation from a ground-based source to the ele-

vated microphones

�zðgLÞ ¼ ghr; (20)

where hr ¼ L cos a is the microphones’ height.

2. Kolmogorov effective spectrum

Substituting Eq. (13) into Eq. (7) and setting

j ¼ n=ðgrÞ, where n is a new non-dimensional integration

variable, we obtain the AOA variance of a spherical wave

for the Kolmogorov spectral model,

r2h ¼
p2QL

r1=3

ð1
0

dg g5=3C2
effð�zÞ

ð1
0

1� J0ðnÞ½ �

� 1þ cos ð1=g� 1Þn2l
� 	� �

n�8=3 dn: (21)

Here, �z ¼ �zðgLÞ is the same function as in Eq. (17) and l is

the parameter given by

l ¼ L

kr2
: (22)

The square root
ffiffiffi
l

p
can be recognized as the ratio between

the first Fresnel zone
ffiffiffiffiffiffiffiffi
L=k

p
and the transverse distance r.

Therefore, the parameter l in Eq. (21) characterizes the dif-

fraction regime of the considered problem. There are two

limiting diffraction regimes. The first is geometrical acous-

tics (weak diffraction), which is attained when the diffrac-

tion parameter l � p=2. In this case, the argument of the

cosine function in Eq. (21) is small compared to p=2, and
this function can be set to 1. The other limiting case is

Fraunhofer (strong) diffraction when l 	 p=2, the cosine

function oscillates rapidly, and does not contribute to r2h.
In both limiting diffraction regimes, the two-dimensional

integral in Eq. (21) becomes a product of one-dimensional

integrals over g and n. The former integral yields the path-

averaged effective structure-function parameter,

�C
2

eff ¼
8

3

ð1
0

C2
effð�zðgLÞÞg5=3 dg: (23)

In this formula, the coefficient 8=3 is introduced as a

normalization factor and g5=3 in the integrand is a weight

function along the propagation path. The integral over n
can be calculated analytically using Eq. (10) on page 407 in

Ref. 19, with the resultð1
0

1� J0ðnÞ½ �n�8=3 dn ¼ 3Cð1=6Þ
25=35Cð11=6Þ : (24)

With these transformations, Eq. (21) reads

r2h ¼
Bb0 �C

2

effL

r1=3
: (25)

Here, B ¼ 3
ffiffiffi
p

p
Cð1=6Þ=ð255Cð2=3ÞÞ � 0:137 is a numerical

coefficient, b0 ¼ 2 in geometrical acoustics, and b0 ¼ 1 in

Fraunhofer diffraction. Equation (25) provides a remarkably

simple formula for the AOA variance, which depends on the

propagation range (L), the transverse distance between two

microphones (r), and the turbulence intensity in the inertial sub-
range ( �C

2

eff). In geometrical acoustics, the dependence of r2h on
L and r was also predicted in Ref. 26, see Sec. 11 in Ref. 27.

For horizontal sound propagation, C2
effðhÞ remains con-

stant along the path. In this case, it follows from Eq. (23)

that �C
2

eff ¼ C2
effðhÞ. Furthermore, Eq. (21) can be written as

r2h ¼
BbðlÞC2

effðhÞL
r1=3

; (26)

where b is a function of l given by

bðlÞ ¼ p2Q
B

ð1
0

dg g5=3
ð1
0

1� J0ðnÞ½ �

� 1þ cos ð1=g� 1Þn2l
� 	� �

n�8=3 dn: (27)

It can be shown that b ¼ 2 if l � p=2 and b ¼ 1 if

l 	 p=2. Therefore, in these limiting cases, Eq. (27) is con-

sistent with Eq. (25).

Note that in the limiting cases of geometrical acoustics

and Fraunhofer diffraction, the cosine function in Eq. (17)

for the von K�arm�an spectrum can also be set to 1 and 0,

respectively. However, unlike the Kolmogorov spectrum,

the two-dimensional integral over g and j in Eq. (17) does

not become a product of one-dimensional integrals.

IV. NUMERICAL RESULTS

In this section, the standard deviation of the AOA fluctu-

ations rh ¼
ffiffiffiffiffi
r2h

q
is studied numerically for horizontal sound

propagation at the height h above the ground. It is assumed

that the transverse distance between two microphones is

r ¼ 1m, the acoustic frequency is f ¼ kc0=ð2pÞ ¼ 1 kHz,

the air temperature is T0 ¼ Ts ¼ 20 �C, and the ABL height

is zi ¼ 1 km.

The solid and dashed black lines in Fig. 2 depict the AOA

standard deviation rh for the von K�arm�an and Kolmogorov

effective spectra versus the propagation range L. The results

are obtained with Eqs. (17) and (26) and correspond to the

sound propagation height h ¼ 20 m, u
 ¼ 0:6 m/s (which is

representative of strong wind), and QH ¼ 400 W/m2 (sunny

conditions). These parameters enable us to calculate the var-

iances and outer scales of temperature and wind velocity fluc-

tuations in the von K�arm�an effective spectrum and the

effective structure-function parameter in the Kolmogorov

spectrum. In Fig. 2, the maximum values of rh are 2.1� for the
von K�arm�an spectrum and 2.4� for the Kolmogorov spectrum.

At the range of 500m, these values correspond to an apparent

source displacement of 18.3 and 20.9m, respectively.

The blue and red dash-dotted lines in Fig. 2 depict the

dependence of rh on L attained for the Kolmogorov spec-

trum in geometrical acoustics and Fraunhofer diffraction,
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when bðlÞ in Eq. (26) equals 2 and 1, respectively. For the

considered parameters of the calculations, the diffraction

parameter l varies between 0.0055 (for L ¼ 0:1 m) and 27.3

(for L ¼ 500 m). As a result, for relatively small propaga-

tion ranges, rh for the Kolmogorov spectrum is close to that

in geometrical acoustics. For large propagation ranges, rh
starts to deviate from the geometrical acoustics results and

gradually approaches the Fraunhofer diffraction limit.

It follows from Fig. 2 that the dashed black line is

between the blue and red dash-dotted lines. Therefore, in

some cases, rh for the Kolmogorov spectrum can be approxi-

mated as the mean of the AOA standard deviations in geomet-

rical acoustics and Fraunhofer diffraction, which is given by

rh ¼ 1þ ffiffiffi
2

p

2

BC2
effðhÞL

� �1=2
r1=6

: (28)

The maximum relative difference between rh given by Eq.

(28) and that for the Kolmogorov spectrum is 17%. With this

accuracy, rh for the Kolmogorov spectrum [Eq. (28)]

depends on the propagation range and transverse microphone

separation as L1=2=r1=6 and does not depend on frequency.
The AOA standard deviation rh for the von K�arm�an

spectrum in Fig. 2 is close to that for the Kolmogorov spec-

trum and is also between the blue and red dash-dotted lines.

The maximum relative difference between rh for two spec-

tra is 18%. This relatively small difference is due to the fact

that, in the considered case, the transverse distance between

two microphones r ¼ 1 m is much smaller than the outer

scales LT ¼ 30:4 m, Lv;s ¼ 36 m, and Lv;b ¼ 230 m of tem-

perature and velocity fluctuations so that the inequalities in

Eq. (12) are fulfilled.

Figure 3 depicts the AOA standard deviation versus the

surface heat flux QH for three values of the friction velocity cor-

responding to light (u
 ¼ 0:1 m/s), moderate (u
 ¼ 0:3 m/s),

and strong (u
 ¼ 0:6 m/s) wind conditions. The limiting val-

ues of QH (i.e., QH ¼ 1 W/m2 and QH ¼ 400 W/m2) are rep-

resentative of cloudy and sunny conditions. In Fig. 3, the

height above the ground h ¼ 20 m is the same as in Fig. 2,

while the propagation range is L ¼ 200 m. The solid and

dashed lines correspond to the results obtained with the von

K�arm�an and Kolmogorov effective spectra, respectively.

It follows from Fig. 3 that rh increases with increasing

heat flux and friction velocity. The maximum values of the

AOA standard deviations are 1.4� for the von K�arm�an spec-

trum and 1.6� for the Kolmogorov spectrum. The results for

these spectra are close to each other; the maximum relative dif-

ference is 16% for u
 ¼ 0:1 m/s and 19% for u
 ¼ 0:3 m/s

and u
 ¼ 0:6 m/s. These small differences can again be

explained by the fact that the inequalities in Eq. (12) are ful-

filled: for the parameters pertinent to Fig. 3, LT varies between

28.0m and 39.9m, while Lv;s and Lv;b are the same as in Fig. 2.

Let rh;T , rh;vs, and rh;vb be the AOA standard deviations

due to the temperature fluctuations, shear-produced velocity

fluctuations, and buoyancy-produced velocity fluctuations,

respectively. For the von K�arm�an spectrum, rh;T is deter-

mined by setting r2v;s ¼ r2v;b ¼ 0 in Eq. (17); the standard

deviations rh;vs and rh;vb are determined similarly. Figure 4

depicts rh;T , rh;vs, and rh;vb versus the surface heat flux QH

for moderate wind conditions (u
 ¼ 0:3 m/s) and the same h
and L as in Fig. 3. It follows from the figure that rh;T and

rh;vb increase with increasing QH , while rh;vs remains con-

stant. The standard deviation rh;T is smaller than rh;vs and
rh;vb for all QH. For QH > 120 W/m2, rh;vb > rh;vs, while
the opposite inequality is valid if QH < 120 W/m2. The

standard deviations rh;T , rh;vs, and rh;vb were also analyzed

for low and strong wind conditions. For u
 ¼ 0:1 m/s,

rh;vb > rh;vs if QH > 4 W/m2. For u
 ¼ 0:6 m/s, rh;vs is

always larger than rh;vb. In both wind conditions, rh;T is

smaller than rh;vs and/or rh;vb.
Note that if some of the inequalities in Eq. (12) are not

fulfilled, the AOA variance for the Kolmogorov spectrum

FIG. 3. Standard deviation of the AOA fluctuations versus the surface heat

flux for three values of the friction velocity. The solid and dashed lines corre-

spond to the von K�arm�an and Kolmogorov effective spectra, respectively.

FIG. 2. Standard deviation of the AOA fluctuations versus range for

u
 ¼ 0:6 m/s, QH ¼ 400 W/m2, and horizontal sound propagation at the

height h ¼ 20 m. The solid and dashed black lines correspond to the von

K�arm�an and Kolmogorov effective spectra, respectively. The blue and red

dash-dotted lines respectively correspond to geometrical acoustics and

Fraunhofer diffraction.
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can deviate noticeably from that for the von K�arm�an spec-

trum. As an example, let us consider the same parameters of

the problem as in Fig. 2 except for the height of sound prop-

agation, which is h ¼ 2 m. In this case, rh versus the propa-
gation range is depicted in Fig. 5. It follows from the figure

that rh for the von K�arm�an spectrum is noticeably smaller

than that for the Kolmogorov spectrum, with the maximum

relative difference of 58%. This relatively large difference is

due to the fact that for h ¼ 2 m, the outer scales LT ¼ 3:7 m

and Lv;s ¼ 3:6 m are comparable to the transverse distance

between two microphones r ¼ 1 m so that the first two

inequalities in Eq. (12) are not fulfilled.

V. CONCLUSIONS

This article presented a theoretical analysis of the vari-

ance of the AOA fluctuations of a spherical sound wave in a

turbulent atmosphere.

Equation (7) expressed the AOA variance in terms of

the propagation range, transverse distance between two

microphones, acoustic frequency, and the effective spec-

trum of statistically quasi-homogeneous and isotropic tur-

bulence whose parameters can vary along the propagation

path. Then, the results were specified for sound propagation

in the ABL, where the effective spectrum was modeled

with the von K�arm�an and Kolmogorov spectral models. It

was argued that the latter spectrum can be used if the trans-

verse distance between two microphones is much smaller

than the outer scales of temperature and velocity fluctua-

tions. The AOA variances for the von K�arm�an and

Kolmogorov effective spectra given by Eqs. (17) and (21),

respectively, are valid for vertical, slanted, or horizontal

propagation. For the Kolmogorov spectrum, the variance is

proportional to the path-averaged effective structure-

function parameter, which characterizes the intensity of

temperature and wind velocity fluctuations in the inertial

subrange. Equations (25) and (26) provide remarkably sim-

ple expressions for the AOA variance in the limiting cases

of weak/strong diffraction or statistically homogeneous tur-

bulence and elucidate the dependence of the variance on

parameters of the problem.

The standard deviation of the AOA fluctuations was

analyzed numerically for various meteorological regimes of

the ABL. It was shown that the standard deviation increases

with increasing propagation range, surface heat flux, and

friction velocity and varies in the range from a fraction of a

degree to 1�–2�. The numerical results substantiated that the

AOA standard deviations for the von K�arm�an and

Kolmogorov spectra are close to each other, provided that

the transverse distance between the microphones is much

smaller than the outer scales of temperature and velocity

fluctuations. With the accuracy of about 17%, the AOA

standard deviation for the Kolmogorov spectrum depends on

the propagation range L and transverse distance r between

two microphones as L1=2=r1=6 and is frequency independent.

The theoretical predictions for the AOA variance

were not compared with experimental data reported in

Refs. 13, 14, and 16 because the meteorological parameters

necessary for such a comparison were not reported in these

works. In Ref. 15, the AOA fluctuations were measured with

an acoustic vector sensor, which is essentially a point sen-

sor. The theory developed in the present article does not

apply to such sensors.

The obtained results correspond to the phase fluctua-

tions measured with two microphones. Many other acoustic

sensor arrays also rely on the phase measurements of an

incoming signal at different microphones. Therefore, the

results of this article can provide, at least qualitatively, the

dependence of the AOA variance, when measured with

other sensor arrays, on parameters such as the propagation

range, frequency, and turbulence intensity. For arrays with

more than two sensors, the aperture across the entire array

should be used instead of the transverse distance r between
two microphones.FIG. 5. Same as in Fig. 2 but for horizontal propagation at the height h ¼ 2 m.

FIG. 4. Standard deviations due to the temperature fluctuations, shear–pro-

duced velocity fluctuations, and buoyancy-produced velocity fluctuations

versus the surface heat flux for moderate wind conditions.
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APPENDIX: AOAVARIANCE OFA PLANE WAVE

This Appendix presents the derivation of the AOA vari-

ance of a plane sound wave.

The phase correlation function of a plane sound wave

propagating through statistically quasi-homogeneous and

anisotropic turbulence is given by Eq. (7.77) in Ref. 3. This

equation is substituted into Eq. (5) and, for isotropic turbu-

lence, the two-dimensional integral over the transverse tur-

bulence wave vector is reduced to a one-dimensional

integral. The result is

D/ðL; rÞ ¼ p2k2L
ð1
0

dg
ð1
0

UeffðgL; jÞ 1� J0ðjrÞ½ �

� 1þ cos
ð1� gÞj2L

k

� �� �
j dj: (A1)

This formula provides the phase structure function of a

plane sound wave in quasi-homogeneous and isotropic tur-

bulence. Equation (A1) coincides with Eq. (6) for D/ðL; rÞ
of a spherical wave if, in the latter equation, the arguments

of the Bessel and cosine functions are divided by g.
Substituting Eq. (A1) into Eq. (4) yields the AOA vari-

ance for a plane wave,

r2h ¼
p2L
r2

ð1
0

dg
ð1
0

UeffðgL; jÞ 1� J0ðjrÞ½ �

� 1þ cos
ð1� gÞj2L

k

� �� �
j dj: (A2)

The AOA variances for von K�arm�an and Kolmogorov effec-

tive spectra are obtained by replacing Ueff in this equation

with Eqs. (8) and (13), respectively.

In the remainder of this Appendix, results pertinent to the

Kolmogorov spectrum are derived. For this spectrum, intro-

ducing a new non-dimensional integration variable n ¼ jr in
Eq. (A2), we obtain the AOA variance of a plane sound wave,

r2h ¼
p2QL

r1=3

ð1
0

dgC2
effð�zðgLÞÞ

ð1
0

1� J0ðnÞ½ �

� 1þ cos ð1� gÞn2l
� 	� �

n�8=3 dn: (A3)

This equation coincides with Eq. (21) for r2h of a spherical

wave if, in the latter equation, the weight function g5=3

is set to 1 and the argument of the cosine function is multi-

plied by g.
Similar to spherical wave propagation, geometrical

acoustics is attained for l � p=2, when the cosine function in
Eq. (A3) can be set to 1. In Fraunhofer diffraction, l 	 p=2 so
that the cosine function can be approximated with 0. In these

limiting cases, Eq. (A3) simplifies to

r2h ¼
8

3

Bb0 �C
2

effL

r1=3
: (A4)

Here, the path-averaged effective structure-function parame-

ter is given by

�C
2

eff ¼
ð1
0

C2
effð�zðgLÞÞ dg: (A5)

Equation (A4) is similar to Eq. (25) for r2h of a spherical

sound wave except for two differences. First, �C
2

eff given by

Eq. (A5) does not have a weight function, while in Eq. (23)

for a spherical wave, the weight function is g5=3. Second,
Eq. (A4) contains the additional factor 8=3 that is absent in

Eq. (25) for a spherical wave. Due to this factor, the AOA

variance for a plane wave is 8=3 times larger than that for a

spherical wave in statistically homogeneous turbulence

when �C
2

eff ¼ C2
eff .

The case when C2
eff is constant along the propagation

path can be considered similarly to Sec. III B 2.
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