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Explainable machine learning models for classifying reactions
within crowd noise during men’s collegiate basketball games

Mitchell C. Cutler,1 Jason Bickmore,1 Mark K. Transtrum,1 Katrina Pedersen,1 Shannon Proksch,2,3

Eli Farrer,1 and Kent Gee1,a)
1Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
2Department of Psychology, Augustana University, Sioux Falls, South Dakota 57197, USA
3Program in Neuroscience, Center for Interdisciplinary Studies, Augustana University, Sioux Falls, South Dakota 57197, USA

ABSTRACT:
Crowds at collegiate basketball games react acoustically to events on the court in many ways, including applauding,

chanting, cheering, and making distracting noises. Acoustic features can be extracted from recordings of crowds at

basketball games to train machine learning models to classify crowd reactions. Such models may help identify crowd

mood, which could help players secure fair contracts, venues refine fan experience, and safety personnel improve

emergency response services or to minimize conflict in policing. By exposing the key features in these models,

feature selection highlights physical insights about crowd noise, reduces computational costs, and often improves

model performance. Feature selection is performed using random forests and least absolute shrinkage and selection

operator logistic regression to identify the most useful acoustic features for identifying and classifying crowd

reactions. The importance of including short-term feature temporal histories in the feature vector is also evaluated.

Features related to specific 1/3-octave band shapes, sound level, and tonality are highly relevant for classifying crowd

reactions. Additionally, the inclusion of feature temporal histories can increase classifier accuracies by up to 12%.

Interestingly, some features are better predictors of future crowd reactions than current reactions. Reduced feature

sets are human-interpretable on a case-by-case basis for the crowd reactions they predict.
VC 2025 Acoustical Society of America. https://doi.org/10.1121/10.0039709
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I. INTRODUCTION

Collegiate men’s basketball games have a complex

mixture of sound sources, including the public address (PA)

system, music from live bands, sounds from the officiating

crew, and various unified sounds from the crowd in response

to events on the court, referred to as “crowd reactions.”

Classifying crowd reactions may provide means to quantify

the entertainment value added by individual athletes1 (e.g.,

interest, attendance, etc.) through direct, real-time crowd

engagement at sporting event venues, as opposed to indirect

engagements through social media.2,3 In light of recent

developments in name, image, and likeness contracts in

intercollegiate sports,4–6 there may be many stakeholders7

interested in this quantitative approach. Identifying which

acoustic features are most useful for classifying acoustic

crowd reactions and why they are important may also lead

to insights into the collective behavior of crowds and be of

interest to social psychology and the cognitive sciences.8,9

Across other disciplines, acoustic monitoring of crowd reac-

tions may help identify sentiment and mood changes10 of a

crowd and improve the ability to advise emergency response

teams11 or to minimize conflict in policing.12

Previous analyses of crowd noise have studied synchro-

nization of voices and sound levels,13,14 the effects of crowd

noise on athletes,15,16 identification of key moments in

sporting events,17 unsupervised classifications of acoustic

spectra,18–20 and supervised classification of general senti-

ment of crowds using neural networks and spectrograms.10

In this paper, machine learning models are built on the

features described in Ref. 18 to classify crowd reactions at

men’s basketball games into one of four classes: applause,
chant, cheer, or distraction noise. These classes are further

defined in Ref. 19. The classification model developed in

this study is composed of several binary classification mod-

els. The first one separates instances of sounds produced by

the crowd (crowd noise) from instances without crowd

sounds present (non-crowd noise), which may include

sounds produced by individuals, music, the PA system, and

the officiating crew. Instances of crowd noise may also

include non-crowd noise (e.g., a buzzer going off while a

crowd cheers). Other classifiers then separate anything

labeled or classified as crowd noise into the four classes of

reactions (i.e., there is one binary classifier for each class).

Feature selection is performed via several methods to reduce

the feature sets for all classifiers. This paper investigates

why some features are more useful than others for classify-

ing crowd reactions and examines and explains the rele-

vance of the temporal histories of the most informativea)Email: kentgee@byu.edu
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features. Feature temporal histories increase in importance

for some feature sets, and a few features relating to tonality,

specific spectral shapes, and intensity have clear connections

to physical phenomena and are useful in classifying several

crowd reactions in the noisy setting of a basketball game.

A. Motivation for feature selection

Feature selection is used to improve model interpret-

ability,21 minimize the curse of dimensionality,22 and

reduce computational and data requirements by eliminat-

ing uninformative features. In some cases, it can also

improve model performance. Unlike feature extraction

methods, which perform dimension-reducing transforma-

tions on the feature set, feature selection methods choose a

subset of the original features, which preserves the fea-

tures’ interpretability.23 Ideally, the reduced feature set

should contain a small number of features that are informa-

tive, interpretable, and relatively independent of each

other.24 Information provided by independent acoustic fea-

tures is measured in several ways, such as by calculating

each feature’s correlation with crowd reactions or consid-

ering the accuracy of machine learning models that use

these features to classify crowd reactions. Because the

meaning of each feature remains the same during the pro-

cess, feature selection is closely related to explainable arti-

ficial intelligence (AI),25 which attempts to find the

underlying rules behind complicated models. In this paper,

various feature selection techniques are used to shed light

on which features are useful for classifying acoustic crowd

reactions. These techniques are mean decrease in accuracy

(MDA), the Gini feature importance metric, the Gini fea-

ture importance metric with two kinds of penalties, and the

least absolute shrinkage and selection operator (LASSO).

Where possible, the selected features are linked to the

physical characteristics of the crowd noise.

II. METHODS

In this section, acoustic data collection and preparation

methods are explained, as well as machine learning feature

generation. Correlations between features and the signifi-

cance of these correlations in this project are also explained.

We then introduce the model and its hyperparameters,

review the five methods of feature selection used in this

paper, and finally outline our approach to feature selection

and hyperparameter tuning. Figure 1 provides a high-level

sketch of the entire process, including data processing, fea-

ture generation, and feature selection.

A. Dataset

The 17.21 h of recordings used in this study came

from ten Brigham Young University (BYU) men’s basket-

ball home games during the 2017–2018 and 2018–2019

seasons, with audiences ranging from 10 179 to 16 456

attendees, as reported by the venue.26 All games were

played in the same venue. Although reverberation times

may have varied with attendance, reverberation time was

not considered in this study. Each recording was made

with a single microphone placed far enough from the

crowd that no individual voice dominated. Pressure was

sampled at 25 kHz or higher with a 24-bit system and a

type 1, 12.7mm diameter free-field microphone.19 The

average 1/3-octave band spectra of all ten games shared

the same shape and were within 10 dB at all frequencies.

Despite differences in attendance, the unweighted half-

second equivalent continuous sound level (Leq0.5 s) distri-

butions were similar for all games, with an L50 exceedance

level of 91.7 dB.18 The data were split by game into train-

ing, validation, and holdout test sets. While splitting the

ten games into these datasets was not strictly random,

games were divided with no pattern other than achieving

desirable proportions (60-20-20 split). Details about these

partitions in the data can be seen in Table I. Because the

machine learning models created in this study will be

applied to games outside of the dataset presented here,

each game used in this study was assigned to one dataset

(training, testing, or validation) to give a more robust and

conservative estimate of the model’s transferability.

Because the crowd is the same throughout each game,

splitting the data within a game might lead to false

increases in model improvement. Validation data were

used to tune model hyperparameters, and testing data were

used to measure model accuracy during feature selection.

Seven human labelers listened to game recordings and

manually labeled ten crowd reactions: singing, silence,

cheer, positive chant, negative chant, applause, distraction

noise, angry noise, disappointment, and surprise. These

labelers met and agreed on the meaning of each of the ten

labels. Each whole game was labeled by a single labeler.

Some labelers labeled multiple games. To label a game,

the labeler listened to the game audio and recorded the

timestamps at which each reaction started and stopped in a

simple labeling interface or a .csv file. Some games were

labeled with the help of game footage to supplement the

audio. While labelers met periodically to ensure labels

were applied consistently, the consistency of human label-

ing was not systematically checked. The labeling process

and seven of the ten crowd reaction labels are described in

more detail in Ref. 19. This paper focuses on four classes

of reactions: applause, chanting (positive chant and nega-

tive chant combined), cheering, and distraction noise.
Additionally, instances where any crowd reaction label is

active are separated from those where no label is active by

the labels any reaction and no reaction, respectively.

Human labelers noted other crowd reactions, such as angry
noise and singing, but these labels are only included within

the crowd reaction class of any reaction and not as their

own classes because these reactions occur less frequently.

Some crowd reactions overlap frequently, such as applause
and cheer. Most crowd reactions do not have definite start-

ing or stopping times, so some ambiguities are present in

the labeling of the games, especially at the beginnings and

ends of reactions. All unlabeled data are presumed not to

contain any sort of crowd reaction. The percentage of data
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labeled as each reaction can be seen in Table II. There are

differences in the proportion of classes in the training, vali-

dation, and testing sets because game events differ

between games, as well as the makeup and behavior of the

crowd (see Table II). This presents an opportunity to col-

lect more data in the future to balance out the training, test-

ing, and validation datasets.

FIG. 1. (a) Overview of process from waveform to reduced model for any reaction classifier. (b) Feature generation process. (c) Creating the three principal

components and nine clusters used in feature generation. (d) Feature selection process, including hyperparameter tuning, feature selection, and retuning.

Hyperparameters were tuned with the validation data, and feature selection was performed with the testing data.

TABLE I. Splitting of the data into training, validation, and testing sets.

Set No. of games % of data Total length (h)

Training 6 57.14 9.84

Validation 2 21.90 3.77

Testing 2 20.95 3.61

3458 J. Acoust. Soc. Am. 158 (4), October 2025 Cutler et al.
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B. Feature generation

The 27 features that are examined in this study were

processed on half-second intervals. Coarser temporal resolu-

tions cannot reasonably capture subtle dynamic changes in

crowd reactions, but finer temporal resolutions were empiri-

cally found to not contain additional spectral information

for 1/3-octave bands.18,19 Fourteen of the features come

from MATLAB’s27 Audio Feature Extractor,28,29 using a line-

arly spaced power spectrum from 50 to 10 000Hz with 2Hz

bins. Pitch30 was not included because it is only valid

when the acoustic signal is harmonic. Some features are

transformed to make the units reflect logarithmic scaling

in frequency and power. Features with values on a

logarithmic-like scale, but with positive and negative values,

are processed using hyperbolic arcsines. The extracted

features with their transformation and brief descriptions are

given in Table III (see Refs. 31–36).

Another feature, the unweighted half-second equivalent

continuous sound level, or Leq0.5 s, is calculated directly

from the audio pressure waveform. The remaining 12 fea-

tures come from Ref. 18, including the three principal com-

ponents shown in Fig. 1(c) and described in Table IV

(referred to as PC 1, PC 2, and PC 3). These principal com-

ponents come from a principal component analysis37 per-

formed on half-second intervals of 1/3-octave spectral bands

[dB(z) re 20 mPa] ranging from 50 to 10 000Hz from a data-

set of 30 men’s and women’s intercollegiate basketball and

volleyball games. Because the data are 1/3-octave band

spectra, these principal components are referred to as princi-

pal spectral shapes. Although 24 of these principal spectral

shapes were found in Ref. 18, only the first three are used

here since they account for 87.5% of the variance in the

dataset from which they were calculated. The first of these

principal spectral shapes is comparable to Leq0.5 s. The sec-

ond corresponds to mid-range frequencies, peaking just

under 1 kHz, corresponding closely to sounds produced pri-

marily by the crowd. The third corresponds to the spectral

peakedness. Linear combinations of the three principal spec-

tral shapes define a space. The data represented in this

space were clustered into nine clusters using a Gaussian

mixture model37 in Ref. 18. These clusters are shown in Fig.

1(c). The probability of a point x in this three-dimensional

space belonging to cluster C ¼ i given N clusters with

weights wi is

PðC ¼ ijxÞ ¼ fXðx; li;RiÞwi

XN

j¼1

fXðx; lj;RjÞwj

; (1)

where fXðx; li;RiÞ is the Gaussian probability density func-

tion of the cluster i with mean li and covariance Ri evalu-

ated at the point x. These cluster membership probabilities,

derived from Ref. 18, constitute the remaining nine features.

The clusters were labeled by colors in Ref. 18 (green, pink,

yellow, red, black, orange, cyan, blue, and brown), and for

consistency, the same color labels refer to the same nine

clusters in this paper. A brief description of each cluster is

given in Table IV. These colors do not correspond to acous-

tic noise types (such as brown, pink, or white noise). It is

important to note that data leakage is possible because the

dataset used to calculate the principal spectral shapes

included men’s basketball games, which are also part of the

training, validation, and testing data used in this study. The

TABLE II. Percentage of data, total length, and number of segments

labeled as each reaction. A segment is a continuous portion of game audio.

Reaction

% of data, total length (h), no. of segmentsa

Training Validation Testing

Applause 5.97, 0.59, 394 2.17, 0.08, 56 1.33, 0.05, 41

Chant 5.85, 0.58, 265 4.19, 0.16, 86 4.50, 0.16, 89

Cheer 8.11, 0.8, 464 7.56, 0.29, 174 6.90, 0.25, 151

Distraction noise 10.2, 1.01, 365 8.62, 0.33, 128 6.79, 0.25, 105

Any reaction 31.8, 3.12, 1247 27.1, 1.02, 470 20.7, 0.75, 390

Unlabeled 68.2, 6.71, N/A 72.9, 2.75, N/A 79.3, 2.86, N/A

aN/A, not applicable.

TABLE III. Transformations and brief descriptions of features from MATLAB’s Audio Feature Extractor toolbox (Ref. 28).

Feature Transformation Description

Spectral centroid (Ref. 31) (Centroid) Log10 First statistical moment

Spectral crest (Ref. 31) (Crest) Log10 Peakedness

Spectral decrease (Ref. 31) (Decrease) Arcsinh ðx=0:006Þ Slope

Spectral entropy (Ref. 32) (Entropy) None Information entropy of the spectrum

Spectral flatness (Ref. 33) (Flatness) 10 log10 Peakedness

Spectral flux (Ref. 34) (Flux) 10 log10ðx=2� 10�5Þ Change in spectrum

Spectral kurtosis (Ref. 31) (Kurtosis) Log10 Fourth statistical moment

Spectral roll-off point (Ref. 34) (Roll-off) Log10 Frequency bounding 95% of energy

Spectral skewness (Ref. 31) (Skewness) Arcsinh ðx=6Þ Third statistical moment

Spectral slope (Ref. 35) (Slope) Log10ð�xÞ Slope

Spectral spread (Ref. 31) (Spread) Log10 Second statistical moment

Harmonic ratio (Ref. 36) (Harmonic) None Ratio of harmonic to total energy

Short time energy (STE) 10 log10ðx=2� 10�5Þ Energy in signal

Zero-crossing rate (Cross rate) None Rate of signal crossing 0 Pa
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process for generating each of these 27 features is summa-

rized in Fig. 1(b).

C. Feature correlations

Because useful features are ideally strongly correlated

with reaction classes while being relatively independent of

each other, we first examine the correlation matrices of the

features with each other and with the crowd reactions (see

Fig. 2) before starting feature selection. This is done with

the Pearson correlation coefficients in Fig. 2, which only

show linear correlations and do not account for how features

and reactions relate to each other temporally or nonlinearly.

This also provides a way to validate later results.

Figure 2 suggests that PC 1, spectral flux, spectral slope,

short time energy, and the Leq0.5 s are all good predictors for

distinguishing between cheer and other reactions. However,

these particular features would not make a good feature sub-

set together to classify cheer because they are strongly cor-

related with each other and are therefore redundant. A

feature subset with just one of those features and another

less strongly correlated feature such as spectral entropy or

PC 2 would likely have better predictive properties, even

though PC 2 and spectral entropy are less correlated with

cheer.

D. Model and hyperparameter tuning

Random forests40,41 are commonly used for feature

selection.42–47 They are fast to train, make robust predic-

tions, can handle large numbers of features, and work natu-

rally with the Gini feature importance metric. This study

used scikit-learn’s implementation of random forests.48

Random forests have many hyperparameters, but Ref. 49

demonstrated that max_features (the number of features

considered as candidate splitting features at each split) and

max_samples (the number of data points each tree can train

on, sampled with replacement) are two of the most impor-

tant hyperparameters to tune. Reference 50 showed theoreti-

cally that larger forests improve performance and stabilize

feature selection metrics; in practice, as many trees should

be used as is computationally feasible.

A new hyperparameter, time_steps_before, is intro-

duced to account for the time-dependent nature of the data.

It takes on the values 0; 1; 2; 3; … and represents how

many additional half-seconds of temporal history are used to

predict the reaction at the current half-second time step.

Some of the information that is useful for classifying crowd

noise is contained in the temporal history of the acoustic

features, not just in the features themselves at single points

in time. During the feature selection process for the random

forest models, feature importance scores were averaged over

all half-second intervals.

TABLE IV. Descriptions of the three principal spectral shapes and nine

Gaussian clusters. Cluster descriptions come from Ref. 18.

Feature Description

PC 1 Principal spectral shape

comparable to Leq0.5 s

PC 2 Principal spectral shape resembling

crowd-produced sounds

PC 3 Principal spectral shape corresponding

to spectral peakedness

Green cluster Minimal noise

Pink cluster Music

Yellow cluster PA/individual noise

Red cluster PA/music

Black cluster Individual noise

Orange cluster Moderate crowd noise

Cyan cluster Music/moderate crowd noise

Blue cluster High crowd noise

Brown cluster Music/high crowd noise

FIG. 2. Panel (a) shows the absolute

value of the Pearson correlation coeffi-

cients between each pair of features for

the training data (Refs. 38 and 39). Panel

(b) shows the (signed) Pearson correla-

tion coefficient between the features

and each of the reactions studied in this

paper for the training data (Refs. 38

and 39). Note that the correlations for

individual crowd reactions include only

the data labeled or classified as any
reaction.
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The max_features hyperparameter defaults to the square

root of the number of features in scikit-learn. Because a

smaller max_features encourages more diverse trees, stabil-

izes rankings for weak features, and allows moderately

important features to be chosen more frequently,49 max_
features was set to log2. A grid search was performed to

optimize time_steps_before (between 0 and 25 half-seconds

with half-second increments) and max_samples (between

0.5 and 1.0 of the total number of data points with incre-

ments of 0.02), using forests of 1000 trees before beginning

each feature selection process.

The cost surfaces were flat, varying by less than 4% in

accuracy for all reactions, about half of which was from

going from time_steps_before¼ 0 to time_steps_before¼ 2.

Because the surfaces were so flat and a lower max_samples
value promotes diverse trees, the grid search space was

reduced to the values of max_samples between 0.60 and

0.80, with a 0.02 spacing, and the optimal values were cho-

sen. Optimal values for time_steps_before for each reaction

were 2 for any reaction, 12 for applause, 2 for chant, 3 for

cheer, and 4 for distraction noise. For applause, the cost

steadily improved for longer temporal histories (increased

time_steps_before), while the costs for the other three reac-

tions plateaued or decreased slightly. After optimizing over

time_steps_before and max_samples, the random forests

were tested with different forest sizes from 500 to 10 000 in

increments of 500. The accuracy of the model varied little

(less than 0.5%) between 3000 and 10 000 trees in every

case, so 3000 trees were used to lower computational costs.

E. Feature selection methods

Five methods for feature selection are considered here.

Four methods are examples of greedy algorithms51 (i.e., fea-

tures are removed one at a time based on which has the least

predictive impact according to some metric). The fifth method

is based on LASSO regression and is not a greedy algorithm.

The first greedy feature selection method uses MDA to

determine feature importance. MDA is calculated by first train-

ing a model (with accuracy f0Þ on a set of N features.

Additional models are then trained on every possible subset

of features of size N � 1 (denote their accuracies by fi; i
2 1; 2;…;Nf g; where i is the index of the missing feature).

The feature i that minimizes the mean decrease in accuracy

(given by f0 � fiÞ is then dropped, and the process is repeated.

In the most common form of MDA, only one model is trained

at each step and the model is validated on the data with values

of the i-th feature randomly permuted.40 Although this form is

much cheaper computationally, it has been criticized by Ref.

45 because it often forces the model to extrapolate, so it is

avoided here, and instead, a separate model is trained on each

feature subset before choosing which feature to drop.

The other three greedy feature selection methods in this

paper use variations on the Gini feature importance metric,

which is commonly used for both building random forests

and measuring feature importance. References 40, 41, 47,

and 52 describe the Gini feature importance metric and its

computation. Although widely used, the Gini importance

metric has two well-known flaws. The first is that high-

cardinality features are often favored over low-cardinality

features.53,54 This is not an issue in this study because all the

features are continuous variables. The second is that while it

performs well at choosing informative features, it often

favors correlated (i.e., redundant) features.46 To address

this, a variation of the Gini feature importance metric was

proposed by Ref. 42 that explicitly penalizes correlated fea-

tures. In this variation, for each feature xi; the most corre-

lated feature, xcorr; is identified. If the Gini importance of xi
is greater than that of xcorr; the feature importance is

unchanged. Otherwise, the Gini importance of xi is reduced
by a factor of (1 � corrmax), where corrmax is the correlation

between xi and xcorr. In this study, two correlation metrics

are used: (1) the Pearson correlation coefficient, which mea-

sures linear correlations; and (2) the Spearman correlation

coefficient, which measures rank-based correlations.38,39

These three variants on the Gini feature importance metric

will be referred to as “Gini” (no correlation penalty), “Gini–

Pearson,” and “Gini–Spearman” feature importance.

The fifth feature selection method is LASSO regression

using a logistic regression model class.55 In this method, the

parameters associated with each feature in a logistic regres-

sion model are progressively pushed to zero as the strength of

a one-norm regularization penalty term is increased. In this

paper, the regularization penalty was increased by increments

of 0.5. The features whose parameters remain non-zero the

longest are considered the most useful for making predictions.

Unlike the other four feature selection methods, LASSO

regression is not a greedy method, and as such, eliminated

features may reappear as the selection process progresses.

F. Feature selection pipeline

Figure 1(d) illustrates the feature selection process.

First, a random forest model was trained on the whole data-

set to distinguish between crowd reactions and non-crowd

reactions (“Initial model”). The hyperparameters time_
steps_before and max_samples were then tuned. These

hyperparameters are discussed in detail in Sec. II D. This

random forest model was then feature-reduced until model

accuracy decreased significantly. (The resulting model

had two features, the Leq0.5 s and PC 2, and is described

further in Sec. III A.) The hyperparameters time_steps_be-
fore and max_samples were then retuned. This reduced

model was run on all available data D, resulting in a sub-

set, Dclassified; consisting of data that were classified by the

model as containing a reaction. Another subset of D was

Dlabeled; which consisted of data labeled as any reaction
(i.e., data were labeled as either applause, chant, cheer,
distraction noise, or other reactions). The set of data

Dall reactions ¼ Dclassified [ Dlabeled was used for training, test-

ing, and validating binary classifiers (random forest or

LASSO regression) that distinguished applause, chant,
cheer, or distraction noise from all other data in Dall reactions;
as indicated by Fig. 3(a).

J. Acoust. Soc. Am. 158 (4), October 2025 Cutler et al. 3461

https://doi.org/10.1121/10.0039709

 27 O
ctober 2025 03:33:43

https://doi.org/10.1121/10.0039709


The hyperparameters time_steps_before and max_samples
were tuned once for each of the classifiers used to distinguish

between reactions in Dall reactions before beginning feature selec-

tion (see Sec. IID). Hyperparameters were never retuned

during feature selection. After feature selection was performed

on the models to distinguish between reactions, the hyperpara-

meter time_steps_before was retuned to compare the optimal

hyperparameter values before and after feature selection.

For every classification task in this pipeline (to create

Dclassified as well as to separate out individual reactions from

Dall reactionsÞ; several procedures were performed. First, larger

classes were undersampled randomly to create balanced

training, validation, and testing sets. Second, the random

forest hyperparameters were tuned once for the full feature

set (i.e., before feature selection).

As suggested by its name, random forest performance is

slightly affected by which random seed is used.44,56

Although these random fluctuations in performance are gen-

erally small and decrease with larger forest sizes, multiple

random seeds were used in the tree-building algorithm at

each step in the feature selection process to investigate the

consistency of the results. For the three Gini-based methods,

50 random seeds were used at each step in the feature selec-

tion process before dropping the feature with the lowest

average importance. The same was done with the MDA

method, but with only 20 random seeds since the computa-

tional cost of feature selection was so much higher. LASSO

methods involve a convex optimization problem, which has

a unique solution and does not depend on random seed.

III. RESULTS

A. Detecting any crowd reactions

The accuracies of the any reaction binary classifiers as

a function of the number of features remaining are shown

in Fig. 4, while the top five features are given in order in

Table V. The top five features are those that are cut from the

model last during the feature selection process. Features

were removed one at a time moving left to right in Fig. 4, so

the right side of Fig. 4 illustrates these top features’ impact

on accuracy as each is cut. This figure shows that the any
reaction classifier only requires information from a few top

features before the classification accuracy begins to decrease

significantly. This could be because other features contain

irrelevant or redundant information, such as spectral crest,

which is irrelevant, or PC 1, which is redundant with Leq0.5 s
(see Fig. 2). If they contain redundant information, then other

subsets of features could be chosen with similar predictive

power.

PC 2 was consistently the highest-ranked feature across

all feature selection methods, except LASSO regression,

which chose it as the second-most-important feature. PC 2

was found in Ref. 18 to distinguish between data points with

more high- or low-frequency content in a dataset of men’s

and women’s basketball and volleyball games. Figure 5(b)

shows the effect of PC 2 on the average 1/3-octave band

spectrum. The Leq0.5 s was the second-highest-ranked fea-

ture in four out of the five feature selection methods. Taken

together, any reaction generally corresponds to points that

have both more high- than low-frequency content and are

acoustically intense, as seen in Fig. 5(a), which shows how

the density of PC 2 and Leq0.5 s varies for any reaction (red)

and no reaction (black).

As stated in Sec. II F, a reduced feature model separated

crowd noise (crowd reactions) from other sounds before pro-

ceeding to the next part of the study. Only the two features

PC 2 andLeq0.5 s were used in constructing this model.

B. Distinguishing specific reactions

The two most useful features (PC 2 and the Leq0.5 s) for

identifying any reaction were used to train and tune a ran-

dom forest classifier. This classifier was used to create the

Dall reactions dataset described in Sec. II F. These data were

FIG. 3. (a) Process for obtaining reduced models for each single reaction classifier (e.g., applause, cheer, etc.). The output of the any reaction reduced

model, Dclassified; is combined with human-labeled Dlabeled to train the initial model for each of the five single reaction classifiers. (b) Feature selection pro-

cess, identical to that in Fig. 1.
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then used for training classifiers to distinguish individual

crowd reactions from other crowd reactions within the any
reaction dataset. Feature selection was performed on these

classifiers and all features. A summary of the top features

and optimized hyperparameters chosen by the feature selec-

tion methods is given in Table VI. More details are provided

in Sec. IV.

1. Optimal number of features and feature rankings

The accuracy of the binary classifiers for specific crowd

reactions as a function of number of features is shown in

Fig. 6. Similar to the any reaction classifier, the number of

features can be significantly reduced without changing the

model accuracies. Transparent bands around the accuracy

curves show the minimum and maximum accuracies after

running the feature selection process 20–50 times with dif-

ferent random seeds. The LASSO regression method is

deterministic, so its accuracy does not vary with the random

seed, but increasing the regularization strength can cause it

to reselect features that it had previously dropped, which is

why the number of features sometimes increases.

Although the exact number of features to which the

dataset can be reduced is somewhat subjective and depends

on the feature selection method, most of the accuracies are

relatively flat or increase slightly until two to eight features

remain. Therefore, for a particular classifier, most of the fea-

tures are either irrelevant or redundant. Thus, if crowd reac-

tion classification rates are to be improved significantly,

other model classes or features should be used.

Feature selection methods that produce more accurate

models with fewer features are assumed to have chosen bet-

ter feature subsets. Consensus in selected features for well-

performing models also indicates that the selected features

are good predictors. This is explored more in Sec. IV.

2. Optimal time_steps_before

After feature selection, the hyperparameter time_steps_
before was tuned again for the model, using the reduced fea-

ture set (see Fig. 7 and Sec. II D). Plots were made using the

feature sets found by the Gini–Pearson method with the top

three, four, four, and two features for applause, chant,
cheer, and distraction noise, respectively, because the clas-

sification accuracies began to decrease more rapidly after

these values.

The accuracies of cheer and distraction noise level out,
while the accuracy of chant decreases after four previous

half-second time steps are used. The models detecting

applause continue to improve as they use more previous

half-seconds. For the chant classifier with four features, the

effect of including the feature temporal history of several

time steps increased the accuracy more than 12%. Note that

the optimal numbers of previous half-seconds found before

feature selection were 12, 2, 3, and 4 for applause, chant,
cheer, and distraction noise, respectively. The autocorrela-

tion function for each feature up to 50 previous half-seconds

was inspected in an attempt to explain this, but no correla-

tions to optimal feature temporal history lengths were

found.

To better understand the importance of feature temporal

histories, the hyperparameter time_steps_before was also

tuned with logistic regression models trained on all 27 fea-

tures. The optimal numbers of time steps for each classifier

were close to those found for the random forest, as seen in

Table VII. The exception was cheer, which required a much

longer temporal history than the random forest. LASSO

regression was run on these expanded feature sets to gain

insights into the role of each feature’s temporal history.

FIG. 4. Accuracy of the any reaction classifier models on the testing data as

the number of features decreases. The two highest-ranked features in every

random forest-based model were PC 2 and the Leq0.5 s. The shaded area

around each line indicates the minimum and maximum accuracies across

various random seeds, while the bold line indicates the mean. The minimum

and maximum accuracies are difficult to see because they are close to the

mean.

TABLE V. The top five features for identifying crowd noise in order as ranked by each of the feature selection methods, given in order of most important to

least important.

Gini Gini–Pearson Gini–Spearman MDA LASSO

PC 2 PC 2 PC 2 PC 2 Blue

Leq0.5 s Leq0.5 s Leq0.5 s Leq0.5 s PC 2

Blue Cyan Spectral decrease Spectral entropy Brown

Brown Brown Zero-crossing rate Red Leq0.5 s

Zero-crossing rate Zero-crossing rate Harmonic ratio Spectral flatness Zero-crossing rate
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For applause, LASSO dropped intermediate half-

seconds of the blue (high crowd involvement) and black

(individual noise) cluster membership probability features18

but ranked their oldest time steps highly. This reflects the

physical context—at a basketball game, cheering often

decays into applause instead of ending abruptly.

For chant, LASSO ranked the temporal history of the

orange cluster membership probability feature (moderate

crowd noise) as more useful than any other feature at any

half-second time step. This is consistent with the physical

context as well. Chanting is distinguished by a repeating

pattern in a period of a few seconds.

IV. DISCUSSION

In this section, physical interpretations are given for the

results to draw out the connection between explainable

machine learning and the subsets of features that were

selected. The characteristics of the feature subsets are also

analyzed for how they affect the number of previous half-

second data points that optimize each model’s performance.

A. Evaluation of features and time_steps_before
selected for classifying reactions

1. Applause

Applause is generally characterized by collective clap-

ping throughout the crowd. It is not rhythmically coordi-

nated, but is sometimes accompanied by cheering. The most

important features for classifying applause are shown in

Table VIII. The top feature for applause was consistently

spectral flatness, which is often reported in decibels.33 Once

converted to decibels, it takes on values from negative infin-

ity (a pure tone) to zero (white noise) and represents the flat-

ness of the linear spectrum.

Individual human clapping behavior follows several dif-

ferent modes, and each mode has a broad acoustic spectrum

with different peaks57 so that the overall effect of applause—
the combined nonrhythmic clapping of many people—is

broadband noise. This causes the distribution of spectral flat-

ness for applause to have a higher mean than the other crowd

reactions, as seen in Fig. 8(a). The second peak in the chant
distribution to the right of applause can be explained by inter-

mittent clapping during chants, which was verified by listening

to sections of the game with chanting and comparing with plots

of the spectral flatness. Some of the overlap between applause
and cheer can be explained by instances where there is both

cheer and applause. This overlap is also shown in Fig. 8(a).
The other feature that appeared in the top two features

in two of the selection methods for distinguishing applause
was the blue cluster membership probability.18 The blue

cluster is highly correlated with PC 2 [Fig. 2(a)], another

highly ranked feature. The blue cluster (and to a lesser

degree, PC 2) is also highly correlated with distraction
noise, as seen in Fig. 2(b). Density plots of spectral flatness

against the blue cluster 13 steps before, 13 steps after, and

concurrently [Figs. 8(b)–8(d)] show that the temporal rela-

tionship between the two features is such that when identify-

ing applause, it is more useful to know the blue cluster

membership probability concurrent with or before spectral

flatness, rather than knowing the spectral flatness before the

blue cluster membership probability.

FIG. 5. Panel (a) shows a contour plot of the distribution of crowd reac-

tions, which can be distinguished from other noises using the Leq0.5 s as

well as a principal spectral shape (PC 2) (Ref. 18) used to distinguish

between sounds with high- and low-frequency content. For reference, the

effect of PC 2 on the average 1/3-octave band spectra for indoor sports is

shown in panel (b). The 62r2 lines show the spectrum with PC 2 coeffi-

cients chosen 2 standard deviations away from where PC 2 is zero.

TABLE VI. Top features and optimized parameter values for each classi-

fier, as chosen by the Gini–Pearson feature selection. All models had log2
max_features and 3000 trees.

Classifier Top features Optimized parameters

Any reaction PC 2

Leq0:5s

time_steps_before: 2

max_samples: 0.68

Applause Spectral flatness

Blue

Black

time_steps_before: 12
max_samples: 0.66

Chant Spectral flatness

Spectral decrease

Black

Yellow

time_steps_before: 2

max_samples: 0.66

Cheer Leq0:5 s
Spectral centroid

Brown

Cyan

time_steps_before: 3
max_samples: 0.74

Distraction noise Spectral entropy

Blue

time_steps_before: 4
max_samples: 0.7
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Applause often follows game events that are positive,

but not as significant, such as a turnover by the opposing

team. It also occurs as cheering dies down. Both cheer and
distraction noise (made by fans of the home team before an

opposing team turnover) are correlated with blue, so it is

possible that the classifiers detect applause not only by the

sound of applause itself, but also by the crowd reactions that

it commonly follows. Hence, spectral flatness and the blue

cluster membership probability are acoustic features that are

not only useful for machine learning, but are also connected

to the physical processes of applause and crowd sounds that

often precede applause. This also helps explain why the

classifier requires a higher time_steps_before to predict

applause than to predict the other three crowd reactions.

2. Chant

Chants are semi-organized rhythmic vocalizations that

are carried out by crowds in unison, sometimes interspersed

FIG. 6. The accuracy of binary classification models for specific crowd reactions as a function of the number of features. Transparent bands show the mini-

mum and maximum accuracies after running the process with 20–50 different random seeds. Bands in panels (b)–(d) are difficult to see because they tightly

follow the mean accuracy curves.

FIG. 7. The accuracy of crowd reaction classification models as a function

of time_steps_before using the reduced feature set found by the Gini–

Pearson feature selection method.

TABLE VII. The optimal number of previous time steps for logistic regres-

sion vs random forests (before feature selection).

Reaction Random forest Logistic regression

Any reaction 2 6

Applause 12 16

Chant 2 4

Cheer 3 25

Distraction noise 4 4
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with moments of rhythmic clapping. The top feature for

detecting chant was consistently spectral flatness, as seen in

Table IX.

As suggested in Sec. IVA1, spectral flatness increases

during clapping, and chants often include intermittent clap-

ping. Intermittent clapping can be seen by plotting spectral

flatness against itself 2 half-seconds before, as seen in Fig.

9. The peaks around (�22, �12) and (�12, �22) indicate

that over two time steps, the spectral flatness for chant is
likely to shift between two values, while it is not likely to

shift for other reactions. This was verified by comparing

recordings of chants to plots of the spectral flatness. Similar

distributions can be seen by looking at delays of 1, 3, and 4

half-seconds. This result is consistent with what was

observed in Sec. III B 2, which showed that classifiers

detecting chant improved by 12% when including several

previous half-seconds. The random forest is possibly look-

ing for a place where the spectral flatness switches between

these two values in the recent feature temporal history. This

also might explain why the LASSO logistic regression

model performed much worse than the random forest mod-

els, since the correlation for a feature that switches between

TABLE VIII. The top five features for distinguishing between applause and other crowd reactions as ranked by each of the feature selection methods, given

in order of most important to least important.

Gini Gini–Pearson Gini–Spearman MDA LASSO

Spectral flatness Spectral flatness Spectral flatness Spectral flatness Orange

Spectral entropy Blue PC 2 Blue Spectral entropy

Spectral roll-off point Black Zero-crossing rate Zero-crossing rate Spectral flatness

Spectral centroid Spectral decrease PC 1 Green Harmonic ratio

PC 3 Zero-crossing rate Spectral skewness Spectral roll-off point PC 2

FIG. 8. In panel (a), the distribution of spectral flatness for several crowd reactions is shown using a Gaussian kernel density estimate. Applause is often

accompanied by cheer, so the distributions for only applause and only cheer are shown, in addition to a distribution of half-seconds containing both cheer
and applause. In panels (b)–(d), the distribution of spectral flatness and blue cluster membership probability is shown for applause and other reactions. A
time delay for the feature is introduced in panels (b) and (d) for blue and spectral flatness, respectively, to show how the features have a temporal correlation

when blue is delayed 13 half-seconds or when neither feature is delayed, but not when spectral flatness is delayed 13 half-seconds.
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two values in time becomes nonlinear. Once again, there is a

strong connection between the acoustic feature of spectral

flatness and the acoustic properties of applause.
Other than spectral flatness, chant has the strongest

Pearson correlations with orange, spectral spread, spectral

entropy, spectral crest, and PC 3. Interestingly, three of

these five features appear in the top five features as ranked

by LASSO, even though other models performed signifi-

cantly better than LASSO. This further suggests that the

temporal relationships between variables are more important

than correlations between features and reactions.

Spectral decrease appears three times in the top five fea-

tures and twice as the second-most-important feature across

all models. Of all the features from the MATLAB acoustic fea-

ture extractor, it was the least correlated with other features.

This might have in part been due to the feature’s hyperbolic

arcsine transformation, but the other feature that had a

hyperbolic arcsine transformation (spectral skewness) was

highly correlated with several other features. Spectral

decrease measures the slope of the spectrum (like spectral

slope), but emphasizes lower frequencies more. These lower

frequencies may span the voice fundamental frequencies of

individuals chanting in the crowd. During joint speech

activities, such as chant, individuals tend to converge

toward a shared fundamental frequency,58,59 which may

have been what increased this feature’s importance.

3. Cheer

Cheer is generally characterized by loud, positive

vocalizations with little rhythmic structure and intermittent

coordination between individuals in the crowd. The most

important feature appeared to be the Leq0.5 s. The spectral

centroid was also ranked highly by two high-performing

feature selection methods (see Table X). Out of all the

crowd reactions, cheer has the most acoustic energy, which

explains why the Leq0.5 s might be a useful feature for iden-

tifying cheer. It also has a spectral centroid that is shifted to

higher frequencies because cheering is generally a happy

reaction to a game event. Happy/positive emotions tend to

be vocalized with higher pitches (higher fundamental fre-

quencies), and the constriction of the vocal tract also height-

ens the frequencies in the first two formants compared to

neutral or negative emotions.60 The relationship between

spectral centroid and the Leq0.5 s for cheer appears in Fig. 10

and shows some of the simple, though incomplete, logic in

feature selection behind the complicated random forest

model used to identify cheer.

4. Distraction noise

Distraction noise is commonly characterized by a

crowd vocalizing in unison, often unifying toward a single

long tone with little rhythmic variation. It often occurs dur-

ing a free-throw or during play when the other team has pos-

session of the ball, when other sounds (like the band or PA

system) are not present. The distraction noise classifier had

the highest accuracy and the most agreement among the fea-

ture selection methods, with only MDA and LASSO not

ranking the blue cluster membership probability as the sec-

ond-most-important feature, as seen in Table XI. MDA

ranked the blue cluster membership probability as the least

important feature, and this could be attributed to the high

variance in individual feature rankings in the early stages of

MDA. The blue cluster was identified in Ref. 18 to be highly

correlated with distraction noise, and this is further con-

firmed by Fig. 2. The average 1/3-octave half-second spec-

trum for the blue cluster in shown in Fig. 11(b). The

spectrum has large factors of the first and second principal

spectral shapes (PC 1 and PC 2),18 which correspond to

loud, crowd-dominated sounds.

TABLE IX. The top five features for distinguishing between chant and other crowd reactions as ranked by each of the feature selection methods, given in

order of most important to least important.

Gini Gini–Pearson Gini–Spearman MDA LASSO

Spectral flatness Spectral flatness Spectral flatness Spectral flatness Orange

PC 3 Spectral decrease Spectral decrease Spectral centroid PC 3

Spectral centroid Black PC 2 Pink Spectral crest

Spectral crest Yellow Leq0.5 s Spectral entropy Yellow

Spectral decrease Orange PC 3 Harmonic ratio Pink

FIG. 9. The distribution of chant and other reactions across the feature

spectral flatness and the spectral flatness 2 half-seconds before. The peaks

near (�12, �22) and (�22, �12) show that one of the characteristics of

chant is a switching between high and low spectral flatness on short time

intervals. A similar shape can be seen by observing the distribution of chant
over spectral flatness and spectral flatness from 3 or 4 half-second time

steps before.
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Spectral entropy was the other highly ranked feature for

classifying distraction noise. It measures the entropy of the

linear power spectrum by treating the spectrum as a distribu-

tion. Distraction noise is the most tonal of crowd reactions,

and tonal sounds tend to have lower spectral entropy. The

distribution of distraction noise and other reactions can be

seen in Fig. 11, which shows a fairly clear distinction

between the distribution of distraction noise and other

crowd reactions. Hence, the feature selection process

revealed that distraction noise can be identified by machine

learning models using features that correspond to tonality

with a specific spectral shape corresponding to loud sounds

made by crowds.

B. Performance of feature selection methods
on crowd noise data

The random forest-based feature selection methods

used in this paper generally had good consensus on what the

most important feature is, and reasonable candidates for

the second-best feature could often be found by looking

at the highest-ranked features from all the methods. As

expected, a lot of the top features found by the Gini impor-

tance metric were highly correlated with each other. MDA

had the highest variance in its accuracy across the feature

selection process. This might have been mitigated by using

more random seeds in the feature selection process,

especially during the first few steps, where the process

appeared to be more random. However, this would increase

the cost of an already expensive computation. LASSO logis-

tic regression often had lower accuracy than the other meth-

ods, which shows that the temporal aspect of crowd noise

may be more important than finding features that have high

linear correlations with crowd reactions. An alternative

explanation is random forests are better at learning nonlinear

relationships among features and labels.

Models found using the Gini feature importance metric

with a correlation penalty had best overall accuracy, with

the Pearson correlation penalty performing slightly better

than the Spearman correlation penalty. The correlation pen-

alty method consistently found good candidates for the two

most relevant features for classifying each crowd reaction,

as measured by the model accuracy. This might have been

because it was less dependent on the random seed and

encouraged a weakly correlated feature subset to be chosen.

Although models produced using Gini feature importance

with a correlation penalty had slightly higher accuracy on

average than models produced with other importance met-

rics, more research would need to be done to determine

whether this generalizes to other machine learning datasets

and problems.

C. Limitations of the study

Reverberation times in college basketball stadiums vary

as much as 3 s.61 Because features in this study were calcu-

lated every half-second, sound pressure features for the

same crowd reactions may look significantly different at

venues with different reverberation times. This may impact

the models’ ability to predict crowd reactions. If these

models are to be used in situations other than the basketball

stadium considered in this study, such as an outdoor football

stadium, the impact of reverberation times must be

understood.

Because data were labeled by multiple human labelers,

the reported accuracy of each model is limited by the consis-

tency between labelers. One particularly difficult task was

distinguishing between crowd noise and noise from individ-

uals to decide when a crowd reaction begins and ends.

Though labelers met regularly to coordinate on questions

like these, human labeling inevitably introduced ambiguity

into labeled data for each reaction. While labelers did meet

periodically to ensure similar labeling decisions were being

TABLE X. The top five features for distinguishing between cheer and other crowd reactions as ranked by each of the feature selection methods, given in

order of most important to least important.

Gini Gini–Pearson Gini–Spearman MDA LASSO

Leq0.5 s Leq0.5 s Leq0.5 s Spectral flatness Leq0.5 s

Spectral entropy Spectral centroid Spectral centroid PC 3 Brown

Short time energy Brown Spectral decrease Spectral flux PC 2

Brown Cyan Spectral skewness Pink Harmonic ratio

Spectral centroid Red PC 3 Blue PC 1

FIG. 10. The distribution of Leq0.5 s and spectral centroid for cheer and

other crowd reactions. Cheer has a higher Leq0.5 s and spectral centroid

than other reactions.
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made, this consistency between labelers was not systemati-

cally checked.

Because cheer often turns into applause as the crowd

calms down, labels for cheer and applause frequently over-

lapped. As a result, the features selected for identifying

cheer may be influenced by the overlapping applause, and
vice versa. Data with overlapping labels represent 17.5% of

data labeled cheer and 31.7% of data labeled applause.
Despite this overlap, the best feature selection method,

Gini–Pearson, did not choose any of the same top five fea-

tures for cheer and applause.

V. CONCLUSION

This work identified several acoustic features that are

relevant for classifying crowd reactions at collegiate men’s

basketball games. Specifically, the Leq0.5 s and a principal

spectral shape found in Ref. 18 relating to the amount of

high-frequency content in half-second 1/3-octave band spec-

tra (abbreviated as PC 2 in this paper) are consistently

ranked as important features for identifying any crowd reac-

tion, while features relating to tonality, specific spectral

shapes, and sound level are useful for distinguishing

between crowd reactions. These features often have explain-

able connections to physical phenomena such as clapping,

loud crowds, and the tonality of certain sounds.

The importance of feature temporal histories in crowd

reaction classification was also quantified. For example,

chant classification accuracy improved by 12% when the

current and previous 4 half-second steps were included in

the feature set to identify intermittent clapping, among other

temporal patterns. Applause can be identified by transitions

from spectral shapes relating to distraction noise or cheer to
high spectral flatness, which relates to broadband clapping

noise.

Of all the reduced feature models generated, the two

most promising models were derived from the Gini feature

importance metrics with correlation penalties. These models

are consistently better classifiers on this dataset than the

other models with similarly small feature vectors.

The acoustic features identified here can be used as a

starting point for future research. These features may be

used with the labeled crowd responses with different

machine learning algorithms in an effort to achieve higher

classification accuracies. Additionally, although this study

identifies that several half-seconds of feature temporal his-

tory improves model performance for identifying most

crowd reactions, the exact relationship between various fea-

tures and crowd reactions and the evolution of those rela-

tionships through time still remain unclear. Further analysis

of these features (e.g., by allowing variations in the number

of previous half-seconds of feature temporal history on a

per-feature basis) may yield useful insights into transitions

between different forms of crowd behavior. It may also be

that different acoustic features are important for different

sporting events, depending on the physical properties of the

venue and the size and demographics of the crowd, as well

as behavioral norms around acoustic crowd reactions for

different sports. The features identified here can guide the

TABLE XI. The top five features for distinguishing between distraction noise and other crowd reactions as ranked by each of the feature selection methods,

given in order of most important to least important.

Gini Gini–Pearson Gini–Spearman MDA LASSO

Spectral entropy Spectral entropy Spectral entropy Black Blue

Blue Blue Blue Spectral entropy Harmonic ratio

Harmonic ratio Black Black Leq0.5 s PC 1

Black Orange Spectral decrease PC 3 Pink

Spectral flatness Spectral decrease Orange Spectral crest Spectral crest

FIG. 11. Distraction noise is the most easily identified of crowd reactions.

Panel (a) shows the distribution of distraction noise and other reactions
across the features blue cluster membership probabilities and spectral

entropy. Panel (b) shows the spectral shape of the blue cluster centroid,

which is highly correlated with distraction noise and contains much more

high-frequency content than the average 1/3-octave spectrum for indoor

sporting events, which is shown for reference.
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selection of a reasonable starting feature set or identify fea-

tures that may improve models across different sports.

Improvements in the ability to classify crowd reactions in a

context-specific setting—such as sporting events, which

come with certain expected norms of acoustic behavior from

crowds—may lay the groundwork for identifying important

acoustic features and building models to classify these fea-

tures for different types of audience or within less-scripted

crowd behaviors. Such models can potentially inform ven-

ues on the sentiment/mood of a crowd, quantify the value of

individual players for name, image, and likeness contracts,

or aid decision making for emergency response.

In conclusion, this work identified acoustic features that

are particularly relevant for classifying crowd behavior at

basketball games. Of the feature selection methods used in

this study, those using Gini feature importance metrics with

correlation penalties yielded the most promising results.

This paper also showed that incorporating acoustic informa-

tion about previous crowd responses can help classify cur-

rent crowd reactions. This work provides a foundation for

the classification of reactions within crowd noise at other

events.
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