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Explainable machine learning models for classifying reactions
within crowd noise during men’s collegiate basketball games

Mitchell C. Cutler," (3 Jason Bickmore,! Mark K. Transtrum, ¢ Katrina Pedersen,’ (% Shannon Proksch,??
Eli Farrer," and Kent Gee"®

'Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

’Department of Psychology, Augustana University, Sioux Falls, South Dakota 57197, USA

3Program in Neuroscience, Center for Interdisciplinary Studies, Augustana University, Sioux Falls, South Dakota 57197, USA

ABSTRACT:

Crowds at collegiate basketball games react acoustically to events on the court in many ways, including applauding,
chanting, cheering, and making distracting noises. Acoustic features can be extracted from recordings of crowds at
basketball games to train machine learning models to classify crowd reactions. Such models may help identify crowd
mood, which could help players secure fair contracts, venues refine fan experience, and safety personnel improve
emergency response services or to minimize conflict in policing. By exposing the key features in these models,
feature selection highlights physical insights about crowd noise, reduces computational costs, and often improves
model performance. Feature selection is performed using random forests and least absolute shrinkage and selection
operator logistic regression to identify the most useful acoustic features for identifying and classifying crowd
reactions. The importance of including short-term feature temporal histories in the feature vector is also evaluated.
Features related to specific 1/3-octave band shapes, sound level, and tonality are highly relevant for classifying crowd
reactions. Additionally, the inclusion of feature temporal histories can increase classifier accuracies by up to 12%.
Interestingly, some features are better predictors of future crowd reactions than current reactions. Reduced feature

sets are human-interpretable on a case-by-case basis for the crowd reactions they predict.
© 2025 Acoustical Society of America. https://doi.org/10.1121/10.0039709

(Received 7 November 2024; revised 9 October 2025; accepted 9 October 2025; published online 24 October 2025)

[Editor: James F. Lynch]

I. INTRODUCTION

Collegiate men’s basketball games have a complex
mixture of sound sources, including the public address (PA)
system, music from live bands, sounds from the officiating
crew, and various unified sounds from the crowd in response
to events on the court, referred to as “crowd reactions.”
Classifying crowd reactions may provide means to quantify
the entertainment value added by individual athletes' (e.g.,
interest, attendance, etc.) through direct, real-time crowd
engagement at sporting event venues, as opposed to indirect
engagements through social media.”® In light of recent
developments in name, image, and likeness contracts in
intercollegiate sports,*® there may be many stakeholders’
interested in this quantitative approach. Identifying which
acoustic features are most useful for classifying acoustic
crowd reactions and why they are important may also lead
to insights into the collective behavior of crowds and be of
interest to social psychology and the cognitive sciences.®’
Across other disciplines, acoustic monitoring of crowd reac-
tions may help identify sentiment and mood changes'® of a
crowd and improve the ability to advise emergency response
teams' ' or to minimize conflict in policing.'?

YEmail: kentgee@byu.edu
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Previous analyses of crowd noise have studied synchro-
nization of voices and sound levels,13 14 the effects of crowd
noise on athletes,'>'® identification of key moments in
sporting events,'” unsupervised classifications of acoustic
spectra,'®° and supervised classification of general senti-
ment of crowds using neural networks and spectrograms. '’

In this paper, machine learning models are built on the
features described in Ref. 18 to classify crowd reactions at
men’s basketball games into one of four classes: applause,
chant, cheer, or distraction noise. These classes are further
defined in Ref. 19. The classification model developed in
this study is composed of several binary classification mod-
els. The first one separates instances of sounds produced by
the crowd (crowd noise) from instances without crowd
sounds present (non-crowd noise), which may include
sounds produced by individuals, music, the PA system, and
the officiating crew. Instances of crowd noise may also
include non-crowd noise (e.g., a buzzer going off while a
crowd cheers). Other classifiers then separate anything
labeled or classified as crowd noise into the four classes of
reactions (i.e., there is one binary classifier for each class).
Feature selection is performed via several methods to reduce
the feature sets for all classifiers. This paper investigates
why some features are more useful than others for classify-
ing crowd reactions and examines and explains the rele-
vance of the temporal histories of the most informative

© 2025 Acoustical Society of America
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features. Feature temporal histories increase in importance
for some feature sets, and a few features relating to tonality,
specific spectral shapes, and intensity have clear connections
to physical phenomena and are useful in classifying several
crowd reactions in the noisy setting of a basketball game.

A. Motivation for feature selection

Feature selection is used to improve model interpret-
ability,21 minimize the curse of dimensionality,22 and
reduce computational and data requirements by eliminat-
ing uninformative features. In some cases, it can also
improve model performance. Unlike feature extraction
methods, which perform dimension-reducing transforma-
tions on the feature set, feature selection methods choose a
subset of the original features, which preserves the fea-
tures’ interpretability.”® Ideally, the reduced feature set
should contain a small number of features that are informa-
tive, interpretable, and relatively independent of each
other.?* Information provided by independent acoustic fea-
tures is measured in several ways, such as by calculating
each feature’s correlation with crowd reactions or consid-
ering the accuracy of machine learning models that use
these features to classify crowd reactions. Because the
meaning of each feature remains the same during the pro-
cess, feature selection is closely related to explainable arti-
ficial intelligence (AI),”> which attempts to find the
underlying rules behind complicated models. In this paper,
various feature selection techniques are used to shed light
on which features are useful for classifying acoustic crowd
reactions. These techniques are mean decrease in accuracy
(MDA), the Gini feature importance metric, the Gini fea-
ture importance metric with two kinds of penalties, and the
least absolute shrinkage and selection operator (LASSO).
Where possible, the selected features are linked to the
physical characteristics of the crowd noise.

Il. METHODS

In this section, acoustic data collection and preparation
methods are explained, as well as machine learning feature
generation. Correlations between features and the signifi-
cance of these correlations in this project are also explained.
We then introduce the model and its hyperparameters,
review the five methods of feature selection used in this
paper, and finally outline our approach to feature selection
and hyperparameter tuning. Figure 1 provides a high-level
sketch of the entire process, including data processing, fea-
ture generation, and feature selection.

A. Dataset

The 17.21h of recordings used in this study came
from ten Brigham Young University (BYU) men’s basket-
ball home games during the 2017-2018 and 2018-2019
seasons, with audiences ranging from 10179 to 16456
attendees, as reported by the venue.”® All games were
played in the same venue. Although reverberation times
may have varied with attendance, reverberation time was

J. Acoust. Soc. Am. 158 (4), October 2025

not considered in this study. Each recording was made
with a single microphone placed far enough from the
crowd that no individual voice dominated. Pressure was
sampled at 25kHz or higher with a 24-bit system and a
type 1, 12.7mm diameter free-field microphone.'® The
average 1/3-octave band spectra of all ten games shared
the same shape and were within 10dB at all frequencies.
Despite differences in attendance, the unweighted half-
second equivalent continuous sound level (Leqq ss) distri-
butions were similar for all games, with an L5y exceedance
level of 91.7 dB."® The data were split by game into train-
ing, validation, and holdout test sets. While splitting the
ten games into these datasets was not strictly random,
games were divided with no pattern other than achieving
desirable proportions (60-20-20 split). Details about these
partitions in the data can be seen in Table I. Because the
machine learning models created in this study will be
applied to games outside of the dataset presented here,
each game used in this study was assigned to one dataset
(training, testing, or validation) to give a more robust and
conservative estimate of the model’s transferability.
Because the crowd is the same throughout each game,
splitting the data within a game might lead to false
increases in model improvement. Validation data were
used to tune model hyperparameters, and testing data were
used to measure model accuracy during feature selection.
Seven human labelers listened to game recordings and
manually labeled ten crowd reactions: singing, silence,
cheer, positive chant, negative chant, applause, distraction
noise, angry noise, disappointment, and surprise. These
labelers met and agreed on the meaning of each of the ten
labels. Each whole game was labeled by a single labeler.
Some labelers labeled multiple games. To label a game,
the labeler listened to the game audio and recorded the
timestamps at which each reaction started and stopped in a
simple labeling interface or a .csv file. Some games were
labeled with the help of game footage to supplement the
audio. While labelers met periodically to ensure labels
were applied consistently, the consistency of human label-
ing was not systematically checked. The labeling process
and seven of the ten crowd reaction labels are described in
more detail in Ref. 19. This paper focuses on four classes
of reactions: applause, chanting (positive chant and nega-
tive chant combined), cheering, and distraction noise.
Additionally, instances where any crowd reaction label is
active are separated from those where no label is active by
the labels any reaction and no reaction, respectively.
Human labelers noted other crowd reactions, such as angry
noise and singing, but these labels are only included within
the crowd reaction class of any reaction and not as their
own classes because these reactions occur less frequently.
Some crowd reactions overlap frequently, such as applause
and cheer. Most crowd reactions do not have definite start-
ing or stopping times, so some ambiguities are present in
the labeling of the games, especially at the beginnings and
ends of reactions. All unlabeled data are presumed not to
contain any sort of crowd reaction. The percentage of data
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FIG. 1. (a) Overview of process from waveform to reduced model for any reaction classifier. (b) Feature generation process. (c) Creating the three principal
components and nine clusters used in feature generation. (d) Feature selection process, including hyperparameter tuning, feature selection, and retuning.
Hyperparameters were tuned with the validation data, and feature selection was performed with the testing data.

TABLE I. Splitting of the data into training, validation, and testing sets.

Set No. of games % of data Total length (h)
Training 6 57.14 9.84
Validation 2 21.90 3.77
Testing 2 20.95 3.61

3458  J. Acoust. Soc. Am. 158 (4), October 2025

labeled as each reaction can be seen in Table II. There are
differences in the proportion of classes in the training, vali-
dation, and testing sets because game events differ
between games, as well as the makeup and behavior of the
crowd (see Table II). This presents an opportunity to col-
lect more data in the future to balance out the training, test-
ing, and validation datasets.

Cutler et al.
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TABLE II. Percentage of data, total length, and number of segments
labeled as each reaction. A segment is a continuous portion of game audio.

% of data, total length (h), no. of segments®

Reaction Training Validation Testing
Applause 5.97,0.59, 394 2.17,0.08, 56 1.33,0.05, 41
Chant 5.85,0.58, 265 4.19,0.16, 86 4.50,0.16, 89
Cheer 8.11, 0.8, 464 7.56,0.29,174  6.90,0.25, 151
Distraction noise 10.2, 1.01, 365 8.62,0.33,128  6.79,0.25, 105
Any reaction 31.8, 3.12, 1247 27.1,1.02, 470 20.7, 0.75, 390
Unlabeled 68.2,6.71, N/A  729,2.75,N/A  79.3,2.86, N/A

“N/A, not applicable.

B. Feature generation

The 27 features that are examined in this study were
processed on half-second intervals. Coarser temporal resolu-
tions cannot reasonably capture subtle dynamic changes in
crowd reactions, but finer temporal resolutions were empiri-
cally found to not contain additional spectral information
for 1/3-octave bands.'®'? Fourteen of the features come
from maTLAB’s?’ Audio Feature Extractor,”®?’ using a line-
arly spaced power spectrum from 50 to 10000 Hz with 2 Hz
bins. Pitch®® was not included because it is only valid
when the acoustic signal is harmonic. Some features are
transformed to make the units reflect logarithmic scaling
in frequency and power. Features with values on a
logarithmic-like scale, but with positive and negative values,
are processed using hyperbolic arcsines. The extracted
features with their transformation and brief descriptions are
given in Table III (see Refs. 31-36).

Another feature, the unweighted half-second equivalent
continuous sound level, or Leqgss, is calculated directly
from the audio pressure waveform. The remaining 12 fea-
tures come from Ref. 18, including the three principal com-
ponents shown in Fig. 1(c) and described in Table IV
(referred to as PC 1, PC 2, and PC 3). These principal com-
ponents come from a principal component analysis®’ per-
formed on half-second intervals of 1/3-octave spectral bands

[dB(z) re 20 pPa] ranging from 50 to 10000 Hz from a data-
set of 30 men’s and women’s intercollegiate basketball and
volleyball games. Because the data are 1/3-octave band
spectra, these principal components are referred to as princi-
pal spectral shapes. Although 24 of these principal spectral
shapes were found in Ref. 18, only the first three are used
here since they account for 87.5% of the variance in the
dataset from which they were calculated. The first of these
principal spectral shapes is comparable to Leqg ss. The sec-
ond corresponds to mid-range frequencies, peaking just
under 1kHz, corresponding closely to sounds produced pri-
marily by the crowd. The third corresponds to the spectral
peakedness. Linear combinations of the three principal spec-
tral shapes define a space. The data represented in this
space were clustered into nine clusters using a Gaussian
mixture model®” in Ref. 18. These clusters are shown in Fig.
1(c). The probability of a point x in this three-dimensional
space belonging to cluster C =i given N clusters with
weights w; is

S (5 g, Zi)wi

P(C = ilx) =
fo (X 1, Z)w;
=

. ey

where fx(x; 4;, %;) is the Gaussian probability density func-
tion of the cluster i with mean y; and covariance %; evalu-
ated at the point x. These cluster membership probabilities,
derived from Ref. 18, constitute the remaining nine features.
The clusters were labeled by colors in Ref. 18 (green, pink,
yellow, red, black, orange, cyan, blue, and brown), and for
consistency, the same color labels refer to the same nine
clusters in this paper. A brief description of each cluster is
given in Table IV. These colors do not correspond to acous-
tic noise types (such as brown, pink, or white noise). It is
important to note that data leakage is possible because the
dataset used to calculate the principal spectral shapes
included men’s basketball games, which are also part of the
training, validation, and testing data used in this study. The

TABLE III. Transformations and brief descriptions of features from MATLAB’s Audio Feature Extractor toolbox (Ref. 28).

Feature Transformation Description
Spectral centroid (Ref. 31) (Centroid) Logio First statistical moment
Spectral crest (Ref. 31) (Crest) Logio Peakedness
Spectral decrease (Ref. 31) (Decrease) Arcsinh (x/0.006) Slope

Spectral entropy (Ref. 32) (Entropy)
Spectral flatness (Ref. 33) (Flatness)

None
10 log,

Peakedness

Information entropy of the spectrum

Spectral flux (Ref. 34) (Flux)

10 log,o(x/2 x 1075)

Change in spectrum

Spectral kurtosis (Ref. 31) (Kurtosis) Logio Fourth statistical moment
Spectral roll-off point (Ref. 34) (Roll-off) Logio Frequency bounding 95% of energy
Spectral skewness (Ref. 31) (Skewness) Arcsinh (x/6) Third statistical moment
Spectral slope (Ref. 35) (Slope) Logo(—x) Slope

Spectral spread (Ref. 31) (Spread) Logio Second statistical moment
Harmonic ratio (Ref. 36) (Harmonic) None Ratio of harmonic to total energy
Short time energy (STE) 10 log,o(x/2 x 1075) Energy in signal

Zero-crossing rate (Cross rate)

None Rate of signal crossing 0 Pa

J. Acoust. Soc. Am. 158 (4), October 2025

Cutler etal. 3459

€¥'€€°€0 G202 1890100 /LT


https://doi.org/10.1121/10.0039709

TABLE IV. Descriptions of the three principal spectral shapes and nine
Gaussian clusters. Cluster descriptions come from Ref. 18.

Feature Description

PC1 Principal spectral shape
comparable to Leqg s 5

PC2 Principal spectral shape resembling
crowd-produced sounds

PC3 Principal spectral shape corresponding

to spectral peakedness
Green cluster Minimal noise
Pink cluster Music
PA/individual noise
PA/music

Individual noise

Yellow cluster
Red cluster
Black cluster
Orange cluster Moderate crowd noise
Cyan cluster

Blue cluster

Music/moderate crowd noise
High crowd noise

Brown cluster Music/high crowd noise

process for generating each of these 27 features is summa-
rized in Fig. 1(b).

C. Feature correlations

Because useful features are ideally strongly correlated
with reaction classes while being relatively independent of
each other, we first examine the correlation matrices of the
features with each other and with the crowd reactions (see
Fig. 2) before starting feature selection. This is done with
the Pearson correlation coefficients in Fig. 2, which only
show linear correlations and do not account for how features
and reactions relate to each other temporally or nonlinearly.
This also provides a way to validate later results.

Figure 2 suggests that PC 1, spectral flux, spectral slope,
short time energy, and the Leqq s are all good predictors for
distinguishing between cheer and other reactions. However,

(a)
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Dgc;ease
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these particular features would not make a good feature sub-
set together to classify cheer because they are strongly cor-
related with each other and are therefore redundant. A
feature subset with just one of those features and another
less strongly correlated feature such as spectral entropy or
PC 2 would likely have better predictive properties, even
though PC 2 and spectral entropy are less correlated with
cheer.

D. Model and hyperparameter tuning

Random forests***! are commonly used for feature

selection.*>™7 They are fast to train, make robust predic-
tions, can handle large numbers of features, and work natu-
rally with the Gini feature importance metric. This study
used scikit-learn’s implementation of random forests.*®
Random forests have many hyperparameters, but Ref. 49
demonstrated that max features (the number of features
considered as candidate splitting features at each split) and
max_samples (the number of data points each tree can train
on, sampled with replacement) are two of the most impor-
tant hyperparameters to tune. Reference 50 showed theoreti-
cally that larger forests improve performance and stabilize
feature selection metrics; in practice, as many trees should
be used as is computationally feasible.

A new hyperparameter, time_steps_before, is intro-
duced to account for the time-dependent nature of the data.
It takes on the values O, 1, 2, 3, ... and represents how
many additional half-seconds of temporal history are used to
predict the reaction at the current half-second time step.
Some of the information that is useful for classifying crowd
noise is contained in the temporal history of the acoustic
features, not just in the features themselves at single points
in time. During the feature selection process for the random
forest models, feature importance scores were averaged over
all half-second intervals.

(b)
1.0
0.4
0.8 |
||
|| r 0.2 FIG. 2. Panel (a) shows the absolute
value of the Pearson correlation coeffi-
0.6 cients between each pair of features for
| L 010 the training data (Refs. 38 and 39). Panel
.. ) (b) shows the (signed) Pearson correla-
0.4 tion coefficient between the features
| and each of the reactions studied in this
r—0.2 paper for the training data (Refs. 38
and 39). Note that the correlations for
0.2 n individual crowd reactions include only
0.4 the data labeled or classified as any
' reaction.
0.0
>0 =
25808
T4+
2YYs
2 5
< @
=]
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The max_features hyperparameter defaults to the square
root of the number of features in scikit-learn. Because a
smaller max_features encourages more diverse trees, stabil-
izes rankings for weak features, and allows moderately
important features to be chosen more frequently,* max_
features was set to log,. A grid search was performed to
optimize time_steps before (between 0 and 25 half-seconds
with half-second increments) and max samples (between
0.5 and 1.0 of the total number of data points with incre-
ments of 0.02), using forests of 1000 trees before beginning
each feature selection process.

The cost surfaces were flat, varying by less than 4% in
accuracy for all reactions, about half of which was from
going from time_steps_before =0 to time_steps_before =2.
Because the surfaces were so flat and a lower max_samples
value promotes diverse trees, the grid search space was
reduced to the values of max samples between 0.60 and
0.80, with a 0.02 spacing, and the optimal values were cho-
sen. Optimal values for time_steps_before for each reaction
were 2 for any reaction, 12 for applause, 2 for chant, 3 for
cheer, and 4 for distraction noise. For applause, the cost
steadily improved for longer temporal histories (increased
time_steps_before), while the costs for the other three reac-
tions plateaued or decreased slightly. After optimizing over
time_steps_before and max_samples, the random forests
were tested with different forest sizes from 500 to 10 000 in
increments of 500. The accuracy of the model varied little
(less than 0.5%) between 3000 and 10000 trees in every
case, so 3000 trees were used to lower computational costs.

E. Feature selection methods

Five methods for feature selection are considered here.
Four methods are examples of greedy algorithms®' (i.e., fea-
tures are removed one at a time based on which has the least
predictive impact according to some metric). The fifth method
is based on LASSO regression and is not a greedy algorithm.

The first greedy feature selection method uses MDA to
determine feature importance. MDA is calculated by first train-
ing a model (with accuracy fp) on a set of N features.
Additional models are then trained on every possible subset
of features of size N — 1 (denote their accuracies by fi, i
€ {1,2,...,N}, where i is the index of the missing feature).
The feature / that minimizes the mean decrease in accuracy
(given by fy — f;) is then dropped, and the process is repeated.
In the most common form of MDA, only one model is trained
at each step and the model is validated on the data with values
of the i-th feature randomly permuted.*® Although this form is
much cheaper computationally, it has been criticized by Ref.
45 because it often forces the model to extrapolate, so it is
avoided here, and instead, a separate model is trained on each
feature subset before choosing which feature to drop.

The other three greedy feature selection methods in this
paper use variations on the Gini feature importance metric,
which is commonly used for both building random forests
and measuring feature importance. References 40, 41, 47,
and 52 describe the Gini feature importance metric and its

J. Acoust. Soc. Am. 158 (4), October 2025

computation. Although widely used, the Gini importance
metric has two well-known flaws. The first is that high-
cardinality features are often favored over low-cardinality
features.”~* This is not an issue in this study because all the
features are continuous variables. The second is that while it
performs well at choosing informative features, it often
favors correlated (i.e., redundant) features.*® To address
this, a variation of the Gini feature importance metric was
proposed by Ref. 42 that explicitly penalizes correlated fea-
tures. In this variation, for each feature x;, the most corre-
lated feature, X, is identified. If the Gini importance of x;
is greater than that of x, the feature importance is
unchanged. Otherwise, the Gini importance of x; is reduced
by a factor of (1 — corry,,x), Where corry,y is the correlation
between x; and x... In this study, two correlation metrics
are used: (1) the Pearson correlation coefficient, which mea-
sures linear correlations; and (2) the Spearman correlation
coefficient, which measures rank-based correlations.>®3°
These three variants on the Gini feature importance metric
will be referred to as “Gini” (no correlation penalty), “Gini—
Pearson,” and “Gini—Spearman” feature importance.

The fifth feature selection method is LASSO regression
using a logistic regression model class.” In this method, the
parameters associated with each feature in a logistic regres-
sion model are progressively pushed to zero as the strength of
a one-norm regularization penalty term is increased. In this
paper, the regularization penalty was increased by increments
of 0.5. The features whose parameters remain non-zero the
longest are considered the most useful for making predictions.
Unlike the other four feature selection methods, LASSO
regression is not a greedy method, and as such, eliminated
features may reappear as the selection process progresses.

F. Feature selection pipeline

Figure 1(d) illustrates the feature selection process.
First, a random forest model was trained on the whole data-
set to distinguish between crowd reactions and non-crowd
reactions (“Initial model”). The hyperparameters time
steps_before and max_samples were then tuned. These
hyperparameters are discussed in detail in Sec. IID. This
random forest model was then feature-reduced until model
accuracy decreased significantly. (The resulting model
had two features, the Leqyss and PC 2, and is described
further in Sec. IIT A.) The hyperparameters time steps_be-

fore and max_samples were then retuned. This reduced

model was run on all available data D, resulting in a sub-
set, Deassified, consisting of data that were classified by the
model as containing a reaction. Another subset of D was
Diabeled; Which consisted of data labeled as any reaction
(i.e., data were labeled as either applause, chant, cheer,
distraction noise, or other reactions). The set of data
Dall reactions — Dclassified U Dlabeled was used for training, test-
ing, and validating binary classifiers (random forest or
LASSO regression) that distinguished applause, chant,
cheer, or distraction noise from all other data in D, eactions,
as indicated by Fig. 3(a).
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FIG. 3. (a) Process for obtaining reduced models for each single reaction classifier (e.g., applause, cheer, etc.). The output of the any reaction reduced
model, Dejassified, 1S combined with human-labeled Djypeleq to train the initial model for each of the five single reaction classifiers. (b) Feature selection pro-

cess, identical to that in Fig. 1.

The hyperparameters time_steps_before and max_samples
were tuned once for each of the classifiers used to distinguish
between reactions in Dy reactions before beginning feature selec-
tion (see Sec. IID). Hyperparameters were never retuned
during feature selection. After feature selection was performed
on the models to distinguish between reactions, the hyperpara-
meter time_steps_before was retuned to compare the optimal
hyperparameter values before and after feature selection.

For every classification task in this pipeline (to create
Dielassitied as well as to separate out individual reactions from
Dall reactions ), several procedures were performed. First, larger
classes were undersampled randomly to create balanced
training, validation, and testing sets. Second, the random
forest hyperparameters were tuned once for the full feature
set (i.e., before feature selection).

As suggested by its name, random forest performance is
slightly affected by which random seed is used.**°
Although these random fluctuations in performance are gen-
erally small and decrease with larger forest sizes, multiple
random seeds were used in the tree-building algorithm at
each step in the feature selection process to investigate the
consistency of the results. For the three Gini-based methods,
50 random seeds were used at each step in the feature selec-
tion process before dropping the feature with the lowest
average importance. The same was done with the MDA
method, but with only 20 random seeds since the computa-
tional cost of feature selection was so much higher. LASSO
methods involve a convex optimization problem, which has
a unique solution and does not depend on random seed.

lll. RESULTS
A. Detecting any crowd reactions

The accuracies of the any reaction binary classifiers as
a function of the number of features remaining are shown
in Fig. 4, while the top five features are given in order in
Table V. The top five features are those that are cut from the
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model last during the feature selection process. Features
were removed one at a time moving left to right in Fig. 4, so
the right side of Fig. 4 illustrates these top features’ impact
on accuracy as each is cut. This figure shows that the any
reaction classifier only requires information from a few top
features before the classification accuracy begins to decrease
significantly. This could be because other features contain
irrelevant or redundant information, such as spectral crest,
which is irrelevant, or PC 1, which is redundant with Leqgs
(see Fig. 2). If they contain redundant information, then other
subsets of features could be chosen with similar predictive
power.

PC 2 was consistently the highest-ranked feature across
all feature selection methods, except LASSO regression,
which chose it as the second-most-important feature. PC 2
was found in Ref. 18 to distinguish between data points with
more high- or low-frequency content in a dataset of men’s
and women’s basketball and volleyball games. Figure 5(b)
shows the effect of PC 2 on the average 1/3-octave band
spectrum. The Leqgss was the second-highest-ranked fea-
ture in four out of the five feature selection methods. Taken
together, any reaction generally corresponds to points that
have both more high- than low-frequency content and are
acoustically intense, as seen in Fig. 5(a), which shows how
the density of PC 2 and Leqg s varies for any reaction (red)
and no reaction (black).

As stated in Sec. II'F, a reduced feature model separated
crowd noise (crowd reactions) from other sounds before pro-
ceeding to the next part of the study. Only the two features
PC 2 andLeqg 5 were used in constructing this model.

B. Distinguishing specific reactions

The two most useful features (PC 2 and the Leqq 5) for
identifying any reaction were used to train and tune a ran-
dom forest classifier. This classifier was used to create the
Dall reactions dataset described in Sec. ITF. These data were
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FIG. 4. Accuracy of the any reaction classifier models on the testing data as
the number of features decreases. The two highest-ranked features in every
random forest-based model were PC 2 and the Leqos ;. The shaded area
around each line indicates the minimum and maximum accuracies across
various random seeds, while the bold line indicates the mean. The minimum
and maximum accuracies are difficult to see because they are close to the
mean.

then used for training classifiers to distinguish individual
crowd reactions from other crowd reactions within the any
reaction dataset. Feature selection was performed on these
classifiers and all features. A summary of the top features
and optimized hyperparameters chosen by the feature selec-
tion methods is given in Table VI. More details are provided
in Sec. IV.

1. Optimal number of features and feature rankings

The accuracy of the binary classifiers for specific crowd
reactions as a function of number of features is shown in
Fig. 6. Similar to the any reaction classifier, the number of
features can be significantly reduced without changing the
model accuracies. Transparent bands around the accuracy
curves show the minimum and maximum accuracies after
running the feature selection process 20-50 times with dif-
ferent random seeds. The LASSO regression method is
deterministic, so its accuracy does not vary with the random
seed, but increasing the regularization strength can cause it
to reselect features that it had previously dropped, which is
why the number of features sometimes increases.

Although the exact number of features to which the
dataset can be reduced is somewhat subjective and depends
on the feature selection method, most of the accuracies are
relatively flat or increase slightly until two to eight features
remain. Therefore, for a particular classifier, most of the fea-
tures are either irrelevant or redundant. Thus, if crowd reac-
tion classification rates are to be improved significantly,
other model classes or features should be used.

Feature selection methods that produce more accurate
models with fewer features are assumed to have chosen bet-
ter feature subsets. Consensus in selected features for well-
performing models also indicates that the selected features
are good predictors. This is explored more in Sec. IV.

2. Optimal time_steps_before

After feature selection, the hyperparameter time_steps
before was tuned again for the model, using the reduced fea-
ture set (see Fig. 7 and Sec. II D). Plots were made using the
feature sets found by the Gini—Pearson method with the top
three, four, four, and two features for applause, chant,
cheer, and distraction noise, respectively, because the clas-
sification accuracies began to decrease more rapidly after
these values.

The accuracies of cheer and distraction noise level out,
while the accuracy of chant decreases after four previous
half-second time steps are used. The models detecting
applause continue to improve as they use more previous
half-seconds. For the chant classifier with four features, the
effect of including the feature temporal history of several
time steps increased the accuracy more than 12%. Note that
the optimal numbers of previous half-seconds found before
feature selection were 12, 2, 3, and 4 for applause, chant,
cheer, and distraction noise, respectively. The autocorrela-
tion function for each feature up to 50 previous half-seconds
was inspected in an attempt to explain this, but no correla-
tions to optimal feature temporal history lengths were
found.

To better understand the importance of feature temporal
histories, the hyperparameter time_steps before was also
tuned with logistic regression models trained on all 27 fea-
tures. The optimal numbers of time steps for each classifier
were close to those found for the random forest, as seen in
Table VII. The exception was cheer, which required a much
longer temporal history than the random forest. LASSO
regression was run on these expanded feature sets to gain
insights into the role of each feature’s temporal history.

TABLE V. The top five features for identifying crowd noise in order as ranked by each of the feature selection methods, given in order of most important to

least important.

Gini Gini—Pearson Gini—Spearman MDA LASSO
PC2 PC2 PC2 PC2 Blue
Leqos s Leqos s Leq0.5 s Leq0.5 s PC2
Blue Cyan Spectral decrease Spectral entropy Brown
Brown Brown Zero-crossing rate Red Leqos s

Zero-crossing rate Zero-crossing rate

Harmonic ratio

Spectral flatness Zero-crossing rate

J. Acoust. Soc. Am. 158 (4), October 2025
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FIG. 5. Panel (a) shows a contour plot of the distribution of crowd reac-
tions, which can be distinguished from other noises using the Leqgs s as
well as a principal spectral shape (PC 2) (Ref. 18) used to distinguish
between sounds with high- and low-frequency content. For reference, the
effect of PC 2 on the average 1/3-octave band spectra for indoor sports is
shown in panel (b). The *20, lines show the spectrum with PC 2 coeffi-
cients chosen 2 standard deviations away from where PC 2 is zero.

For applause, LASSO dropped intermediate half-
seconds of the blue (high crowd involvement) and black
(individual noise) cluster membership probability features'®
but ranked their oldest time steps highly. This reflects the

TABLE VI. Top features and optimized parameter values for each classi-
fier, as chosen by the Gini—Pearson feature selection. All models had log,
max_features and 3000 trees.

Classifier Top features Optimized parameters
Any reaction PC2 time_steps_before: 2
Leqq s, max_samples: 0.68
Applause Spectral flatness time_steps_before: 12
Blue max_samples: 0.66
Black
Chant Spectral flatness time_steps_before: 2
Spectral decrease max_samples: 0.66
Black
Yellow
Cheer Leq s, time_steps_before: 3
Spectral centroid max_samples: 0.74
Brown
Cyan
Distraction noise Spectral entropy time_steps_before: 4
Blue max_samples: 0.7

3464  J. Acoust. Soc. Am. 158 (4), October 2025

physical context—at a basketball game, cheering often
decays into applause instead of ending abruptly.

For chant, LASSO ranked the temporal history of the
orange cluster membership probability feature (moderate
crowd noise) as more useful than any other feature at any
half-second time step. This is consistent with the physical
context as well. Chanting is distinguished by a repeating
pattern in a period of a few seconds.

IV. DISCUSSION

In this section, physical interpretations are given for the
results to draw out the connection between explainable
machine learning and the subsets of features that were
selected. The characteristics of the feature subsets are also
analyzed for how they affect the number of previous half-
second data points that optimize each model’s performance.

A. Evaluation of features and time_steps_before
selected for classifying reactions

1. Applause

Applause is generally characterized by collective clap-
ping throughout the crowd. It is not rhythmically coordi-
nated, but is sometimes accompanied by cheering. The most
important features for classifying applause are shown in
Table VIII. The top feature for applause was consistently
spectral flatness, which is often reported in decibels.* Once
converted to decibels, it takes on values from negative infin-
ity (a pure tone) to zero (white noise) and represents the flat-
ness of the linear spectrum.

Individual human clapping behavior follows several dif-
ferent modes, and each mode has a broad acoustic spectrum
with different peaks®’ so that the overall effect of applause—
the combined nonrhythmic clapping of many people—is
broadband noise. This causes the distribution of spectral flat-
ness for applause to have a higher mean than the other crowd
reactions, as seen in Fig. 8(a). The second peak in the chant
distribution to the right of applause can be explained by inter-
mittent clapping during chants, which was verified by listening
to sections of the game with chanting and comparing with plots
of the spectral flatness. Some of the overlap between applause
and cheer can be explained by instances where there is both
cheer and applause. This overlap is also shown in Fig. 8(a).

The other feature that appeared in the top two features
in two of the selection methods for distinguishing applause
was the blue cluster membership probability.'® The blue
cluster is highly correlated with PC 2 [Fig. 2(a)], another
highly ranked feature. The blue cluster (and to a lesser
degree, PC 2) is also highly correlated with distraction
noise, as seen in Fig. 2(b). Density plots of spectral flatness
against the blue cluster 13 steps before, 13 steps after, and
concurrently [Figs. 8(b)-8(d)] show that the temporal rela-
tionship between the two features is such that when identify-
ing applause, it is more useful to know the blue cluster
membership probability concurrent with or before spectral
flatness, rather than knowing the spectral flatness before the
blue cluster membership probability.

Cutler et al.
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Applause often follows game events that are positive,
but not as significant, such as a turnover by the opposing
team. It also occurs as cheering dies down. Both cheer and
distraction noise (made by fans of the home team before an
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FIG. 7. The accuracy of crowd reaction classification models as a function
of time_steps before using the reduced feature set found by the Gini—
Pearson feature selection method.
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opposing team turnover) are correlated with blue, so it is
possible that the classifiers detect applause not only by the
sound of applause itself, but also by the crowd reactions that
it commonly follows. Hence, spectral flatness and the blue
cluster membership probability are acoustic features that are
not only useful for machine learning, but are also connected
to the physical processes of applause and crowd sounds that
often precede applause. This also helps explain why the
classifier requires a higher time steps before to predict
applause than to predict the other three crowd reactions.

2. Chant

Chants are semi-organized rhythmic vocalizations that
are carried out by crowds in unison, sometimes interspersed

TABLE VII. The optimal number of previous time steps for logistic regres-
sion vs random forests (before feature selection).

Reaction Random forest Logistic regression
Any reaction 2 6
Applause 12 16
Chant 2 4
Cheer 3 25
Distraction noise 4 4
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TABLE VIII. The top five features for distinguishing between applause and other crowd reactions as ranked by each of the feature selection methods, given

in order of most important to least important.

Gini Gini—Pearson Gini—-Spearman MDA LASSO
Spectral flatness Spectral flatness Spectral flatness Spectral flatness Orange
Spectral entropy Blue PC2 Blue Spectral entropy
Spectral roll-off point Black Zero-crossing rate Zero-crossing rate Spectral flatness
Spectral centroid Spectral decrease PC1 Green Harmonic ratio
PC3 Zero-crossing rate Spectral skewness Spectral roll-off point PC2

with moments of rhythmic clapping. The top feature for
detecting chant was consistently spectral flatness, as seen in
Table IX.

As suggested in Sec. IV A 1, spectral flatness increases
during clapping, and chants often include intermittent clap-
ping. Intermittent clapping can be seen by plotting spectral
flatness against itself 2 half-seconds before, as seen in Fig.
9. The peaks around (—22, —12) and (—12, —22) indicate
that over two time steps, the spectral flatness for chant is
likely to shift between two values, while it is not likely to
shift for other reactions. This was verified by comparing

0.25
(a)
== Applause

0.20 " __ chant
2 = Cheer
2 Distraction
2 0.15 1 e Other
2 Applause
= and cheer
2 0.10
2
°
1
[

0.05 -

-40 -35 -30 -25 -20 -15 -10 -5
Spectral flatness (dB)

1.0
(c)
08l Applause
—— Other
0.6
]
2 0.4
0.2 A

Z ﬁ\\\
25 -20

-40 -35 -30 - -15 -10 -5
Spectral flatness (dB)

recordings of chants to plots of the spectral flatness. Similar
distributions can be seen by looking at delays of 1, 3, and 4
half-seconds. This result is consistent with what was
observed in Sec. IIIB2, which showed that classifiers
detecting chant improved by 12% when including several
previous half-seconds. The random forest is possibly look-
ing for a place where the spectral flatness switches between
these two values in the recent feature temporal history. This
also might explain why the LASSO logistic regression
model performed much worse than the random forest mod-
els, since the correlation for a feature that switches between
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FIG. 8. In panel (a), the distribution of spectral flatness for several crowd reactions is shown using a Gaussian kernel density estimate. Applause is often
accompanied by cheer, so the distributions for only applause and only cheer are shown, in addition to a distribution of half-seconds containing both cheer
and applause. In panels (b)—(d), the distribution of spectral flatness and blue cluster membership probability is shown for applause and other reactions. A
time delay for the feature is introduced in panels (b) and (d) for blue and spectral flatness, respectively, to show how the features have a temporal correlation
when blue is delayed 13 half-seconds or when neither feature is delayed, but not when spectral flatness is delayed 13 half-seconds.
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TABLE IX. The top five features for distinguishing between chant and other crowd reactions as ranked by each of the feature selection methods, given in

order of most important to least important.

Gini Gini—Pearson Gini-Spearman MDA LASSO
Spectral flatness Spectral flatness Spectral flatness Spectral flatness Orange
PC3 Spectral decrease Spectral decrease Spectral centroid PC3
Spectral centroid Black PC2 Pink Spectral crest
Spectral crest Yellow Leqos s Spectral entropy Yellow
Spectral decrease Orange PC3 Harmonic ratio Pink

two values in time becomes nonlinear. Once again, there is a
strong connection between the acoustic feature of spectral
flatness and the acoustic properties of applause.

Other than spectral flatness, chant has the strongest
Pearson correlations with orange, spectral spread, spectral
entropy, spectral crest, and PC 3. Interestingly, three of
these five features appear in the top five features as ranked
by LASSO, even though other models performed signifi-
cantly better than LASSO. This further suggests that the
temporal relationships between variables are more important
than correlations between features and reactions.

Spectral decrease appears three times in the top five fea-
tures and twice as the second-most-important feature across
all models. Of all the features from the MATLAB acoustic fea-
ture extractor, it was the least correlated with other features.
This might have in part been due to the feature’s hyperbolic
arcsine transformation, but the other feature that had a
hyperbolic arcsine transformation (spectral skewness) was
highly correlated with several other features. Spectral
decrease measures the slope of the spectrum (like spectral
slope), but emphasizes lower frequencies more. These lower
frequencies may span the voice fundamental frequencies of
individuals chanting in the crowd. During joint speech
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FIG. 9. The distribution of chant and other reactions across the feature
spectral flatness and the spectral flatness 2 half-seconds before. The peaks
near (—12, —22) and (—22, —12) show that one of the characteristics of
chant is a switching between high and low spectral flatness on short time
intervals. A similar shape can be seen by observing the distribution of chant
over spectral flatness and spectral flatness from 3 or 4 half-second time
steps before.
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activities, such as chant, individuals tend to converge
toward a shared fundamental frequency,”®>® which may
have been what increased this feature’s importance.

3. Cheer

Cheer is generally characterized by loud, positive
vocalizations with little rthythmic structure and intermittent
coordination between individuals in the crowd. The most
important feature appeared to be the Leqqss. The spectral
centroid was also ranked highly by two high-performing
feature selection methods (see Table X). Out of all the
crowd reactions, cheer has the most acoustic energy, which
explains why the Leq s might be a useful feature for iden-
tifying cheer. It also has a spectral centroid that is shifted to
higher frequencies because cheering is generally a happy
reaction to a game event. Happy/positive emotions tend to
be vocalized with higher pitches (higher fundamental fre-
quencies), and the constriction of the vocal tract also height-
ens the frequencies in the first two formants compared to
neutral or negative emotions.”” The relationship between
spectral centroid and the Leqq 5 for cheer appears in Fig. 10
and shows some of the simple, though incomplete, logic in
feature selection behind the complicated random forest
model used to identify cheer.

4. Distraction noise

Distraction noise is commonly characterized by a
crowd vocalizing in unison, often unifying toward a single
long tone with little rhythmic variation. It often occurs dur-
ing a free-throw or during play when the other team has pos-
session of the ball, when other sounds (like the band or PA
system) are not present. The distraction noise classifier had
the highest accuracy and the most agreement among the fea-
ture selection methods, with only MDA and LASSO not
ranking the blue cluster membership probability as the sec-
ond-most-important feature, as seen in Table XI. MDA
ranked the blue cluster membership probability as the least
important feature, and this could be attributed to the high
variance in individual feature rankings in the early stages of
MDA. The blue cluster was identified in Ref. 18 to be highly
correlated with distraction noise, and this is further con-
firmed by Fig. 2. The average 1/3-octave half-second spec-
trum for the blue cluster in shown in Fig. 11(b). The
spectrum has large factors of the first and second principal
spectral shapes (PC 1 and PC 2),'® which correspond to
loud, crowd-dominated sounds.
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TABLE X. The top five features for distinguishing between cheer and other crowd reactions as ranked by each of the feature selection methods, given in

order of most important to least important.

Gini Gini—Pearson Gini-Spearman MDA LASSO
Leqos s Leqos s Leqos s Spectral flatness Leqos s
Spectral entropy Spectral centroid Spectral centroid PC3 Brown
Short time energy Brown Spectral decrease Spectral flux PC2
Brown Cyan Spectral skewness Pink Harmonic ratio
Spectral centroid Red PC3 Blue PC1

Spectral entropy was the other highly ranked feature for
classifying distraction noise. It measures the entropy of the
linear power spectrum by treating the spectrum as a distribu-
tion. Distraction noise is the most tonal of crowd reactions,
and tonal sounds tend to have lower spectral entropy. The
distribution of distraction noise and other reactions can be
seen in Fig. 11, which shows a fairly clear distinction
between the distribution of distraction noise and other
crowd reactions. Hence, the feature selection process
revealed that distraction noise can be identified by machine
learning models using features that correspond to tonality
with a specific spectral shape corresponding to loud sounds
made by crowds.

B. Performance of feature selection methods
on crowd noise data

The random forest-based feature selection methods
used in this paper generally had good consensus on what the
most important feature is, and reasonable candidates for
the second-best feature could often be found by looking
at the highest-ranked features from all the methods. As
expected, a lot of the top features found by the Gini impor-
tance metric were highly correlated with each other. MDA
had the highest variance in its accuracy across the feature
selection process. This might have been mitigated by using
more random seeds in the feature selection process,
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FIG. 10. The distribution of Leqgs s and spectral centroid for cheer and
other crowd reactions. Cheer has a higher Leqqs s and spectral centroid
than other reactions.
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especially during the first few steps, where the process
appeared to be more random. However, this would increase
the cost of an already expensive computation. LASSO logis-
tic regression often had lower accuracy than the other meth-
ods, which shows that the temporal aspect of crowd noise
may be more important than finding features that have high
linear correlations with crowd reactions. An alternative
explanation is random forests are better at learning nonlinear
relationships among features and labels.

Models found using the Gini feature importance metric
with a correlation penalty had best overall accuracy, with
the Pearson correlation penalty performing slightly better
than the Spearman correlation penalty. The correlation pen-
alty method consistently found good candidates for the two
most relevant features for classifying each crowd reaction,
as measured by the model accuracy. This might have been
because it was less dependent on the random seed and
encouraged a weakly correlated feature subset to be chosen.
Although models produced using Gini feature importance
with a correlation penalty had slightly higher accuracy on
average than models produced with other importance met-
rics, more research would need to be done to determine
whether this generalizes to other machine learning datasets
and problems.

C. Limitations of the study

Reverberation times in college basketball stadiums vary
as much as 35.%! Because features in this study were calcu-
lated every half-second, sound pressure features for the
same crowd reactions may look significantly different at
venues with different reverberation times. This may impact
the models’ ability to predict crowd reactions. If these
models are to be used in situations other than the basketball
stadium considered in this study, such as an outdoor football
stadium, the impact of reverberation times must be
understood.

Because data were labeled by multiple human labelers,
the reported accuracy of each model is limited by the consis-
tency between labelers. One particularly difficult task was
distinguishing between crowd noise and noise from individ-
uals to decide when a crowd reaction begins and ends.
Though labelers met regularly to coordinate on questions
like these, human labeling inevitably introduced ambiguity
into labeled data for each reaction. While labelers did meet
periodically to ensure similar labeling decisions were being
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TABLE XI. The top five features for distinguishing between distraction noise and other crowd reactions as ranked by each of the feature selection methods,

given in order of most important to least important.

Gini Gini—Pearson Gini-Spearman MDA LASSO
Spectral entropy Spectral entropy Spectral entropy Black Blue
Blue Blue Blue Spectral entropy Harmonic ratio
Harmonic ratio Black Black Leqoss PC1
Black Orange Spectral decrease PC3 Pink
Spectral flatness Spectral decrease Orange Spectral crest Spectral crest

made, this consistency between labelers was not systemati-
cally checked.

Because cheer often turns into applause as the crowd
calms down, labels for cheer and applause frequently over-
lapped. As a result, the features selected for identifying
cheer may be influenced by the overlapping applause, and
vice versa. Data with overlapping labels represent 17.5% of
data labeled cheer and 31.7% of data labeled applause.
Despite this overlap, the best feature selection method,
Gini—Pearson, did not choose any of the same top five fea-
tures for cheer and applause.
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FIG. 11. Distraction noise is the most easily identified of crowd reactions.
Panel (a) shows the distribution of distraction noise and other reactions
across the features blue cluster membership probabilities and spectral
entropy. Panel (b) shows the spectral shape of the blue cluster centroid,
which is highly correlated with distraction noise and contains much more
high-frequency content than the average 1/3-octave spectrum for indoor
sporting events, which is shown for reference.
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V. CONCLUSION

This work identified several acoustic features that are
relevant for classifying crowd reactions at collegiate men’s
basketball games. Specifically, the Leqpss and a principal
spectral shape found in Ref. 18 relating to the amount of
high-frequency content in half-second 1/3-octave band spec-
tra (abbreviated as PC 2 in this paper) are consistently
ranked as important features for identifying any crowd reac-
tion, while features relating to tonality, specific spectral
shapes, and sound level are useful for distinguishing
between crowd reactions. These features often have explain-
able connections to physical phenomena such as clapping,
loud crowds, and the tonality of certain sounds.

The importance of feature temporal histories in crowd
reaction classification was also quantified. For example,
chant classification accuracy improved by 12% when the
current and previous 4 half-second steps were included in
the feature set to identify intermittent clapping, among other
temporal patterns. Applause can be identified by transitions
from spectral shapes relating to distraction noise or cheer to
high spectral flatness, which relates to broadband clapping
noise.

Of all the reduced feature models generated, the two
most promising models were derived from the Gini feature
importance metrics with correlation penalties. These models
are consistently better classifiers on this dataset than the
other models with similarly small feature vectors.

The acoustic features identified here can be used as a
starting point for future research. These features may be
used with the labeled crowd responses with different
machine learning algorithms in an effort to achieve higher
classification accuracies. Additionally, although this study
identifies that several half-seconds of feature temporal his-
tory improves model performance for identifying most
crowd reactions, the exact relationship between various fea-
tures and crowd reactions and the evolution of those rela-
tionships through time still remain unclear. Further analysis
of these features (e.g., by allowing variations in the number
of previous half-seconds of feature temporal history on a
per-feature basis) may yield useful insights into transitions
between different forms of crowd behavior. It may also be
that different acoustic features are important for different
sporting events, depending on the physical properties of the
venue and the size and demographics of the crowd, as well
as behavioral norms around acoustic crowd reactions for
different sports. The features identified here can guide the
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selection of a reasonable starting feature set or identify fea-
tures that may improve models across different sports.
Improvements in the ability to classify crowd reactions in a
context-specific setting—such as sporting events, which
come with certain expected norms of acoustic behavior from
crowds—may lay the groundwork for identifying important
acoustic features and building models to classify these fea-
tures for different types of audience or within less-scripted
crowd behaviors. Such models can potentially inform ven-
ues on the sentiment/mood of a crowd, quantify the value of
individual players for name, image, and likeness contracts,
or aid decision making for emergency response.

In conclusion, this work identified acoustic features that
are particularly relevant for classifying crowd behavior at
basketball games. Of the feature selection methods used in
this study, those using Gini feature importance metrics with
correlation penalties yielded the most promising results.
This paper also showed that incorporating acoustic informa-
tion about previous crowd responses can help classify cur-
rent crowd reactions. This work provides a foundation for
the classification of reactions within crowd noise at other
events.
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