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ABSTRACT:
Sound power is a fundamental characteristic of an acoustic source that is critical to developing radiation models.

Current analytical methods for calculating sound power from a collection of monopoles either assume perfect

coherence or incoherence. However, partially coherent sources are plentiful in structural acoustics and aeroacoustic

applications. This paper expands the approach of Nelson, Curtis, Elliott, and Bullmore [(1987). J. Sound Vib. 116,
397–414], who calculated sound power due to mutual coupling between coherent sources, to allow for partially

coherent interactions. This expression is used to find the sound power from quadrupole-like source configurations

with varying degrees of coherence. When calculating the sound power, partially coherent interactions are limited by

two factors: a coupling distance and the coherence length. A numerical example of a driven plate is used to demon-

strate the regions where the partially coherent sound power is most applicable. It is shown that when the system

coherence length is larger than about one wavelength, the sound power can be calculated assuming a fully coherent

source. A final example is shown for the T-7A jet at MIL and AB engine conditions. Sound power spectra are created

from an equivalent source model of partially coherent monopoles and compared to measured far-field spectra.
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I. INTRODUCTION

Sound power is a fundamental metric that quantifies the

acoustic energy radiated by a noise source. It plays an

important role in assessing the impact of noise and design-

ing noise control strategies. To ensure consistency between

measurements, both the International Organization for

Standardization (ISO, 2019) and the American National

Standards Institution (ANSI/ASA, 2012) have established

guidelines for determining sound power levels (see ISO

3740:2019 and ANSI S12.51–2002).

In aeroacoustics, sound power calculations began as far

back as Lighthill (1952), who developed general expressions

for the acoustic intensity radiated by a turbulent jet, with the

sound power being the integral of the intensity flux across a

closed sphere. His development established important con-

nections between the velocity of a jet, u, and its radiated

power, most notably that the power scales by u8 for subsonic
jets. For supersonic jets, Ffowcs Williams (1963) showed

that the sound power scales as u3. Nagamatsu et al. (1969)
used a laboratory-scale jet covering a range of subsonic and

supersonic exit velocities to confirm these relationships and

further explore spatial and spectral source properties of the

radiated power. In cases when flow data are available,

Eftekharian et al. (2023) proposed a matrix-based approach

to the sound power using the Lighthill stress tensor. Their

method identifies the radiating components of the stress ten-

sor, which are qualitatively similar to structural radiation

modes, and sums up the individual contributions. Their

method was validated and applied to collections of vortices

at various Mach numbers. For full-scale jet sources,

Christian et al. (2023) used far-field measurements of a

T-7A jet to determine overall sound power levels as a func-

tion of engine power. A follow-up study by Pratt et al.
(2025) computed frequency-dependent sound power levels

and provided a comparison between full-scale military air-

craft and rockets. Sound power has also been featured prom-

inently in rocket noise studies (e.g., McInerny, 1992; Lubert

et al., 2022; Kellison and Gee, 2023).

For sound power calculations in structural acoustics,

some methods divide the radiated intensity into active

(supersonic) and passive (subsonic) components. The active

component radiates to the far-field, while the passive com-

ponent evanesces (Williams, 1995). In this light, the sound

power can be computed by determining the active intensity

while ignoring the passive components; the standard surface

integral can then be evaluated as normal. To this end, a

number of analytic filtering schemes have been developed to

determine these components, including a wavenumber

decomposition (Williams, 1998) and spatially using convo-

lutions (Fernandez-Grande et al., 2012). In cases where the

system geometry becomes complex, numerical schemes are

available (see Correa and Tenenbaum, 2013, and Ferreira

et al., 2019). A related method called the nonnegative inten-

sity divides the structure into radiation modes and computes

the sound power based on the mode shape (Liu et al. 2016).
Another approach to calculating the acoustic field prop-

erties is to approximate the radiator with an equivalent

source model (ESM). In structural acoustics, vibrating pan-

els are commonly represented by a collection of elementarya)Email: to232@byu.edu
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radiators. The velocity distribution of each of these radiators

can be measured using techniques such as scanning laser

doppler vibrometry (Rothberg et al., 2017), then a radiation

resistance matrix matching the surface geometry can be

used to convert the velocity to sound power (Bates et al.,
2022). For more challenging geometries where the radiation

resistance matrix becomes overly complex, other “lumped-

element” style approaches become necessary. Fahnline and

Koopmann (1996) suggested that when an object is divided

into smaller elementary radiators, one can use the average

volume velocities and pressures across each surface to solve

the boundary value problem presented by the Kirchoff–

Helmholtz integral theorem. This approach allows for accu-

rate approximations without requiring excessive details

about the surface. Fritze et al. (2009) expanded on this

method and validated it against other methods of sound

power for a diesel engine. An indirect method has also been

explored by Bacon et al. (2023). One approach from active

noise control (ANC) takes advantage of mutual coupling

effects to calculate the sound power directly from the source

configuration (Nelson et al., 1987; Elliott et al., 1991). The
final expression makes use of the radiation resistance matrix

and forms the foundation for the methods used in structural

acoustics.

One drawback to these approaches is when noise sour-

ces couple only weakly or not at all. This happens when a

noise field is generated by multiple unrelated sources, when

there is extraneous noise in the system, or when the ampli-

tude and phase relationships between sources change in time

or space. The degree to which a field interacts is measured

by its coherence. Perfectly coherent interactions allow for

constructive and destructive interference and provide the

base assumption in ANC. On the other hand, for incoherent

interactions, there is no constructive or destructive interfer-

ence, and total field properties can be calculated by sum-

ming over the radiation from each contributing source.

While the role of coherence is most frequently seen in the

context of signal processing and data analysis, it is less com-

monly emphasized in theoretical or analytical derivations.

Jacobsen (1989) considers the complex intensity of an

acoustic field and develops the coherence relationship

between the sound pressure and particle velocity. In this

case, the coherence becomes a strong indicator of whether a

given field is created by one or multiple sources. Li et al.
(1998) use this relationship to develop expressions for other

energetic quantities of a partially coherent field, such as the

kinetic and potential energy densities. They also identify

that partially coherent interactions are scaled by the linear

coherence between the two fields, which is notable for the

current application. Using these principles, they develop a

method for estimating field properties from a collection of

partially coherent sources.

While partially coherent sources are plentiful, there is

relatively little work discussing the explicit impact of coher-

ence on field radiation properties. This paper combines the

coherence relationships from Li et al. (1998) with the sound

power approach from Nelson et al. (1987) to develop a

generic expression for calculating the sound power from a

collection of partially coherent monopoles. The expression

is then validated analytically against a quadrupole-like

source configuration with varying degrees of coherence. The

limitations and use cases of this method are then explored

with a simulated plate driven by a partially coherent source.

Finally, the method is applied to experimental data from a

turbulent jet. It is shown that when a system’s coherence

length is greater than about one wavelength, the source can be

treated as coherent when calculating the sound power.

Experimentally, this new source-based approach closely

matches sound power calculations computed from far-field

measurements.

II. COHERENCE

Consider two time signals, x and y, which are each a

measurement of an acoustic field. The coherence between

the two is a spectral quantity defined by

c2xy ¼
Gxyj j2
GxxGyy

; (1)

where Gxy ¼ hx̂�ŷi is the cross-spectrum between the signals

and Gxx and Gyy are the respective autospectra (Bendat and

Piersol, 1987). The Fourier transform is denoted by �̂ , the
complex conjugate by ð�Þ� and �h i is the expectation value.

The coherence is bounded by 0 � c2xy � 1 and is a measure

of how much of the spectral energy in y is related to

the spectral energy in x. A value of 1 does not mean that

the signals are identical in the time domain, just that

there is a linear relationship between their autospectra, e.g.,

Gxx ¼ H2
xyGyy for some transfer function Hxy. By extension,

when two signals are partially coherent, c2xy < 1, only a por-

tion of the energy in x is related to y, which can indicate a

nonlinearity in a system, the presence of extraneous noise,

or that the signal y is a composite of multiple signals beyond

x (Bendat and Piersol, 1987). An additional representation

of coherence comes in the form of the complex coherence,

defined as cxy ¼ cxyj je�jhxy where cxyj j ¼ þ
ffiffiffiffiffiffi
c2xy

q
is the linear

coherence and hxy is the phase angle of Gxy (Bendat and

Piersol, 1987).

In some applications, the field coherence can be defined

at a single point by replacing the time signals x and y with

the pressure and vector particle velocity time series at that

field location. This expression has a useful connection to

energetic field quantities, such as the complex acoustic

intensity and the kinetic and potential energy densities, as

discussed by Jacobsen (1989). Li et al. (1998) used this

work to establish connections to the underlying sources. In

their work, Eq. (1) is used to calculate the coherence

between the ith and jth sources based on the time series of

their amplitudes, which are assumed to be stationary random

processes. Given a partially coherent source description, the

resultant energetic field quantities can be computed by con-

sidering pressure or particle velocity interactions between
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each pair of sources and summing the contributions from

each pair (including self-interactions). Importantly, the

cross-terms are scaled by the linear coherence between the

sources.

In practice, the source amplitude time series is neither

given nor computed, but rather, a source coherence is simply

defined. This is most prevalent in a cross-spectral ESMs,

where underlying sources are not time resolved, but rather

amplitudes are assigned to recreate the measured time-

averaged spectra. The assumption throughout this paper is

that the coherence between two sources is an inherent or

defined property and that all field quantities are time-

averaged versions of their corresponding stationary random

process.

III. PARTIALLY COHERENT SOUND POWER

It is generally known from introductory physical

acoustics that the sound power radiated by a general source

is calculated by integrating the intensity flux through a

closed surface containing the source, i.e., P ¼ ÞSI � dS.
The acoustic intensity is taken as I ¼ ð1=2ÞRe p�uf g where

p� is the complex conjugate of the acoustic pressure, and u
is the acoustic particle velocity. Both are functions of posi-

tion and frequency rather than time. Note that the hat nota-

tion (̂�) has been dropped for frequency-dependent

quantities for convenience and consistency with the litera-

ture. Since exact expressions of p and u can become

unwieldy for sources more complicated than a monopole,

it is common to make the acoustic far-field assumption

(i.e., kr � 1), where the wavefronts can be approximated

as planar. For such a wave, p and u are related by the spe-

cific acoustic impedance, qc ¼ p= uj j and the acoustic

intensity is approximated as I ¼ ð pj j2=2qcÞn, where n is

the unit vector perpendicular to the wavefront. This signifi-

cantly reduces the complexity of the problem since the far-

field pressure is generally straightforward to calculate.

This far-field method has considerable use for numerical

sources since the far-field pressure of an arbitrary source

configuration can be calculated at a closed surface via the

Rayleigh integral, and the sound power quickly follows

without needing to compute the derivatives required to

construct u.
An alternative sound power calculation that does not rely

on the far-field approximation was presented by Nelson et al.
(1987) for application in ANC. Their basic process is extended

here to account for partially coherent interactions between

sources. Consider a collection of N acoustic monopoles, such

as those in Fig. 1, with complex source strengths (volume

velocities) q ¼ ½q1;…; qN�T 2 CN and positions ri. The sound
power from the ith monopole can then be calculated by inte-

grating across a surface enclosing the source,

Pi ¼ 1

2

þ
S

Re p�i ui
� � � dS; (2)

where pi is the pressure at the surface of the ith monopole,

including contributions from all the other monopoles and ui

is the total particle velocity at the source. Using properties

of the Helmholtz equation, Nelson et al. (1987) showed that

the particle velocity can be directly related to the source

strength and the sound power computed as

Pi ¼ 1

2
Re p�i qi
� �

: (3)

The total sound power can then be calculated as the inner

product between the vector of pressures at each source,

p ¼ p1;…; pN½ �T , and the source strengths,

P ¼ 1

2
Re pHq
� �

; (4)

where �ð ÞH is the Hermitian transpose. The pressure on one

monopole due to all the others can be calculated using the

relationship p ¼ Zq; where Z is the complex radiation

impedance matrix (Elliott et al., 1991) that operates on a set

of source strengths and determines the pressure at each of

the other sources (see Fig. 1). This matrix is symmetric, and

its form is frequency and geometry dependent. Making this

substitution into Eq. (4) yields the following:

P ¼ 1

2
Re qHZHq
� �

: (5)

Equation (5) represents a key result from Nelson et al. (1987)
and acts as the foundation for ANC applications such as fan

noise reduction (Gee and Sommerfeldt, 2004) and in power

measurements for structural acoustics (Bates et al., 2022).
At this point, the partial coherence between sources

needs to be accounted for. Li et al. (1998) showed that inter-

actions between partially coherent fields are scaled by the

linear coherence between their sources. Since it is the radia-

tion impedance matrix in Eq. (5) that governs interactions

between the sources, it is reasonable to introduce the par-

tially coherent impedance matrix, Zc, which has matrix

elements Zcij ¼ Zijjcijj where jcijj ¼ þ
ffiffiffiffiffi
c2ij

q
is the linear

coherence between sources i and j. To emphasize that the

power is computed from a partially coherent source, the

notation for power is also updated to Pc. These substitutions

are now made for the rest of the derivation.

Using the fact that Re zf g ¼ ð1=2Þðzþ z�Þ for any

z 2 C, Eq. (5) becomes

FIG. 1. Sample source configuration identifying the key components of the

sound power derivation. Labels are qi for the ith source strength, pi is the
total pressure on the ith source due to all sources, and Zij is the complex

conversion factor that determines the pressure at the ith source due to qj.
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Pc ¼ 1

4
qHZH

c qþ qTZT
c q

�
� �

: (6)

Furthermore, sincePc is a scalar, each term in Eq. (6) is individ-

ually a scalar and equal to its own transpose, qTZT
c q

� ¼ qHZcq.
Making this substitution and factoring out q gives

Pc ¼ 1

4
qH ZH

c þ Zc

� �
q

� �
: (7)

Noting that Zc is symmetric, ZH
c ¼ Z�

c and Eq. (7) can again

be further reduced as follows:

Pc ¼ 1

2
qHRe Zcf gq: (8)

At this point, the radiation impedance matrix corresponding

to the system needs to be specified. For monopoles in free

space, the free-field radiation function is appropriate

(Nelson et al., 1987): Zij ¼ ðjpck=4pDrijÞe�jkDrij , where

Drij ¼ jjri � rjjj2 is the distance between sources i and j.
The constants q and c are the ambient densities and sound

speed, respectively, the parameter k is the acoustic wave-

number. Note that Re Zcij

� � ¼ ðqck2=4pÞsinc kDrij
� �

cij and
for the diagonal terms, sinc kDriið Þ ! 1 since Drii ¼ 0.

Converting Eq. (8) from vector notation to a summation

yields the expression,

Pc ¼ qck2

8p

X
i;j

sinc kDrij
� �

Sij ¼ qck2

8p
sinc kDrð Þ : S; (9)

where : is the double dot product, and Sij ¼ q�i qjcij is identi-
fied as the source cross-spectral matrix (CSM), which is a

natural formulation for ESMs. Part of the elegance of Eq.

(9) is that it is physically intuitive with respect to the sour-

ces, whereas the integral in Eq. (2) simply sums the intensity

flux through a sphere. The diagonal elements identify the

self-power generated from each source, while the off-

diagonal elements indicate the power due to mutual cou-

pling effects, including any partially coherent interactions.
This expression is similar to what is found in other applica-

tions of the source sound power method (Bates et al., 2022;
Elliott and Johnson, 1993). The key difference here is that

the power calculation is cast in a cross-spectral form, which

is useful for analyzing partially coherent sources.

IV. APPLICATIONS

A. Analytical examples

To demonstrate that the expression for partially coherent

sound power based on source strengths [Eq. (9)] yields the

same results as the far-field process [Eq. (2)], the sound

power is calculated both ways for a collection of four sources

with varying degrees of coherence arranged at the corners of

a square. Figure 2 shows the assumed source configuration.

The monopoles have source strengths q ¼ q 1;�1; 1;�1½ �T
and positions r1 ¼ ðd=2Þð1; 1; 0Þ, r2 ¼ ðd=2Þð1;�1; 0Þ, r3
¼ ðd=2Þð�1;�1; 0Þ, and r4 ¼ ðd=2Þð�1; 1; 0Þ in Cartesian

space as shown in the diagram. A generic field location, r, is

included to define the spherical coordinates used in the far-

field integration required for the calculation. Three cases are

considered: first, the sources are assumed to be perfectly

coherent (the standard quadrupole), then they are assumed to

be incoherent, and finally, a partially coherent collection is

analyzed by combining the two previous cases.

1. The standard quadrupole

Consider a generic field point located at ðr; h;/Þ near

the acoustic quadrupole in Fig. 2. The distance between the

nth monopole and a location in the geometric far-field

(r � d) can be approximated (Leishman, 2022) as

Rn � r � xn sin h cos/� yn sin h sin/. The (free-field) pres-
sure due to this monopole is given by pn r; h;/ð Þ
¼ ðAn=RnÞe�jkRn where the notation for acoustic amplitude,

An ¼ jqckqn=4p, has been introduced for convenience in the

rest of the derivation. Since r � d, Rn � r is a fine approxi-
mation for the amplitude as the second and third terms con-

tribute relatively little to the final amplitude decay.

However, the full expression is required for the phase since

small changes can have a significant impact on pressure

interactions. The total pressure field is simply the sum of the

contributions from each source,

p r; h;/ð Þ ¼ A

r
e�jkR1 � e�jkR2 þ e�jkR3 � e�jkR4ð Þ: (10)

Plugging in each Rn and simplifying with trigonometric

identities yields

p r; h;/ð Þ ¼ � 4A

r
e�jkrsin

kd

2
sin h cos/

	 


	 sin
kd

2
sin h sin/

	 

: (11)

FIG. 2. Lateral quadrupole with indexed sources. A generic field point,

denoted r, is shown in spherical coordinates.
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In anticipation of future integration, Eq. (11) is simplified by

introducing the acoustic far-field assumption, kd 
 1, which

says that the source separation is small relative to an acoustic

wavelength. Recall that sinx � x for small x, and since the sine
and cosine functions are at most 1, the approximation holds to

give

p r; h;/ð Þ � �A

r
e�jkr kdð Þ2 sin2 h cos/ sin/: (12)

The time-averaged intensity is then calculated as

I ¼ Aj j2 kdð Þ4
2qcr2

sin4 h cos2/ sin2/ n; (13)

where the n is the unit vector pointing away from the origin.

The sound power follows next by evaluating the spherical

integral

P ¼ Aj j2 kdð Þ4
2qc

ð2p
0

ðp
0

sin5 h cos2/ sin2/ dh d/ (14)

¼ Aj j2 kdð Þ4
2qc

16

15

	 

p
4

	 

; (15)

P ¼ qck2

120p
kdð Þ4 qj j2: (16)

While the last two steps are straightforward, the hardest part

is creating an integrable expression for the intensity, which

is why the far-field assumption is convenient for most

source arrangements.

On the contrary, the sound power for the same configu-

ration is now evaluated directly from the sources. Given the

source description, it is straightforward to create the two

matrices required for the summation,

S ¼ qj j2
1 �1 1 �1

�1 1 �1 1

1 �1 1 �1

�1 1 �1 1

2
66664

3
77775;

Dr ¼ d

0 1
ffiffiffi
2

p
1

1 0 1
ffiffiffi
2

p
ffiffiffi
2

p
1 0 1

1
ffiffiffi
2

p
1 0

2
66664

3
77775: (17)

Taking advantage of the matrix symmetries, the complete

summation is only composed of three terms: the self-

power (diagonal elements), the mutually induced power

from the sources that are diagonal to each other (�2 terms

in Dr), and the mutually induced power from each sour-

ce’s nearest neighbors (1 in Dr). The sound power is then

calculated as

Pc ¼ qck2

2p
qj j2 1þ sinc kd

ffiffiffi
2

p� �
� 2sinc kdð Þ

� �
: (18)

Equation (18) is more exact than the far-field expression

[Eq. (16)] and is significantly easier to compute. To show

that it collapses accordingly, let kd 
 1 (the acoustic far-

field assumption) and recall that sinc x � 1� x2=3!þ x4=5!.
The sound power is then expressed as

Pc � qck2

2p
qj j2
 
1þ 1� 2 kdð Þ2

3!
þ 4 kdð Þ4

5!

� 2þ 2 kdð Þ2
3!

� 2 kdð Þ4
5!

!
; (19)

Pc ¼ qck2

120p
kdð Þ4 qj j2: (20)

For significantly less work, the same expression is recovered

using the Nelson et al. (1987) approach.

2. Incoherent sources

The same procedure is now applied to the same source

arrangement, but with the assumption that each monopole

radiates incoherently. In terms of the analytic derivation,

the primary difference comes in the calculation of inten-

sity. Recall that for coherent sources, jpj2 ¼ jp1 þ p2j2,
while for incoherent sources jpj2 ¼ p1j j2 þ p2j j2. Thus, the
p2 term in the intensity formula is instead calculated as

pj j2 ¼
X4
n¼1

pnp
�
n; (21)

¼
X4
n¼1

An

r
e�jkRn

A�
n

r
ejkRn ; (22)

pj j2 ¼ 4 Aj j2
r2

: (23)

Note that Eq. (22) uses the pressure as seen in the geomet-

ric far-field, which simplifies the expression by ignoring

any slight pressure differences due to the sources being

off-center. Said another way, an observer in the geometric

far-field sees the four monopoles as being co-located, and

there is no angular component to their radiation.

Additionally, since the monopoles radiate incoherently,

there is no phase interaction, and the resultant pressure is

identical to the case of a single monopole with four times

the source strength. Computing the intensity and then the

sound power is straightforward,

I ¼ 2 Aj j2
qcr2

n; (24)

P ¼ 2 Aj j2
qc

ð2p
0

ðp
0

sin h dh d/; (25)

P ¼ qck2 qj j2
2p

: (26)
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When calculating the sound power using Eq. (9), the matrix

S becomes qj j2 times the identity matrix. This is because the

cross-spectrum between each pair of sources becomes zero

when there is no coherence [see Eq. (1)]. The distance

matrix remains unchanged. Evaluating the summation yields

the same expression as previously noted with virtually no

effort,

Pc ¼ qck2

2p
qj j2: (27)

3. Partially coherent sources

To conclude, consider a superposition of the two previous

examples. Since they must combine incoherently, the total

source strength is given by summing the squared source

strengths. Requiring that the total source strength be the same

as the previous two examples yields the relationship qj j2
¼ qcohj j2 þ qincj j2 ¼ a qj j2 þ 1� að Þ qj j2 for some parameter

0 � a � 1. The last equality is included to explicitly show

how much coherent ( qcohj j2 ¼ a qj j2) and incoherent

( qincj j2 ¼ 1� að Þ qj j2) energy is provided by each set. The

cross-spectrum between the ith and jth source is calcu-

lated as

Gij ¼ q�i qj
� � ¼ qcohi þ qincið Þ� qcohj þ qincjð Þ

� �
¼ q�cohiqcohj þ q�cohiqincj þ q�inciqcohj þ q�inciqincj
� �

¼ a qh i2: (28)

The last equality holds because the cross-spectrum between

two incoherent sources is, by definition, zero and only the

coherent term remains. Similarly, the autospectrum for the

ith source is calculated as

Gii ¼ q�i qi
� � ¼ qcohi þ qincið Þ� qcohi þ qincið Þ� �

¼ q�cohiqcohi þ q�cohiqinci þ q�inciqcohi þ q�inciqinci
� �

¼ a qh i2 þ 1� að Þ qh i2 ¼ qh i2: (29)

The coherence between any two sources is then given by

Eq. (1) as a function of a

c2ij ¼
a2 qh i2


 

2
qh i2 qh i2 ¼ a2; (30)

which identifies the parameter a as the linear coherence.
The sound power of this configuration is simple to com-

pute using the far-field method. The total squared pressure is

an incoherent sum of the squared pressures from each case,

p2total ¼ p2coh þ p:2inc: (31)

Since there are no cross-terms in the squared pressure, the

total power can be computed as a linear sum of the power of

each quadrupole,

Ptotal ¼ Pcoh þPinc: (32)

Plugging in Eqs. (16) and (26) gives an expression for the

total power

¼ qck2

120p
kdð Þ4 qcohj j2 þ qck2

2p
qincj j2; (33)

which is then simplified in terms of a as

Ptotal ¼ qck2

2p
qj j2 a

kdð Þ4
60

þ 1� að Þ
 !

: (34)

For the partially coherent method, the CSM is popu-

lated using Eq. (28) for the off-diagonal terms (accounting

for different signs in the source description) and Eq. (29) for

the main diagonal, while the distance matrix is the same as

in Eq. (17),

S ¼ a qj j2
1=a �1 1 �1

�1 1=a �1 1

1 �1 1=a �1

�1 1 �1 1=a

2
66664

3
77775;

Dr ¼ d

0 1
ffiffiffi
2

p
1

1 0 1
ffiffiffi
2

pffiffiffi
2

p
1 0 1

1
ffiffiffi
2

p
1 0

2
66664

3
77775: (35)

The partially coherent sound power from these matrices is

calculated as

Pc ¼ qck2

8p
a qj j2 4

a
þ4sinc kd

ffiffiffi
2

p� �
�8sinc kdð Þ

	 

: (36)

Making the same far-field approximation as in the coherent

case simplifies Eq. (36) as follows:

Pc ¼ qck2

8p
a qj j2

 
4

a
þ 4� 8 kdð Þ2

3!
þ 16 kdð Þ4

5!

� 8þ 8 kdð Þ2
3!

� 8 kdð Þ4
5!

!
; (37)

Pc ¼ qck2

2p
qj j2 a

kdð Þ4
60

þ 1� að Þ
 !

; (38)

which is identical to Eq. (34). While not included here, this

same procedure applies to systems of arbitrary coherence

between monopoles. For the standard method, this would result

in a summation like Eq. (32), where each term is the sound

power from some partial source, essentially performing a par-

tial field decomposition. The active and nonnegative intensity

methods (Williams, 1995; Liu et al., 2016) could also be

applied to this situation; however, given that they assume a

coherent source description, the same partial field decomposi-

tion approach would have to be applied. Given the usefulness

of these methods, it would be beneficial to explore how partial
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coherence impacts the supersonic wavenumbers, but that is

beyond the scope of this paper. The partially coherent sound

power approach sidesteps this added complication by account-

ing for the coherence directly in the description of S. It should

be noted that due to the matrix formulation of this approach,

numerical power calculations using this method are faster than

other forms of numerical far-field integration.

B. Example systems

Following the previous validation discussion, it is impor-

tant to discuss what types of partially coherent systems benefit

the most from this method. For systems beyond simple point

sources, there are two components in the partially coherent

sound power that drive off-diagonal terms to zero. The first of

these is the coupling distances between sources, and the second

is the natural coherence lengths present in the system. Both

will be discussed in the remainder of the paper.

From Eq. (9), the coupling distance between sources is

governed by the sincðkDrijÞ term. Due to the oscillatory

nature of the sinc function, it is difficult to prescribe an

exact distance over which sources couple. However, in the

work surrounding this paper, we have found that kDr � 2p,
or Dr � k appears to be a good cutoff. This distance cap-

tures the first two cycles of the sinc function and captures

about 90% of the total integrated value. Using this as a cut-

off metric implies that interactions between sources sepa-

rated by more than about one wavelength are negligible

regardless of their coherence. The effect is a diagonal mask

passed across the source CSM before the summation is exe-

cuted. This coupling distance is most important relative to

the system’s coherence length, Lc2 , which is the distance

across which the coherence is greater than 0.5. When Lc2 is
greater than the coupling distance, excess coherence is

ignored, and the sound power can be calculated as though

the sources were perfectly coherent.

An important consideration when using the sound

power calculation (and generally in acoustic modeling) is

the discretization of the underlying sources. Generally, a

functioning ESM is limited in frequency by the separation

distance between underlying sources. From the Nyquist

sampling theorem, a minimum of two sources per wave-

length should be present to avoid aliasing. While this is

important for accurate radiation, it is doubly important for

computing the partially coherent sound power. In cases

where there is an insufficient number of sources for a given

frequency, the coupling distance drops below the source res-

olution, which has the effect of forcing each source to be

treated independently, and coherence no longer matters.

The rest of this section explores two examples demon-

strating the applicability of the partially coherent sound

power. The first is an excited plate where equivalent sources

are in close proximity and the characteristic coherence

length is variable. The second example comes from jet noise

measurements of a full-scale military aircraft, a naturally

occurring partially coherent source.

1. Partially coherent plate

Consider a square vibrating plate that is modeled as a

collection of elementary radiators by subdividing the

domain into smaller regions, each of which can be assigned

a displacement amplitude that directly relates to its acoustic

source strength. The plate is driven in such a way that all

points are excited equally, but with an inter-source coher-

ence of c2 ¼ e�ln 2ð Þr=Lc2 . With this model, the source CSM is

given as Sij ¼ qj j2e�ln 2ð Þrij=2Lc2 . While such a scenario is a bit

idealized, the source strength distribution and the coherence

models can be replaced without impacting the key results

presented here. One relevant example is flow-induced noise,

such as on an airfoil or a fuselage. In these cases, the source

strength distribution and coherence can be determined using

something more realistic, such as the Corcos model (Corcos,

1963), see also Soranna et al. (2024). These have not been

implemented here as the simpler model is more convenient

for the purposes of this paper.

Returning to the vibrating plate, suppose the plate has a

side length of L ¼ 0:5m, discretized into 100 elementary

FIG. 3. Sample source CSM and distance matrix for partially coherent sound power calculations. The coherence length for this example is Lc2=k ¼ 0:05.
The CSM has been normalized by source strength and the distance by plate side length.
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radiators (5:5 cm spacing). The sound power of this configu-

ration is computed using Eq. (9) for a range of coherence

lengths at a frequency of 200Hz. Figure 3 shows the S and

Dr matrices for the configuration with a normalized coher-

ence length of Lc2=k ¼ 0:05. This normalization by wave-

length was chosen to remove the direct impact of the

frequency on the sound power trends; as such, performing

the same calculation at other frequencies results in qualita-

tively similar results. For ease of generalization, the CSM

has been normalized by the squared source strength, result-

ing in a source map of the linear coherence. Similarly, the

distance matrix has been normalized by the plate edge

length to remove the impact of plate dimensions. Note that

both are Toeplitz symmetric matrices, a feature common to

plate measurements (Ebeling et al., 2022).
The partially coherent sound power of this configu-

ration is computed using Eq. (9) for a range of coherence

lengths at a frequency of 200 Hz. For comparison pur-

poses, the sound power is also computed assuming a per-

fectly coherent or incoherent source description. These

results are plotted in Fig. 4 with the coherent and inco-

herent sound powers plotted in red and the partially

coherent sound power in black. A vertical line is also

included at Lc2=k ¼ 1 to denote the effective coupling

distance between sources. At small normalized coher-

ence lengths, the partially coherent sound power is

approximated by the incoherent sound power. This

approximation becomes valid because, as the coherence

length becomes smaller, there is less interaction between

sources, and it can be treated incoherently. At the other

extreme, as coherence lengths increase beyond the cou-

pling distance, the sound power can be approximated

using a coherent source, even though the plate is not

fully coherent. Between these two extremes is where

partially coherent interactions are required when com-

puting the sound power.

2. Military jet noise

The final application of the method involves a more

complicated, experimental noise source: a jet produced by a

T-7A installed GE-F404 engine, which represents a partially

coherent noise source (Mathews and Gee, 2024). This exper-

iment was conducted in the early hours of 18 August 2019,

at Holloman Air Force Base in New Mexico, and featured

over 200 microphones covering the acoustic near and far

fields. The near field was sampled at 204.8 kHz by an array

of 120 GRAS 46BD and 46BG 1=4” (GRAS, Holte,

Denmark) pressure microphones. The array used for this

analysis is shown in Fig. 5 and plotted as a function of noz-

zle diameter (D). The array ran parallel to the jet centerline

in the forward direction and then parallel to the expected

shear layer downstream of the nozzle. Each microphone was

taped to the ground to help mitigate ground reflections. The

inter-element spacing varied across the array, with smaller

intervals near the sideline and larger spacing at the far

downstream segment of the array. Due to the nature of the

array, aliasing begins to occur at a spatial Nyquist frequency

FIG. 4. Sound power as a function of normalized coherence length. The

black curve shows the partially coherent sound power, while the red lines

show the fully coherent and fully incoherent cases, respectively. A vertical

line identifies the effective coupling distance.

FIG. 5. Schematic of the T-7A imag-

ing array. A few inlet angles are shown

relative to the MARP to demonstrate

the angular span of the near-field

measurement.
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of about 500Hz, though this is addressed later. Inlet angles

relative to the microphone array reference point (MARP) at

various microphone positions have been highlighted to dem-

onstrate the angular span of the near-field measurement.

This same array has been used in several other studies on jet

noise source characterization of this military aircraft

(Olaveson and Gee, 2024; Mathews and Gee, 2024; Gee

et al., 2025). The far-field was measured using five arcs at

19, 38, 76, 152, and 229m, centered on the MARP and ele-

vated five feet off the ground. This validation compares

sound power calculations using the near-field data to those

made using the 38 and 76m arcs as processed by Pratt et al.
(2025)

The aircraft was cycled through six engine conditions,

ranging from idle to full afterburner (AB), including mili-

tary power (MIL), or 100% thrust. Each condition was held

long enough to allow for at least 30 s of steady-state data.

Each run-up was repeated six times to allow for broader

averaging. Further details on this measurement can be found

in Leete et al. (2021).
Spectral data collected by the imaging array were proc-

essed from the 30 s recordings for frequencies ranging from

3 to 1000Hz with a 3Hz resolution and compiled into

CSMs. Since this includes frequencies beyond the spatial

Nyquist frequency, each CSM is interpolated using

UPAINT (unwrapped-phase array interpolation) as in

Mathews and Gee (2024), which has been shown to effec-

tively reduce aliasing features (such as grating lobes) while

maintaining fidelity to the measured field. For each fre-

quency, an ESM is created using the hybrid beamforming

(HM) method as presented by Padois et al. (2014) and

applied to this same T-7A dataset by Olaveson and Gee

(2025). The HM method uses measured CSMs to solve the

regularized inverse problem for the complex source

strengths of a collection of monopoles at presumed loca-

tions, allowing for partially coherent interactions between

all sources. The result is a cross-spectral representation of

the noise source. For this application, each ESM is cast onto

a set of monopoles along the jet centerline ranging from

about �6 to 65D relative to the nozzle exit with an inter

source spacing of 0.2D as shown in the left panel of Fig. 6.

This spacing is dense enough to capture the wavelengths of

the desired frequencies and the aperture is large enough to

smoothly taper source strengths to zero at the edges for all

frequencies. Note that the spatial limits in Fig. 6 are reduced

from the full ESM to better emphasize the relevant sources.

To account for ground reflections caused by the rigid

ground, an identical set of monopoles is included beneath

the aircraft to act as an image source. After the HM process-

ing is complete, the image sources are removed for the rest

of the analysis to simulate a free-field environment. The

right panel of Fig. 6 shows a colormap of the free-field

source CSM. The partially coherent nature of the noise

source can be seen by the vanishing nature of the off-

diagonal elements, which shows that sources are only coher-

ent with those nearest themselves. There are other interest-

ing coherence features present in this source CSM, but these

will not be discussed here. Instead, the reader is directed to

Mathews and Gee (2024) for a more involved discussion on

the coherence properties of the T-7A jet.

Figure 6 contains all the information needed to evaluate

the partially coherent sound power, which is done for each fre-

quency and then compiled into a single sound power spectrum.

For comparison purposes, the sound power is also calculated

using a fully coherent and a fully incoherent source model.

For this same measurement, Christian et al. (2023) and
Pratt et al. (2025) used two far-field arcs to determine over-

all and frequency-dependent sound power levels. Their

approach assumes that the source can be treated as axisym-

metric and that the intensity can be calculated using a far-

field approximation. The pressure measurements at the far-

field arcs then constitute a representative slice of the pres-

sure field, which can then be used to construct a closed sur-

face around the jet. Ground reflections are handled using an

FIG. 6. Left, the distribution of reconstructed source locations for the beamforming. The array beneath the aircraft acts as an image source, which is then

removed in the rest of the processing to simulate a free-field environment. Right, a colormap of a sample ESM at 201Hz, which represents a peak frequency.

The spatial limits for this example have been reduced to focus on the prominent sources.
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empirical model that accounts for atmospheric turbulence

and finite ground impedance, proposed by Daigle (1979)

and implemented for extended noise sources by Gee et al.
(2014). For further details on how the ground reflections are

handled in this case, the reader is directed towards Christian

et al. (2022)
Figure 7 compares the sound power calculated from the

ESM to the measured sound power for both MIL (left) and AB

(right). Included in the upper left corner is the overall sound

power level (OAPWL) calculated using the HM results.

Christian et al. (2023) showed that the OAPWL for the T-7A

is between 167.7 and 170.5 dB re 1 pW for MIL and between

172.1 and 174.1 dB for AB. From the HM, the OAPWL is cal-

culated as 168.3 dB at MIL and 173.3 dB at AB, which fits

within the ranges of the experimental data.

Each plot in Fig. 7 contains two primary sound power

spectra: one from the HM-derived source and one for the

measured T-7A sound power spectra. In addition to these

are two fainter curves in red corresponding to the fully

coherent and fully incoherent sound powers that act as limit-

ing cases. The T-7A spectrum is an average of the two

sound power spectra taken at the 38m and 76m far-field

arcs from Pratt et al. (2025). Frequencies above 500Hz have
been greyed out to indicate that the HM relies on an interpo-

lated CSM beyond the spatial Nyquist frequency. For MIL

(left), the two curves are in generally good agreement up to

about 500Hz where the HM curve misses the peak in the T-

7A spectrum by a little less than 1 dB. Beyond this point,

the high-frequency slopes diverge.

Some of the slope disagreement has to do with the ground

reflection model implemented by Pratt et al. (2025). Their
model assumes that the ground reflection can be modeled as a

partially coherent interaction with the ground. While their

approach is justifiable and has been validated, their results still

show evidence of a ground reflection null at around 1 kHz.

The effect is that the spectral slope decreases much faster than

it should leading up to those frequencies, which is observed in

Fig. 7. From Eldred (1971), the high-frequency spectral slope

is expected to decay at a rate of 1=f 2, or 20 dB per decade on

a log-log scale. The Pratt et al. (2025) high-frequency slope is

more than 30 dB per decade. On the contrary, the sound power

computed using the beamforming has a spectral slope of about

13 dB per decade at MIL. Neither spectral slope is quite right,

but the implication is that the true sound power exists some-

where between these two curves, and most likely closer to the

beamformed results. The beamforming overprediction is likely

a limitation in the signal processing, despite the application of

UPAINT. It is possible that during the phase unwrapping and

interpolation, the coherence between measured signals is artifi-

cially inflated, which would lead to more energy at the higher

frequencies.

The results at AB (right) are comparable to those of

MIL and exhibit the same spectral slope disagreement dis-

cussed previously.

The other feature in Fig. 7 is the comparison between the

incoherent, partially coherent, and fully coherent sound power

spectra. As noted in Sec. IVB1, partially coherent interactions

become unimportant when the coherence lengths are much

longer than the coupling distance, and the entire system can be

treated as coherent when determining the sound power. From

the similarity between the fully coherent model and the par-

tially coherent one, it becomes clear that this is true for the

high-frequency radiation of the T-7A jet. While it is well

known that the jet coherence length decreases with increasing

frequency (Swift et al., 2018), the coupling distance decreases

faster, such that for frequencies above a few hundred Hz,

Lc2 > k holds and the source can be approximated as coherent.

At frequencies below about 200Hz, which is still within the

peak radiation region, partially coherent interactions are impor-

tant to the source description.

FIG. 7. Sound power spectra calculated from the Hybrid Method ESM compared to spectra from the measured far-field data after correcting for ground

reflections. The overall sound power level calculated from the beamforming is included in the top left of each plot. The greyed-out region on the right indi-

cates frequencies above the spatial Nyquist frequency where the HM processing relies on interpolation. Two red curves identify the sound power computed

with a fully coherent and a fully incoherent source model.
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The incoherent source model is virtually never a good

model for the source, though the trend suggests that the

three methods converge at sufficiently high frequencies.

This is less of a limiting behavior and more of an indication

that, at higher frequencies, the density of the beamforming

array is insufficient to describe the noise source.

V. CONCLUSION

This paper extends the formulation of Nelson et al.
(1987), who demonstrated that the sound power radiated by

an arbitrary collection of monopoles can be computed using a

radiation resistance matrix that captures mutual coupling

between sources. Using a key result from Li et al. (1998),
that the interaction between acoustic sources is scaled by their

linear coherence, the partial coherence is incorporated into

this framework. It is shown that the coherence appears as a

minor scaling term that can be included in the radiation resis-

tance matrix. If the sources are instead compiled into a CSM,

which is a natural representation for many ESMs, the total

power becomes a simple double summation. The utility of

this approach is demonstrated by computing the sound power

from a lateral quadrupole using the standard far-field method

versus the matrix approach. This example highlights the

impact of partial coherence on the radiated sound power and

the simplicity of this new method. Other sound power meth-

ods, such as the supersonic intensity, could also be extended

to account for partially coherent interactions. Such an exten-

sion would likely provide physical insights into how coher-

ence impacts structural radiation modes.

While this method is valid, there are two factors that

work to suppress off-diagonal source interactions: the cou-

pling distance and the coherence length. Coupling between

sources is a function of their separation distance. When

sources are far apart with respect to a wavelength, there is

minimal coupling and thereby no cross-term contributions

from these sources. This effectively creates a mask over the

source CSM that limits which cross-terms contribute to the

overall power. The coherence length describes the physical

distance over which sources are coherent. If the coherence

length is smaller than the physical extent of the system,

some sources will be incoherent with others, and their cross-

terms do not contribute to the overall sound power. When

the coherence length is larger than the coupling distance

(about one wavelength), the masking effect dominates, and

any excess coherence can be ignored. The result is that the

same sound power can be calculated by assuming that all

the sources in the model are perfectly coherent with each

other. This relationship (Lc2 > k) provides an important

metric for determining when partially coherent interactions

are important to the radiated sound power.

To demonstrate these regimes, two examples are presented.

The first is a plate that is excited by a partially coherent source

with a characteristic coherence length, which is the case for tur-

bulent flow over an airfoil and for structural vibrations induced

by a jet or rocket plume. This numerical example varies the

source coherence length and demonstrates the collapse of the

partially coherent sound power to that of the fully coherent

model. The second example uses noise data from a full-scale

military jet to construct an ESM using hybrid beamforming

(Padois et al., 2014). The (free-field) sound power is calculated
directly from the ESM and compared to the sound power calcu-

lated from far-field arcs at the same measurements. Both meth-

ods agree to within less than 1 dB below the spatial Nyquist

frequency for MIL and AB operating conditions. Beyond this

point, the high-frequency slopes diverge due to limitations in

the beamforming processing and the ground reflection correc-

tion model used by Pratt et al. (2025). While one would expect

a partially coherent jet to be the natural application of this

method, it is also seen that partially coherent interactions are

unimportant to the sound power at higher frequencies. The rea-

son for this is that while the jet coherence lengths decrease rap-

idly with increasing frequency, the coupling distance decreases

faster, pushing the jet into the coherent regime for all but the

lowest frequencies.

In conclusion, this paper presents a succinct method for

determining the sound power generated by a partially coherent

source. While this method has been applied to a free-field envi-

ronment, a different radiation resistance matrix can be used in

Eq. (8) that better captures restrictions of a system that cannot

be modeled as a free-field radiator. In these cases, the coupling

distance restriction discussed in this paper will depend on the

form of that matrix. Future applications of this method include

turbulent flow over an airfoil, as discussed earlier, as well as

low-frequency turbulent flows, such as noise radiation from

rocket plumes. Additionally, since this derivation is based on

the approach used in ANC, the application to noise control of a

partially coherent source would be a natural project for future

work. Other jet noise regimes should also be investigated, such

as noise radiation from subsonic jets as well as consistency

with other full-scale military aircraft.
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