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Sound power from a collection of monopoles with arbitrary
coherence: Theory and application to aeroacoustic noise sources
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ABSTRACT:

Sound power is a fundamental characteristic of an acoustic source that is critical to developing radiation models.
Current analytical methods for calculating sound power from a collection of monopoles either assume perfect
coherence or incoherence. However, partially coherent sources are plentiful in structural acoustics and aeroacoustic
applications. This paper expands the approach of Nelson, Curtis, Elliott, and Bullmore [(1987). J. Sound Vib. 116,
397-414], who calculated sound power due to mutual coupling between coherent sources, to allow for partially
coherent interactions. This expression is used to find the sound power from quadrupole-like source configurations
with varying degrees of coherence. When calculating the sound power, partially coherent interactions are limited by
two factors: a coupling distance and the coherence length. A numerical example of a driven plate is used to demon-
strate the regions where the partially coherent sound power is most applicable. It is shown that when the system
coherence length is larger than about one wavelength, the sound power can be calculated assuming a fully coherent
source. A final example is shown for the T-7A jet at MIL and AB engine conditions. Sound power spectra are created
from an equivalent source model of partially coherent monopoles and compared to measured far-field spectra.
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I. INTRODUCTION

Sound power is a fundamental metric that quantifies the
acoustic energy radiated by a noise source. It plays an
important role in assessing the impact of noise and design-
ing noise control strategies. To ensure consistency between
measurements, both the International Organization for
Standardization (ISO, 2019) and the American National
Standards Institution (ANSI/ASA, 2012) have established
guidelines for determining sound power levels (see ISO
3740:2019 and ANSI S12.51-2002).

In aeroacoustics, sound power calculations began as far
back as Lighthill (1952), who developed general expressions
for the acoustic intensity radiated by a turbulent jet, with the
sound power being the integral of the intensity flux across a
closed sphere. His development established important con-
nections between the velocity of a jet, u, and its radiated
power, most notably that the power scales by u® for subsonic
jets. For supersonic jets, Ffowcs Williams (1963) showed
that the sound power scales as u>. Nagamatsu et al. (1969)
used a laboratory-scale jet covering a range of subsonic and
supersonic exit velocities to confirm these relationships and
further explore spatial and spectral source properties of the
radiated power. In cases when flow data are available,
Eftekharian et al. (2023) proposed a matrix-based approach
to the sound power using the Lighthill stress tensor. Their
method identifies the radiating components of the stress ten-
sor, which are qualitatively similar to structural radiation
modes, and sums up the individual contributions. Their
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method was validated and applied to collections of vortices
at various Mach numbers. For full-scale jet sources,
Christian et al. (2023) used far-field measurements of a
T-7A jet to determine overall sound power levels as a func-
tion of engine power. A follow-up study by Pratt et al.
(2025) computed frequency-dependent sound power levels
and provided a comparison between full-scale military air-
craft and rockets. Sound power has also been featured prom-
inently in rocket noise studies (e.g., McInerny, 1992; Lubert
et al., 2022; Kellison and Gee, 2023).

For sound power calculations in structural acoustics,
some methods divide the radiated intensity into active
(supersonic) and passive (subsonic) components. The active
component radiates to the far-field, while the passive com-
ponent evanesces (Williams, 1995). In this light, the sound
power can be computed by determining the active intensity
while ignoring the passive components; the standard surface
integral can then be evaluated as normal. To this end, a
number of analytic filtering schemes have been developed to
determine these components, including a wavenumber
decomposition (Williams, 1998) and spatially using convo-
lutions (Fernandez-Grande et al., 2012). In cases where the
system geometry becomes complex, numerical schemes are
available (see Correa and Tenenbaum, 2013, and Ferreira
et al., 2019). A related method called the nonnegative inten-
sity divides the structure into radiation modes and computes
the sound power based on the mode shape (Liu et al. 2016).

Another approach to calculating the acoustic field prop-
erties is to approximate the radiator with an equivalent
source model (ESM). In structural acoustics, vibrating pan-
els are commonly represented by a collection of elementary
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radiators. The velocity distribution of each of these radiators
can be measured using techniques such as scanning laser
doppler vibrometry (Rothberg et al., 2017), then a radiation
resistance matrix matching the surface geometry can be
used to convert the velocity to sound power (Bates et al.,
2022). For more challenging geometries where the radiation
resistance matrix becomes overly complex, other “lumped-
element” style approaches become necessary. Fahnline and
Koopmann (1996) suggested that when an object is divided
into smaller elementary radiators, one can use the average
volume velocities and pressures across each surface to solve
the boundary value problem presented by the Kirchoff-
Helmbholtz integral theorem. This approach allows for accu-
rate approximations without requiring excessive details
about the surface. Fritze et al. (2009) expanded on this
method and validated it against other methods of sound
power for a diesel engine. An indirect method has also been
explored by Bacon et al. (2023). One approach from active
noise control (ANC) takes advantage of mutual coupling
effects to calculate the sound power directly from the source
configuration (Nelson et al., 1987; Elliott et al., 1991). The
final expression makes use of the radiation resistance matrix
and forms the foundation for the methods used in structural
acoustics.

One drawback to these approaches is when noise sour-
ces couple only weakly or not at all. This happens when a
noise field is generated by multiple unrelated sources, when
there is extraneous noise in the system, or when the ampli-
tude and phase relationships between sources change in time
or space. The degree to which a field interacts is measured
by its coherence. Perfectly coherent interactions allow for
constructive and destructive interference and provide the
base assumption in ANC. On the other hand, for incoherent
interactions, there is no constructive or destructive interfer-
ence, and total field properties can be calculated by sum-
ming over the radiation from each contributing source.
While the role of coherence is most frequently seen in the
context of signal processing and data analysis, it is less com-
monly emphasized in theoretical or analytical derivations.
Jacobsen (1989) considers the complex intensity of an
acoustic field and develops the coherence relationship
between the sound pressure and particle velocity. In this
case, the coherence becomes a strong indicator of whether a
given field is created by one or multiple sources. Li et al.
(1998) use this relationship to develop expressions for other
energetic quantities of a partially coherent field, such as the
kinetic and potential energy densities. They also identify
that partially coherent interactions are scaled by the linear
coherence between the two fields, which is notable for the
current application. Using these principles, they develop a
method for estimating field properties from a collection of
partially coherent sources.

While partially coherent sources are plentiful, there is
relatively little work discussing the explicit impact of coher-
ence on field radiation properties. This paper combines the
coherence relationships from Li et al. (1998) with the sound
power approach from Nelson et al. (1987) to develop a
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generic expression for calculating the sound power from a
collection of partially coherent monopoles. The expression
is then validated analytically against a quadrupole-like
source configuration with varying degrees of coherence. The
limitations and use cases of this method are then explored
with a simulated plate driven by a partially coherent source.
Finally, the method is applied to experimental data from a
turbulent jet. It is shown that when a system’s coherence
length is greater than about one wavelength, the source can be
treated as coherent when calculating the sound power.
Experimentally, this new source-based approach closely
matches sound power calculations computed from far-field
measurements.

Il. COHERENCE

Consider two time signals, x and y, which are each a
measurement of an acoustic field. The coherence between
the two is a spectral quantity defined by

- |Gl
Y GGy’

ey

where G,, = (£"y) is the cross-spectrum between the signals
and Gy, and G,, are the respective autospectra (Bendat and
Piersol, 1987). The Fourier transform is denoted by ° , the
complex conjugate by (-)* and (-) is the expectation value.
The coherence is bounded by 0 < yﬁy < 1 and is a measure
of how much of the spectral energy in y is related to
the spectral energy in x. A value of 1 does not mean that
the signals are identical in the time domain, just that
there is a linear relationship between their autospectra, e.g.,
Gy = H)%yny for some transfer function H,,. By extension,

when two signals are partially coherent, yfy < 1, only a por-

tion of the energy in x is related to y, which can indicate a
nonlinearity in a system, the presence of extraneous noise,
or that the signal y is a composite of multiple signals beyond
x (Bendat and Piersol, 1987). An additional representation
of coherence comes in the form of the complex coherence,

defined as y,, = |yxy|e’j9~‘~" where |,,| = + yiy is the linear

coherence and 0., is the phase angle of G,, (Bendat and
Piersol, 1987).

In some applications, the field coherence can be defined
at a single point by replacing the time signals x and y with
the pressure and vector particle velocity time series at that
field location. This expression has a useful connection to
energetic field quantities, such as the complex acoustic
intensity and the kinetic and potential energy densities, as
discussed by Jacobsen (1989). Li ef al. (1998) used this
work to establish connections to the underlying sources. In
their work, Eq. (1) is used to calculate the coherence
between the ith and jth sources based on the time series of
their amplitudes, which are assumed to be stationary random
processes. Given a partially coherent source description, the
resultant energetic field quantities can be computed by con-
sidering pressure or particle velocity interactions between
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each pair of sources and summing the contributions from
each pair (including self-interactions). Importantly, the
cross-terms are scaled by the linear coherence between the
sources.

In practice, the source amplitude time series is neither
given nor computed, but rather, a source coherence is simply
defined. This is most prevalent in a cross-spectral ESMs,
where underlying sources are not time resolved, but rather
amplitudes are assigned to recreate the measured time-
averaged spectra. The assumption throughout this paper is
that the coherence between two sources is an inherent or
defined property and that all field quantities are time-
averaged versions of their corresponding stationary random
process.

lll. PARTIALLY COHERENT SOUND POWER

It is generally known from introductory physical
acoustics that the sound power radiated by a general source
is calculated by integrating the intensity flux through a
closed surface containing the source, i.e., Il = §SI -ds.
The acoustic intensity is taken as I = (1/2) Re{p*u} where
p* is the complex conjugate of the acoustic pressure, and u
is the acoustic particle velocity. Both are functions of posi-
tion and frequency rather than time. Note that the hat nota-
tion () has been dropped for frequency-dependent
quantities for convenience and consistency with the litera-
ture. Since exact expressions of p and u can become
unwieldy for sources more complicated than a monopole,
it is common to make the acoustic far-field assumption
(i.e., kr > 1), where the wavefronts can be approximated
as planar. For such a wave, p and u are related by the spe-
cific acoustic impedance, pc =p/|u| and the acoustic
intensity is approximated as I = (|p|*/2pc)n, where n is
the unit vector perpendicular to the wavefront. This signifi-
cantly reduces the complexity of the problem since the far-
field pressure is generally straightforward to calculate.
This far-field method has considerable use for numerical
sources since the far-field pressure of an arbitrary source
configuration can be calculated at a closed surface via the
Rayleigh integral, and the sound power quickly follows
without needing to compute the derivatives required to
construct u.

An alternative sound power calculation that does not rely
on the far-field approximation was presented by Nelson er al.
(1987) for application in ANC. Their basic process is extended
here to account for partially coherent interactions between
sources. Consider a collection of N acoustic monopoles, such
as those in Fig. 1, with complex source strengths (volume
velocities) ¢ = [q1, ...,qy]" € C" and positions r;. The sound
power from the ith monopole can then be calculated by inte-
grating across a surface enclosing the source,

1 *
IT; = EiRe{pi ui} -dS, 2)

where p; is the pressure at the surface of the ith monopole,
including contributions from all the other monopoles and u;
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FIG. 1. Sample source configuration identifying the key components of the
sound power derivation. Labels are ¢; for the ith source strength, p; is the
total pressure on the ith source due to all sources, and Z; is the complex
conversion factor that determines the pressure at the ith source due to g;.

is the total particle velocity at the source. Using properties
of the Helmholtz equation, Nelson et al. (1987) showed that
the particle velocity can be directly related to the source
strength and the sound power computed as

1
IL; = ERE{PfQi}~ (3)

The total sound power can then be calculated as the inner
product between the vector of pressures at each source,
P =[p1, ...,pN}T, and the source strengths,

1
I =2 Re{p"q}, @

where ()H is the Hermitian transpose. The pressure on one
monopole due to all the others can be calculated using the
relationship p = Zq, where Z is the complex radiation
impedance matrix (Elliott ef al., 1991) that operates on a set
of source strengths and determines the pressure at each of
the other sources (see Fig. 1). This matrix is symmetric, and
its form is frequency and geometry dependent. Making this
substitution into Eq. (4) yields the following:

H:%Re{qHZHq}. (5)

Equation (5) represents a key result from Nelson ez al. (1987)
and acts as the foundation for ANC applications such as fan
noise reduction (Gee and Sommerfeldt, 2004) and in power
measurements for structural acoustics (Bates et al., 2022).

At this point, the partial coherence between sources
needs to be accounted for. Li et al. (1998) showed that inter-
actions between partially coherent fields are scaled by the
linear coherence between their sources. Since it is the radia-
tion impedance matrix in Eq. (5) that governs interactions
between the sources, it is reasonable to introduce the par-
tially coherent impedance matrix, Z,, which has matrix

elements Z, = Z;ly;| where [y;] = +,/7; is the linear
coherence between sources i and j. To emphasize that the
power is computed from a partially coherent source, the
notation for power is also updated to IT,. These substitutions
are now made for the rest of the derivation.

Using the fact that Re{z} = (1/2)(z+z*) for any
z € C, Eq. (5) becomes

Tyce W. Olaveson and Kent L. Gee


https://doi.org/10.1121/10.0042361

1
M= (qH Zllq+q'Zq ) : ©)
Furthermore, since IT, is a scalar, each term in Eq. (6) is individ-
ually a scalar and equal to its own transpose, 4" 21 ¢* = ¢"'Z.q.
Making this substitution and factoring out ¢ gives

1

I, =- (qH (z{;’ + Z;,)q>. (7

4

Noting that Z, is symmetric, Z{;’ = Z,* and Eq. (7) can again
be further reduced as follows:

I, = %qHRe{ZT}q. ®)

At this point, the radiation impedance matrix corresponding
to the system needs to be specified. For monopoles in free
space, the free-field radiation function is appropriate
(Nelson et al., 1987): Z; = (jpck/47zAr,-j)e’jkA"'f , where
Arj = ||ri — rj||, is the distance between sources i and j.
The constants p and ¢ are the ambient densities and sound
speed, respectively, the parameter k is the acoustic wave-
number. Note that Re{Z, \ = (pck® /4m)sinc(kAr;)y; and
for the diagonal terms, sinc(kAr;) — 1 since Ar; = 0.
Converting Eq. (8) from vector notation to a summation
yields the expression,

k2 k2
I, = % %: sinc (kAry)S;; = %sinc(kAr) 'S, 9

where : is the double dot product, and S;; = ¢;¢;7;; is identi-
fied as the source cross-spectral matrix (CSM), which is a
natural formulation for ESMs. Part of the elegance of Eq.
(9) is that it is physically intuitive with respect to the sour-
ces, whereas the integral in Eq. (2) simply sums the intensity
flux through a sphere. The diagonal elements identify the
self-power generated from each source, while the off-
diagonal elements indicate the power due to mutual cou-
pling effects, including any partially coherent interactions.
This expression is similar to what is found in other applica-
tions of the source sound power method (Bates et al., 2022;
Elliott and Johnson, 1993). The key difference here is that
the power calculation is cast in a cross-spectral form, which
is useful for analyzing partially coherent sources.

IV. APPLICATIONS
A. Analytical examples

To demonstrate that the expression for partially coherent
sound power based on source strengths [Eq. (9)] yields the
same results as the far-field process [Eq. (2)], the sound
power is calculated both ways for a collection of four sources
with varying degrees of coherence arranged at the corners of
a square. Figure 2 shows the assumed source configuration.
The monopoles have source strengths g = ¢[1,—1,1, —1]"
and positions r; = (d/2)(1,1,0), r, = (d/2)(1,—1,0), r;
=(d/2)(—1,-1,0), and r4 = (d/2)(—1,1,0) in Cartesian
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FIG. 2. Lateral quadrupole with indexed sources. A generic field point,
denoted r, is shown in spherical coordinates.

space as shown in the diagram. A generic field location, r, is
included to define the spherical coordinates used in the far-
field integration required for the calculation. Three cases are
considered: first, the sources are assumed to be perfectly
coherent (the standard quadrupole), then they are assumed to
be incoherent, and finally, a partially coherent collection is
analyzed by combining the two previous cases.

1. The standard quadrupole

Consider a generic field point located at (r, 6, ¢) near
the acoustic quadrupole in Fig. 2. The distance between the
nth monopole and a location in the geometric far-field
(r>d) can be approximated (Leishman, 2022) as
R, =~ r — x, sinfcos ¢ — y, sin O sin ¢. The (free-field) pres-
sure due to this monopole is given by p,(r,0,¢)
= (A, /R,)e R where the notation for acoustic amplitude,
A, = jpckgq, /4w, has been introduced for convenience in the
rest of the derivation. Since r > d, R, =~ r is a fine approxi-
mation for the amplitude as the second and third terms con-
tribute relatively little to the final amplitude decay.
However, the full expression is required for the phase since
small changes can have a significant impact on pressure
interactions. The total pressure field is simply the sum of the
contributions from each source,

p(r,0, ¢) = (e /MR _ pikRy 4 /KRy _ kR4 ) (10
P

Plugging in each R, and simplifying with trigonometric
identities yields

4A .
p(r,0,¢) = ——e*sin (% sin 6 cos qb)

,
X sin(% sin@sinq’)). (11)
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In anticipation of future integration, Eq. (11) is simplified by
introducing the acoustic far-field assumption, kd < 1, which
says that the source separation is small relative to an acoustic
wavelength. Recall that sinx ~ x for small x, and since the sine
and cosine functions are at most 1, the approximation holds to
give

A
p(r,0,¢) ~ ——e M (kd)* sin” 0 cos ¢ sin ¢. (12)
’
The time-averaged intensity is then calculated as
20, \4
A|"(kd
I:Msin“ﬁcoszdb sin’¢ n, (13)

2pcr?

where the n is the unit vector pointing away from the origin.
The sound power follows next by evaluating the spherical
integral

2 4 2n en
H:MJ J sin’ 0 cos® ¢ sin’¢p dO d¢p (14)
2pc Jo Jo
_lafua (10} = -
 2pc \15/\4)’
’k2
= fzcﬁ (kd)*|q|>- (16)

While the last two steps are straightforward, the hardest part
is creating an integrable expression for the intensity, which
is why the far-field assumption is convenient for most
source arrangements.

On the contrary, the sound power for the same configu-
ration is now evaluated directly from the sources. Given the
source description, it is straightforward to create the two
matrices required for the summation,

1 -1 1 -1

G -1 1 -1 1
U TR b
-1 1 -1 1
0 1 V2 1
1 0 2
Ar=d V2 a7
V2 o1
1

1

0 1
V2 10
Taking advantage of the matrix symmetries, the complete
summation is only composed of three terms: the self-
power (diagonal elements), the mutually induced power
from the sources that are diagonal to each other (|2 terms
in Ar), and the mutually induced power from each sour-
ce’s nearest neighbors (1 in Ar). The sound power is then
calculated as

pck? . .

I1, = s lg|"\1+ s1nc(kd\/§) — 2sinc(kd) | . (18)

! T
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Equation (18) is more exact than the far-field expression
[Eq. (16)] and is significantly easier to compute. To show
that it collapses accordingly, let kd < 1 (the acoustic far-
field assumption) and recall that sincx ~ 1 — x?/3! + x*/5!.
The sound power is then expressed as

20kd)?  4(kd)*
3 sl

NPCkZ 2

20kd)*  20kd)*
—24+ 55 ), (19)
2
I, —&(kd)ﬂ 2. (20)

7T 120

For significantly less work, the same expression is recovered
using the Nelson et al. (1987) approach.

2. Incoherent sources

The same procedure is now applied to the same source
arrangement, but with the assumption that each monopole
radiates incoherently. In terms of the analytic derivation,
the primary difference comes in the calculation of inten-
sity. Recall that for coherent sources, |p|2 = |p1 +P2|2’
while for incoherent sources |p|* = \p1|2 + |p2|*- Thus, the
p? term in the intensity formula is instead calculated as

4
P> = pupy, 1)
n=1
YA, . AT
— Z N oIkRy . kR, , (22)
] r r
4l
p|* = —. (23)
7

Note that Eq. (22) uses the pressure as seen in the geomet-
ric far-field, which simplifies the expression by ignoring
any slight pressure differences due to the sources being
off-center. Said another way, an observer in the geometric
far-field sees the four monopoles as being co-located, and
there is no angular component to their radiation.
Additionally, since the monopoles radiate incoherently,
there is no phase interaction, and the resultant pressure is
identical to the case of a single monopole with four times
the source strength. Computing the intensity and then the
sound power is straightforward,

2|A)°
I=——>n, 24)
pcr
2 2n rm
2|1A
1= 4] J Jsin0d9d¢, (25)
pe Jo Jo
.kZ 2
=2l 26)
2n
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When calculating the sound power using Eq. (9), the matrix
S becomes |q|2 times the identity matrix. This is because the
cross-spectrum between each pair of sources becomes zero
when there is no coherence [see Eq. (1)]. The distance
matrix remains unchanged. Evaluating the summation yields
the same expression as previously noted with virtually no
effort,

B pck?

I, 2

jaf*. 27

3. Partially coherent sources

To conclude, consider a superposition of the two previous
examples. Since they must combine incoherently, the total
source strength is given by summing the squared source
strengths. Requiring that the total source strength be the same
as the previous two examples yields the relationship |q|2
= |qeon|* + |qinc|* = @|q)* + (1 — a)|g|* for some parameter
0 < o < 1. The last equality is included to explicitly show
how much coherent (\qfnh|2 = ot|q|2) and incoherent
(|q,<,,c|2 =(1- oc)|q|2) energy is provided by each set. The
cross-spectrum between the ith and jth source is calcu-
lated as

Gij = <q1*cb> = <(qc‘ol1i + qinc,-)*(CI(‘ohj + q1ncj)>
= <nghIQColzj + q:gh,‘qin(f,’ + Q?nc'iqCOIIj + q;kn(}, Qim;,>

2
= a(q)". (28)
The last equality holds because the cross-spectrum between
two incoherent sources is, by definition, zero and only the
coherent term remains. Similarly, the autospectrum for the

i™ source is calculated as

Gii = <CI:6QI> = <(qcohi + Qin(ri)*(QL'oh, + Qinc';)>
= <qjgh, qcoh; + qjgh, inc; =+ q?n('iqcollj + lem,-ﬂinc,->

= a(q)’ + (1 - 2)(q)” = (a)*. (29)
The coherence between any two sources is then given by
Eq. (1) as a function of o

2|<q>2‘2 2

x — &, 30
@2 (a) e

2 _
T =

which identifies the parameter o as the linear coherence.

The sound power of this configuration is simple to com-
pute using the far-field method. The total squared pressure is
an incoherent sum of the squared pressures from each case,

2 _ 2 2

Diotal = Pcon + Dinc- (3 1)
Since there are no cross-terms in the squared pressure, the
total power can be computed as a linear sum of the power of

each quadrupole,
Htotal = H('oh + Hinc~ (32)
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Plugging in Egs. (16) and (26) gives an expression for the
total power

pck? 4 5 pck? 2
= 1207 (kd) |(Icoh| +7|Qim‘| ) (33)
which is then simplified in terms of « as
4
pck* 5[ (kd)
Hmzm:?M <0€W4‘(1 —a) . (34)

For the partially coherent method, the CSM is popu-
lated using Eq. (28) for the off-diagonal terms (accounting
for different signs in the source description) and Eq. (29) for
the main diagonal, while the distance matrix is the same as
in Eq. (17),

1o —1 1 -1
1 1/a -1 1
1 -1 1/a —1
-1 1 -1 1/x

b

(35)

The partially coherent sound power from these matrices is
calculated as

k2 4

I, = %oqqf <a+4sinc(kd\/§) - 8sinc(kd)> . (36)
Making the same far-field approximation as in the coherent
case simplifies Eq. (36) as follows:

8(kd)>  16(kd)*
3! 5!

ck? 4
L :ps—“|q|2<—+4—
Y o

8(kd)*  8(kd)*
-8 (3!) - (5!) ) G
pck? [ (kd)*
1= g 1] 60 -9 ), ©38)

which is identical to Eq. (34). While not included here, this
same procedure applies to systems of arbitrary coherence
between monopoles. For the standard method, this would result
in a summation like Eq. (32), where each term is the sound
power from some partial source, essentially performing a par-
tial field decomposition. The active and nonnegative intensity
methods (Williams, 1995; Liu et al., 2016) could also be
applied to this situation; however, given that they assume a
coherent source description, the same partial field decomposi-
tion approach would have to be applied. Given the usefulness
of these methods, it would be beneficial to explore how partial
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coherence impacts the supersonic wavenumbers, but that is
beyond the scope of this paper. The partially coherent sound
power approach sidesteps this added complication by account-
ing for the coherence directly in the description of S. It should
be noted that due to the matrix formulation of this approach,
numerical power calculations using this method are faster than
other forms of numerical far-field integration.

B. Example systems

Following the previous validation discussion, it is impor-
tant to discuss what types of partially coherent systems benefit
the most from this method. For systems beyond simple point
sources, there are two components in the partially coherent
sound power that drive off-diagonal terms to zero. The first of
these is the coupling distances between sources, and the second
is the natural coherence lengths present in the system. Both
will be discussed in the remainder of the paper.

From Eq. (9), the coupling distance between sources is
governed by the sinc(kAr;;) term. Due to the oscillatory
nature of the sinc function, it is difficult to prescribe an
exact distance over which sources couple. However, in the
work surrounding this paper, we have found that kAr ~ 2,
or Ar ~ ] appears to be a good cutoff. This distance cap-
tures the first two cycles of the sinc function and captures
about 90% of the total integrated value. Using this as a cut-
off metric implies that interactions between sources sepa-
rated by more than about one wavelength are negligible
regardless of their coherence. The effect is a diagonal mask
passed across the source CSM before the summation is exe-
cuted. This coupling distance is most important relative to
the system’s coherence length, Ly, which is the distance
across which the coherence is greater than 0.5. When L,» is
greater than the coupling distance, excess coherence is
ignored, and the sound power can be calculated as though
the sources were perfectly coherent.

An important consideration when using the sound
power calculation (and generally in acoustic modeling) is
the discretization of the underlying sources. Generally, a
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functioning ESM is limited in frequency by the separation
distance between underlying sources. From the Nyquist
sampling theorem, a minimum of two sources per wave-
length should be present to avoid aliasing. While this is
important for accurate radiation, it is doubly important for
computing the partially coherent sound power. In cases
where there is an insufficient number of sources for a given
frequency, the coupling distance drops below the source res-
olution, which has the effect of forcing each source to be
treated independently, and coherence no longer matters.

The rest of this section explores two examples demon-
strating the applicability of the partially coherent sound
power. The first is an excited plate where equivalent sources
are in close proximity and the characteristic coherence
length is variable. The second example comes from jet noise
measurements of a full-scale military aircraft, a naturally
occurring partially coherent source.

1. Partially coherent plate

Consider a square vibrating plate that is modeled as a
collection of elementary radiators by subdividing the
domain into smaller regions, each of which can be assigned
a displacement amplitude that directly relates to its acoustic
source strength. The plate is driven in such a way that all
points are excited equally, but with an inter-source coher-

ence of 7> = e M@r/L2 \With this model, the source CSM is

given as S;; = |q|ze_l“(2>""f/ 22 While such a scenario is a bit

idealized, the source strength distribution and the coherence
models can be replaced without impacting the key results
presented here. One relevant example is flow-induced noise,
such as on an airfoil or a fuselage. In these cases, the source
strength distribution and coherence can be determined using
something more realistic, such as the Corcos model (Corcos,
1963), see also Soranna et al. (2024). These have not been
implemented here as the simpler model is more convenient
for the purposes of this paper.

Returning to the vibrating plate, suppose the plate has a
side length of L = 0.5m, discretized into 100 elementary

100

Source index

FIG. 3. Sample source CSM and distance matrix for partially coherent sound power calculations. The coherence length for this example is L,» /4 = 0.05.
The CSM has been normalized by source strength and the distance by plate side length.
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FIG. 4. Sound power as a function of normalized coherence length. The
black curve shows the partially coherent sound power, while the red lines
show the fully coherent and fully incoherent cases, respectively. A vertical
line identifies the effective coupling distance.

radiators (5.5 cm spacing). The sound power of this configu-
ration is computed using Eq. (9) for a range of coherence
lengths at a frequency of 200 Hz. Figure 3 shows the S and
Ar matrices for the configuration with a normalized coher-
ence length of L, /4 = 0.05. This normalization by wave-
length was chosen to remove the direct impact of the
frequency on the sound power trends; as such, performing
the same calculation at other frequencies results in qualita-
tively similar results. For ease of generalization, the CSM
has been normalized by the squared source strength, result-
ing in a source map of the linear coherence. Similarly, the
distance matrix has been normalized by the plate edge
length to remove the impact of plate dimensions. Note that
both are Toeplitz symmetric matrices, a feature common to
plate measurements (Ebeling et al., 2022).

The partially coherent sound power of this configu-
ration is computed using Eq. (9) for a range of coherence

lengths at a frequency of 200 Hz. For comparison pur-
poses, the sound power is also computed assuming a per-
fectly coherent or incoherent source description. These
results are plotted in Fig. 4 with the coherent and inco-
herent sound powers plotted in red and the partially
coherent sound power in black. A vertical line is also
included at L,,/A =1 to denote the effective coupling
distance between sources. At small normalized coher-
ence lengths, the partially coherent sound power is
approximated by the incoherent sound power. This
approximation becomes valid because, as the coherence
length becomes smaller, there is less interaction between
sources, and it can be treated incoherently. At the other
extreme, as coherence lengths increase beyond the cou-
pling distance, the sound power can be approximated
using a coherent source, even though the plate is not
fully coherent. Between these two extremes is where
partially coherent interactions are required when com-
puting the sound power.

2. Military jet noise

The final application of the method involves a more
complicated, experimental noise source: a jet produced by a
T-7A installed GE-F404 engine, which represents a partially
coherent noise source (Mathews and Gee, 2024). This exper-
iment was conducted in the early hours of 18 August 2019,
at Holloman Air Force Base in New Mexico, and featured
over 200 microphones covering the acoustic near and far
fields. The near field was sampled at 204.8 kHz by an array
of 120 GRAS 46BD and 46BG !/;7 (GRAS, Holte,
Denmark) pressure microphones. The array used for this
analysis is shown in Fig. 5 and plotted as a function of noz-
zle diameter (D). The array ran parallel to the jet centerline
in the forward direction and then parallel to the expected
shear layer downstream of the nozzle. Each microphone was
taped to the ground to help mitigate ground reflections. The
inter-element spacing varied across the array, with smaller
intervals near the sideline and larger spacing at the far
downstream segment of the array. Due to the nature of the
array, aliasing begins to occur at a spatial Nyquist frequency

FIG. 5. Schematic of the T-7A imag-
ing array. A few inlet angles are shown
relative to the MARP to demonstrate
the angular span of the near-field
measurement.
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of about 500 Hz, though this is addressed later. Inlet angles
relative to the microphone array reference point (MARP) at
various microphone positions have been highlighted to dem-
onstrate the angular span of the near-field measurement.
This same array has been used in several other studies on jet
noise source characterization of this military aircraft
(Olaveson and Gee, 2024; Mathews and Gee, 2024; Gee
et al., 2025). The far-field was measured using five arcs at
19, 38, 76, 152, and 229 m, centered on the MARP and ele-
vated five feet off the ground. This validation compares
sound power calculations using the near-field data to those
made using the 38 and 76 m arcs as processed by Pratt ez al.
(2025)

The aircraft was cycled through six engine conditions,
ranging from idle to full afterburner (AB), including mili-
tary power (MIL), or 100% thrust. Each condition was held
long enough to allow for at least 30s of steady-state data.
Each run-up was repeated six times to allow for broader
averaging. Further details on this measurement can be found
in Leete et al. (2021).

Spectral data collected by the imaging array were proc-
essed from the 30 s recordings for frequencies ranging from
3 to 1000Hz with a 3Hz resolution and compiled into
CSMs. Since this includes frequencies beyond the spatial
Nyquist frequency, each CSM is interpolated using
UPAINT (unwrapped-phase array interpolation) as in
Mathews and Gee (2024), which has been shown to effec-
tively reduce aliasing features (such as grating lobes) while
maintaining fidelity to the measured field. For each fre-
quency, an ESM is created using the hybrid beamforming
(HM) method as presented by Padois et al. (2014) and
applied to this same T-7A dataset by Olaveson and Gee
(2025). The HM method uses measured CSMs to solve the
regularized inverse problem for the complex source
strengths of a collection of monopoles at presumed loca-
tions, allowing for partially coherent interactions between
all sources. The result is a cross-spectral representation of

the noise source. For this application, each ESM is cast onto
a set of monopoles along the jet centerline ranging from
about —6 to 65D relative to the nozzle exit with an inter
source spacing of 0.2D as shown in the left panel of Fig. 6.
This spacing is dense enough to capture the wavelengths of
the desired frequencies and the aperture is large enough to
smoothly taper source strengths to zero at the edges for all
frequencies. Note that the spatial limits in Fig. 6 are reduced
from the full ESM to better emphasize the relevant sources.
To account for ground reflections caused by the rigid
ground, an identical set of monopoles is included beneath
the aircraft to act as an image source. After the HM process-
ing is complete, the image sources are removed for the rest
of the analysis to simulate a free-field environment. The
right panel of Fig. 6 shows a colormap of the free-field
source CSM. The partially coherent nature of the noise
source can be seen by the vanishing nature of the off-
diagonal elements, which shows that sources are only coher-
ent with those nearest themselves. There are other interest-
ing coherence features present in this source CSM, but these
will not be discussed here. Instead, the reader is directed to
Mathews and Gee (2024) for a more involved discussion on
the coherence properties of the T-7A jet.

Figure 6 contains all the information needed to evaluate
the partially coherent sound power, which is done for each fre-
quency and then compiled into a single sound power spectrum.
For comparison purposes, the sound power is also calculated
using a fully coherent and a fully incoherent source model.

For this same measurement, Christian ef al. (2023) and
Pratt et al. (2025) used two far-field arcs to determine over-
all and frequency-dependent sound power levels. Their
approach assumes that the source can be treated as axisym-
metric and that the intensity can be calculated using a far-
field approximation. The pressure measurements at the far-
field arcs then constitute a representative slice of the pres-
sure field, which can then be used to construct a closed sur-
face around the jet. Ground reflections are handled using an
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FIG. 6. Left, the distribution of reconstructed source locations for the beamforming. The array beneath the aircraft acts as an image source, which is then
removed in the rest of the processing to simulate a free-field environment. Right, a colormap of a sample ESM at 201 Hz, which represents a peak frequency.
The spatial limits for this example have been reduced to focus on the prominent sources.
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empirical model that accounts for atmospheric turbulence
and finite ground impedance, proposed by Daigle (1979)
and implemented for extended noise sources by Gee et al.
(2014). For further details on how the ground reflections are
handled in this case, the reader is directed towards Christian
et al. (2022)

Figure 7 compares the sound power calculated from the
ESM to the measured sound power for both MIL (left) and AB
(right). Included in the upper left corner is the overall sound
power level (OAPWL) calculated using the HM results.
Christian et al. (2023) showed that the OAPWL for the T-7A
is between 167.7 and 170.5dB re 1 pW for MIL and between
172.1 and 174.1 dB for AB. From the HM, the OAPWL is cal-
culated as 168.3dB at MIL and 173.3dB at AB, which fits
within the ranges of the experimental data.

Each plot in Fig. 7 contains two primary sound power
spectra: one from the HM-derived source and one for the
measured T-7A sound power spectra. In addition to these
are two fainter curves in red corresponding to the fully
coherent and fully incoherent sound powers that act as limit-
ing cases. The T-7A spectrum is an average of the two
sound power spectra taken at the 38 m and 76 m far-field
arcs from Pratt et al. (2025). Frequencies above 500 Hz have
been greyed out to indicate that the HM relies on an interpo-
lated CSM beyond the spatial Nyquist frequency. For MIL
(left), the two curves are in generally good agreement up to
about 500 Hz where the HM curve misses the peak in the T-
7A spectrum by a little less than 1dB. Beyond this point,
the high-frequency slopes diverge.

Some of the slope disagreement has to do with the ground
reflection model implemented by Pratt et al. (2025). Their
model assumes that the ground reflection can be modeled as a
partially coherent interaction with the ground. While their
approach is justifiable and has been validated, their results still
show evidence of a ground reflection null at around 1kHz.

The effect is that the spectral slope decreases much faster than
it should leading up to those frequencies, which is observed in
Fig. 7. From Eldred (1971), the high-frequency spectral slope
is expected to decay at a rate of 1/f2, or 20 dB per decade on
a log-log scale. The Pratt e al. (2025) high-frequency slope is
more than 30 dB per decade. On the contrary, the sound power
computed using the beamforming has a spectral slope of about
13 dB per decade at MIL. Neither spectral slope is quite right,
but the implication is that the true sound power exists some-
where between these two curves, and most likely closer to the
beamformed results. The beamforming overprediction is likely
a limitation in the signal processing, despite the application of
UPAINT. It is possible that during the phase unwrapping and
interpolation, the coherence between measured signals is artifi-
cially inflated, which would lead to more energy at the higher
frequencies.

The results at AB (right) are comparable to those of
MIL and exhibit the same spectral slope disagreement dis-
cussed previously.

The other feature in Fig. 7 is the comparison between the
incoherent, partially coherent, and fully coherent sound power
spectra. As noted in Sec. IV B 1, partially coherent interactions
become unimportant when the coherence lengths are much
longer than the coupling distance, and the entire system can be
treated as coherent when determining the sound power. From
the similarity between the fully coherent model and the par-
tially coherent one, it becomes clear that this is true for the
high-frequency radiation of the T-7A jet. While it is well
known that the jet coherence length decreases with increasing
frequency (Swift et al., 2018), the coupling distance decreases
faster, such that for frequencies above a few hundred Hz,
L,» > /. holds and the source can be approximated as coherent.
At frequencies below about 200 Hz, which is still within the
peak radiation region, partially coherent interactions are impor-
tant to the source description.
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FIG. 7. Sound power spectra calculated from the Hybrid Method ESM compared to spectra from the measured far-field data after correcting for ground
reflections. The overall sound power level calculated from the beamforming is included in the top left of each plot. The greyed-out region on the right indi-
cates frequencies above the spatial Nyquist frequency where the HM processing relies on interpolation. Two red curves identify the sound power computed

with a fully coherent and a fully incoherent source model.
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The incoherent source model is virtually never a good
model for the source, though the trend suggests that the
three methods converge at sufficiently high frequencies.
This is less of a limiting behavior and more of an indication
that, at higher frequencies, the density of the beamforming
array is insufficient to describe the noise source.

V. CONCLUSION

This paper extends the formulation of Nelson e al.
(1987), who demonstrated that the sound power radiated by
an arbitrary collection of monopoles can be computed using a
radiation resistance matrix that captures mutual coupling
between sources. Using a key result from Li ef al. (1998),
that the interaction between acoustic sources is scaled by their
linear coherence, the partial coherence is incorporated into
this framework. It is shown that the coherence appears as a
minor scaling term that can be included in the radiation resis-
tance matrix. If the sources are instead compiled into a CSM,
which is a natural representation for many ESMs, the total
power becomes a simple double summation. The utility of
this approach is demonstrated by computing the sound power
from a lateral quadrupole using the standard far-field method
versus the matrix approach. This example highlights the
impact of partial coherence on the radiated sound power and
the simplicity of this new method. Other sound power meth-
ods, such as the supersonic intensity, could also be extended
to account for partially coherent interactions. Such an exten-
sion would likely provide physical insights into how coher-
ence impacts structural radiation modes.

While this method is valid, there are two factors that
work to suppress off-diagonal source interactions: the cou-
pling distance and the coherence length. Coupling between
sources is a function of their separation distance. When
sources are far apart with respect to a wavelength, there is
minimal coupling and thereby no cross-term contributions
from these sources. This effectively creates a mask over the
source CSM that limits which cross-terms contribute to the
overall power. The coherence length describes the physical
distance over which sources are coherent. If the coherence
length is smaller than the physical extent of the system,
some sources will be incoherent with others, and their cross-
terms do not contribute to the overall sound power. When
the coherence length is larger than the coupling distance
(about one wavelength), the masking effect dominates, and
any excess coherence can be ignored. The result is that the
same sound power can be calculated by assuming that all
the sources in the model are perfectly coherent with each
other. This relationship (L, > A1) provides an important
metric for determining when partially coherent interactions
are important to the radiated sound power.

To demonstrate these regimes, two examples are presented.
The first is a plate that is excited by a partially coherent source
with a characteristic coherence length, which is the case for tur-
bulent flow over an airfoil and for structural vibrations induced
by a jet or rocket plume. This numerical example varies the
source coherence length and demonstrates the collapse of the
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partially coherent sound power to that of the fully coherent
model. The second example uses noise data from a full-scale
military jet to construct an ESM using hybrid beamforming
(Padois et al., 2014). The (free-field) sound power is calculated
directly from the ESM and compared to the sound power calcu-
lated from far-field arcs at the same measurements. Both meth-
ods agree to within less than 1 dB below the spatial Nyquist
frequency for MIL and AB operating conditions. Beyond this
point, the high-frequency slopes diverge due to limitations in
the beamforming processing and the ground reflection correc-
tion model used by Pratt et al. (2025). While one would expect
a partially coherent jet to be the natural application of this
method, it is also seen that partially coherent interactions are
unimportant to the sound power at higher frequencies. The rea-
son for this is that while the jet coherence lengths decrease rap-
idly with increasing frequency, the coupling distance decreases
faster, pushing the jet into the coherent regime for all but the
lowest frequencies.

In conclusion, this paper presents a succinct method for
determining the sound power generated by a partially coherent
source. While this method has been applied to a free-field envi-
ronment, a different radiation resistance matrix can be used in
Eq. (8) that better captures restrictions of a system that cannot
be modeled as a free-field radiator. In these cases, the coupling
distance restriction discussed in this paper will depend on the
form of that matrix. Future applications of this method include
turbulent flow over an airfoil, as discussed earlier, as well as
low-frequency turbulent flows, such as noise radiation from
rocket plumes. Additionally, since this derivation is based on
the approach used in ANC, the application to noise control of a
partially coherent source would be a natural project for future
work. Other jet noise regimes should also be investigated, such
as noise radiation from subsonic jets as well as consistency
with other full-scale military aircraft.
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