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We have carried out a first-principles study of the elastic properties and electronic structure for two room-
temperature stable Pt silicide phases, tetraganBLSi, and orthorhombic PtSi. We have calculated all of the
equilibrium structural parameters for both phases:alaadc lattice constants fow-Pt,Si and thea, b, andc
lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental
data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and
predicting values for the si¢nine) independent, nonzero elastic constantad?t,Si (PtSj. These calculations
include a full treatment of all relevant internal displacements induced by the elastic strains, including an
explicit determination of the dimensionless internal displacement parameters for the three stxaPisSnfor
which they are nonzero. We have analyzed the trends in the calculated elastic constants, both within each
material as well as among the two silicides and the pure Pt and Si phases. The calculated electronic structure
confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently
we expect that the Drude component of the optical absorption will be much smaller than in good metals such
as pure Pt. This observation, combined with the topology found in the first-principles spin-orbit split band
structure, suggests that it may be important to include the interband contribution to the optical absorption, even
in the infrared region.
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I. INTRODUCTION for all of the zero-pressure elastic constaffsec. Ill) for
both phases. We have investigated the electronic structure
Metallic Pt silicide compounds are used to make rectify-(Sec. I\V) which is directly relevant to the infrared detector

ing junctions on silicon substrates. The Schottky barrier@pplications of these materials. The purpose in all of these
which determines the activation energy for transport of thecalculations has been to provide a fundamental understand-
charge carriergholes, is 220—240 meV for orthorhombic ing of the ground state properties of the Pt silicides. We
PtSi onp-type S{001),%? matching an important atmospheric Summarize our results in Sec. V.
“transparency window” in the infrared region. For this rea-
son these materials are well suited to infrared detector appli-
cations. Orthorhombic IrSi has also been used in these appli- Il. ATOMIC STRUCTURE
cations and has a Schottky barrier of 160 meV of®@i),> A. Crystal structures
matching a lower portion of the transparency window. An

important advantage of the silicides is that they are more

compatible with current silicon-based fabrication technologyc?(Stal strgct:tur(cajssfpr eac;'k; of :he frrt‘ﬁteg?ls.lpqgs'dgr?ﬁ here.
than infrared sensitive semiconductors such as InSb and"€ Puré Ftand i constituents ot the =t silicides both crys-

Hg,Cdy ,Te. tallize in a cubic structure under normal conditions, face-

Despite their importance in infrared detector applications, o . o
relatively little theoretical work has been done to investigate TABLE I. Structural characterization of the materials studied in
the fundamental electronic structure and equilibrium properTIh'S worl_<. Th_e column labeled “?tructure” glve§ the Strukturber-
ties of the Pt silicides. Bisit al used the iterative extended SNt designations. The columns “Space Groufiiame and num-
Huckel method to calculate the anguIar—momentum-resolvepe'j' Site” (multiplicity and Wyckoff lettey, and “1st position
density of statesDOS) for a number of near noble-metal ollow Ref. 46. See Table Ill for the values of the internal structural
silicides, includinga-PtSi and PtSi. Yarmoshenket al® parametersi andv
compared x-ray photoelectron spectroscOdpS and x-ray

emission spectroscogXES) measurements to the electronic

Table | summarizes the characteristics of the equilibrium

Material Structure Space group Site  1st position Ref.

structure calculated using a linear muffin-tin orbiaMTO) Pt Al Em3m 225 Pt 4 0,0,0 6
method for a number ofdiand & silicides, including PtSi.  4-pt,si  L’2, 14/mmm 139 Pt 4 0Ll 8
In order to provide a more complete understanding of the Si 2a 01,26’,40
p_ropertles of thga Pt silicides we havg carried out first Prin-5.q;i 831 Phma 62 Pt & 1, 11,47
ciples electronic structure calculations for two room- _ Pt 4, Upt
temperature stable phases, tetragoaaPt,Si and ortho- Si 4c yg,iug
rhombic PtSi. In addition to calculating all of the equilibrium Si Ad Fd3m 227 Si & %11 7

structural parameter&ec. 1) we have also obtained values
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TABLE II. Theor.etica.l and experimental .|attice Constal(it$ four free internal structural paramet&rﬁ’ Upt, Usi, andvsi
mined from a fit to a Murnaghan equation of state for Pt and Si, anq,5|,,es are given in Table Ill. Each Si is surrounded by six Pt
to a four-term Birch-Murnaghan equation of state &iPLSi and — 5i0mg at the corners of a distorted trigonal prism. The Pt
PtSi. B, listed here for PtSi was calculated for fixed values of theatoms have six Si neighbors at the corners of a distorted
internal structural parametefsee also Table XJI The experimen- octahedron, and four Pt neighbors, which are positioned in

tal value of the bulk modulus for Pt is extrapolated to 0 K, Whereasfour of the octahedral intersticés The Pt atoms are ar-

all of the other experimental numbers are given for room tempera- L. . . .
P g P ranged in zig-zag chains along th#00] direction.

ture.

Material ag by Co Bg Ref. B. EPLMTO method

Pt theor.  7.403 287.8 The equilibrium structural parameters and zero-pressure

. exp. 7415 288.4 48,28 gastic constants were calculated with a full potential linear

a-PpSi theor.  7.407 11.241 2335 muffin-tin orbital (FPLMTO) method?*2 which makes no
exp.  7.461 11.268 8 shape approximation for the crystal potential. For math-

PtSi theor. 10.583 6.774 11.195 210.0 ematical convenience the crystal is divided into regions in-
exp. 10539 6.778 11.180 11 side atomic spheres, where Satirger’s equation is solved

Si theor. 10.22 95.9 numerically, and an interstitial region. In our FPLMTO
exp. 10.26 98.8 30 method the basis functions in the interstitial region are

smoothed Hankel functiorté. This method doesiot require
the use of empty spheres, even for open structures such as
centered cubicfcc) for Pt (Ref. 6 and cubic diamond for cubic-diamond-phase Si. The atoms were treated scalar rela-
Si.” Both cubic structures are characterized by a single latticéivistically within the local density approximation, using the
constanta (Table II). exchange-correlation potential of Ceperley and Alder.
The conventional unit cells of the two Pt silicidesPt,Si  Spin-orbit interactions were not included. The choice of ba-
and PtSi are illustrated in Fig. 1. The structure of the roomssis functions for the Pt and Si atoms was optimized accord-
temperature T<968 K) « phase of PiSi is body-centered ing to the procedure described in Ref. 12. The parameters
tetragonal(bct) and resembles a distorted Gastructure®®  describing the basis are listed in Table IV and were used in
A central Si atom is surrounded by eight Pt atoms, which aré¢he calculations for both silicides in addition to pure Pt and
located in the corners of a rectangular cell elongated alongure Si'® The Si 3, 3p, 3d, and 4 as well as the Pt§
the c axis. There are two symmetry-equivalent Pt and one S6p, 5d, and & were all included as valence orbitals. The Pt
atom in the primitive cell. The unit cell is characterized by semicore 5 and 5 were treated as core orbitals and we
two lattice constants andc (Table ). have not used the frozen overlapped core approximation
PtSi has a primitive orthorhombic structysee Fig. 1b)] (FOCA—see Ref. 12
with four symmetry-equivalent Pt and four symmetry- The equilibrium volumeV, and bulk modulusB, of Pt
equivalent Si atoms per primitive cell in an MnP-type and Si were determined by fitting the total energy calculated
lattice 1> This structure is characterized by three latticeat nine different lattice constants to a Murnaghan equation of
constants, denotegl b, andc (Table Il). Half of the Pt and  state!”*® In the case of P{Si) we used a 24 24x 24 (12
half of the Si atoms in the primitive cell are located in a X12x12) cubic specialk-point mesh which gave 6912
(010 plane at:b with the rest of the atoms in @10) plane (864 points in the full Brillouin zone(BZ) and 182(28)
at 3b. The in-plane atomic coordinates are not completelypoints in the irreducible wedge. In addition, a real space
specified by the space group symmetry and thus there amaesh is used for calculating integrals of the potential over

@r s

(@)
FIG. 1. Conventional unit cells ofa) body-
centered tetragonal- Pt,Si and(b) orthorhombic
c PtSi. The relevant lattice constant distances are
illustrated in both cases.
h,
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TABLE lll. Calculated and experimental internal structural parameters of PtSi. The parameteds
are the same as those specified in Table I. These parameters were calculated both for the experimental lattice
constants as well as the self-consistent theoretical lattice congfBaltte I). The experimental internal
parameters for PtSi are also listed.

PtSi Upy Upt Ugj Usi

At expt. lattice constants 0.9981 0.1915 0.1777 0.5845
At theor. lattice constants 0.9977 0.1919 0.1782 0.5841
Experiment(Ref. 11 0.9956 0.1922 0.177 0.583

the interstitial region. We used a ¥@6x 16 mesh for Pt total energy as a function of volume to a four-term Birch-
and an 1& 18x 18 mesh for Si. With these choices the total Murnaghan equation of stafe
energies were converged to better thapRy per atom.

In order to determine the equilibrium lattice constants of
the silicides, the total energy hypersurfaces were minimized
simultaneously with respect to all of the lattice parameters.
In the case of tetragonai_PtZSi, tota|_energy calculations This fit was differentiated twice, yleldlng the bulk modulus

. . — 2 2 : lihri
were performed at nine different values of each of the twdBo= Vol I°E(V)/dV7]y, at the theoretical equilibrium vol-
lattice constant® andc (a total of 81 calculationsin the  ume.
range 0.98=a/acyp,C/Ceyy<1.07. For orthorhombic PtSi we The four free internal structural parameters of orthorhom-
used seven different values af b, andc, respectively343  bic PtSi (Up;, vpy, Usi, anduvg;in Table ) were determined
calculationg, within the same relative ranges. For both self-consistently by calculating the initio forces??°on the
a-Pt,Si and PtSi, 216 points were sampled in the full BZ ions and, within the Born-Oppenheimer approximatibre-
which reduced to 28 and 27 speciapoints in the irreduc- laxing the position of each individual atom in the direction of
ible wedge, respectively. In the case @fP;,Si a 1616  the forces until the absolute values of the forces were con-
X 16 real space mesh was used for the interstitial integralserged to less than 1.5 mRy/a.u. 512 spekigloints were
and a 24 16xX24 mesh was used for PtSi. With these used within the full BZ(corresponding to 64 in the irreduc-
choices the energy per atom differed from the fully con-ible wedge. Initially the atomic positions were relaxed start-
verged valugwhich was found for approximately 13000 ing from the experimental structdfeand holding the three
points in the full B2 by 0.20 mRy fora-PtSi and 0.19 lattice constants fixed at their experimental values. Using
mRy for PtSi. The resulting total energy hypersurfacesthese theoretically determined internal parameters, the theo-
E(a,c) andE(a,b,c), were each fit to a third order polyno- retical equilibrium lattice constants,, by, andcg, as well
mial in the lattice parameters. These polynomials were theas the bulk modulu$,, were determined using the proce-
minimized to yield the equilibrium parameters. The bulk dure described above. A second geometry relaxation was
modulus and equilibrium volume were obtained by fitting thethen carried out but now holding the lattice constants fixed at
these theoretically determined equilibrium values. This

TABLE IV. Parameters describing the basis used in theYielded a second set of internal structural parameters which
FPLMTO calculationsRy,r is the muffin-tin radius in a.uL. ., is  We refer to as the self-consistent theoretical values. In prin-
the upper limit on the angular momentum expansion of theCiple this cycle could be repeated many times to obtain a set
smoothed Hankel functions about a given atomic ditg, is the ~ Of lattice constants and internal parameters which are truly
order of the biorthogonal polynomials used in this expandiapis ~ “self-consistent.®> However, in practice we find that after
the smoothing radius in a.u., and«? is the decay energy in Ry. the first cycle there are only small differences between the
The total number of basis functions per atom is 17 for Pt and 13 fotwo sets of internal parametefsee Table I} and so we
Si. See Ref. 12 for a more complete description of the parametersegard them as being converged. We also note that the value
of B, obtained using fixed values of the internal structural

4
E(V)= >, a,vV 2"3, 1)

n=1

Basis parameters, as described here, is not strictly correct and that

Atom Ryt Lpax Kmax L-Block  Rgy —«? we relax the constraint of fixed internal parameters when we
Pt 29 3 4 S 2865 —1.02 discuss the elastic constariiscluding By) in Sec. Il E.

p 2130 —1.08 o _

P 1302 —1.53 C. Equilibrium properties

d 1.000 —0.89 In order to test our methd@land, in particular, to test our

d 2123 —-0.42 choice of basis functions, we calculated the equilibrium lat-
Si 2.1 3 5 s 1.908 —1.296 tice constantay and bulk modulusB, for Pt and Si as de-

p 1.627 —0.302 scribed in Sec. Il B. The results are given in Table Il and

d 1.601 —1.496 compared to experimental data. Since we will focus next on

sp 2200 —2.000 the elastic constants, we pay particular attentioBowhich

is essentially an elastic constant. We see in Table Il that we
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TABLE V. Cohesive energieE.y, and heats of formation Hs where the index corresponds to Cartesian coordinates. If we
in eV/atom. The experimental standard heat of formation is giverassume the applied strain is homogene@usform through-
for T=298.15 K whereas theoretical values are valid for 0 K andgyt the crystgl we can rewrite Eq(2) as
do not contain any corrections for zero-point vibrations. The experi-

mental cohesive energies for Pt and Si also correspond to 0 K. du;(R)

Ri,=E_ a’”RJ with aij=§ij+ IR, (3)
Material Econ AH; Ref. ! !
For a homogeneous applied strain the displacement gradients
Pt theor. r.ar 0 du;(R)/R; are simply constants, independentRf These
_ exp. >.84 0 43 displacement gradients define the nine components of a ten-
a-PLSi theor. 7.24 —0.65 sor. However, since the total enerfycannot change under
exp. 6.08 —-0.64 44, 49 rotations of the crystal as a whol,can only depend on the
PtSi theor. 6.93 —0.67 symmetric part of the deformatidi,called the strain tensor
exp. 5.85 —0.62 45, 50 €
Si theor. 5.23 0
exp. 4.63 0 43 _1du(R) N Ju;(R) @

GIT27R TR
obtain rather good agreement between our values and thHexpanding the internal energy(V,e) of the crystal with
experimental data. The self-consistent equilibrium latticerespect to the strain tensor givés
constantsa, andc, for a-Pt,Si are also listed in Table I, v
along with the theoreticaly, by, andc, lattice constants for _ Y o
PtSi. The bulk modulBy, at the theoretical volumes for both E(V’{em”})_E(VHV; Tt 5 % Cijki €ij €k
Pt silicides are also given. (5)
In Table Il we list the internal structural parameters for
PtSi. The values calculated using the experimental lattic
constants are very close to those measured by Grasber 1[IE(V,{€mn)
al.'* Comparing the atomic positions using the experimental vl R et B (6)
- . 8 JE€;; _
versus the theoretical internal parameters, we find absolute - Y €=0
shifts in the positions of less than 0.028 a.u. The selfthe second order adiabatic elastic constants are given by
consistent internal parameters obtained using the theoretical
lattice constants are generally even closer to the experimental 1[”E(V {€mn)
values. In this case the absolute atomic shifts relative to the Cij =y T deideq
experimental geometry are less than 0.023 a.u. ) J
The theoretical cohesive energiEs,, and heats of for- andV is the volume of the unstrained crystal. It is convenient
mationAH; for the self-consistent equilibrium atomic geom- to use Voigt notation which takes advantage of the symme-
etries are compared to the experimental values in Table Mries of the tensorsxx—1yy—2z7z—3yz—4xz—5, and
As is typically the case, our local-density-functional basedxy— 6. Using this notation Eq(5) become®’
calculations overestimate the cohesive energy. However, the
calculated heats of formation are much closer to the experi-
ment. The experimental heats of formation are givenTor
=298.15 K whereas the theoretical values correspond to 0 K ) )
and do not include corrections for zero-point vibrations. WeWith the strain tensor given by
note that the heats of formation are very similar for the two

(\e/vhere the stress tenseris defined by

: )

€=0

E(V{eh)=E(V)+V> oie+ ; > cijeejt--- (8)
i i

silicides and that a plot of the theoretickH; as a function e Eeﬁ leS
of atomic percent Pt is concave up, as required for the sili- 2 2
cides to both be thermodynamically stable. 1 1
€= Eee €2 594 . (9)
I1l. ELASTIC CONSTANTS 1 1
A. Method of calculation §e5 594 €3

The elastic constants determine the stiffness of a crystal
against an externally applied strain. For small deformations In order to calculate aM elastic constants of a crystal we
we expect a quadratic dependence of the crystal erieigy ~ appliedM independent straing") to the unit cell, using Egs.
the strain(Hooke's law. The elastic constants;, describe (3) and (4) to determine the atom positions within the
this quadratic behavior. Consider a displacemg) which  strained unit cell. In particular, we haw=3 for both cubic
takes every Bravais lattice poift of the undistorted lattice Si and cubic PtM =6 for tetragonal BSi, andM =9 for

to a new positiorR’ in the strained lattice, orthorhombic PtSi. Each straih=1,... M was param-
, etrized by a single variable and we calculated the total
Ri =R+ ui(R), (2 energyE(M () for a number of small values of. For these
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TABLE VI. Parametrizations of the three strains used to calcu-yielded the smallest errors compared to polynomials of order
late the three elastic constants of cubic Pt an¢aBio used in Ref.  two and four; the single exception was &, where mini-
25). The energy expressions were obtained from @y. Strainsl  mum standard errors resulted from a fourth order fit.
=1 andI=3 are strictly volume-conserving to all orders in the  Calculations of the elastic constants require a very high
strain parametey. If we restrict ourselves to linear order only then degree of precision because the energy differences involved
ef)=—2y and ef”=0, with volume conservation preserved 10 zre of the order of 10 to 1008Ry. This circumstance re-
linear order as well. quires the use of a fink-point mesh. With our choice of
23328 speciak points in the full BZ for Pt, 864 for Si, and

Strain Parametersunlistede; =0) AE/V 1o O(7?) 5832 for @-P1,Si and PtSi, the energy per atom was con-
1 e;=e,=y, e;=(1+v)"%-1 3(Cy1—C10) Y2 verged to 1uRy or better in all cases. In order to minimize
2 e =e,=e3=7y 3(cit+2¢15) 92 numerical uncertgintigs we used the _salmpoint_me_sh for
3 es=7, €= (4—y%)"! Y all of the calculations in a given material. The differing sym-

metries of the various straingesulted in differing numbers
of irreduciblek points. We also checked that we obtained the

small distortionsE()(y) was fit to a polynomial iny and ~ same total energy foy=0, regardless of strain(and hence
then equated to the appropriate elastic constant expressigtifferent symmetry and irreducible points. All of the cal-
E(V,{e-(')(y)}) in Eqg. (8). From all of the fits we obtained a culations were carried out at the theoretical equilibrium lat-
systeml ofM linear equations for the elastic constants, whichtice constants listed in Table Il. Relaxation of the internal
was solved for the;; . Since we always take the undistorted degrees of freedom was carried out in the case of all nine
crystal to be the zero-pressure theoretical equilibrium strucPtSi €lastic constants. These relaxations are necessary be-
ture, the applied stress is zero and so the second term of Cause the atomic positions are not completely fixed by the
Egs.(5) and(8) does not enter in the calculations describedSPaceé group symmetry, even for the unstrained crystal, and
here. consequently there exist free internal parametseg Table
The parametrizations we used for the three independerl!) Which must be redetermined for any distortion of the
strains in the cubic cases of Pt and Si are given in Table VICTYStal, including hydrostatic pressure. Relaxations were also
Strainl =1 is a volume-conserving stretch along thaxis, ~ carmed out in those cases where the strain-induced
the second strain is equivalent to simple hydrostatic pressur§ymmetry-reduction prompted it, for Si and strains 1, 4,

and strainl =3 corresponds to a volume-conserving mono-8 fo”r a-PSi). For comparison we have calculated “fro-
clinic shear about the axis. We carried out calculations for Z€N elastic constants in these same cases, where the internal

nine values ofy in the range of-0.01 to 0.01 for strains 1 structural parameters where frozen at their zero-strain equi-

and 2. However, for strain 3 we calculated nine points in thd/Prium values.

range from—0.04 to 0.04 because the changes in the energy

were rather smalla maximum of 0.1 mRy fory=0.01), B. Pt

leading to larger error estimates in the case of the smaller The three elastic constants for Pt are listed in Table IX. Pt
range. In order to calculate the six independent and nonvaris the only one of the metals considered in this work for
ishing elastic constants of tetragonatPtSi we used the which experimental data on elasticity is available. MacFar-
strains given in Table VIf® Orthorhombic PtSi has nine lane et al?® extrapolated the values to 0 K, which makes
independent elastic constants and we chose the nine straitiem well suited for a comparison to our zero-temperature
listed in Table VIII. For each of the silicide strains we car- calculations. In the case a@f; andc;, we find good agree-
ried out calculations for seven values ofin the range of  ment between our results and the experimental daithin
—0.01 to 0.01, except for strains 8 and 9 in the case of PtS3—4 9. The value ofc,, deviates by 14%, although the
where only five values ofy were consideredthese mono- absolute error is approximately 10 GPa for all three elastic
clinic strains were particularly CPU intensjvé&alculational  constants. The error ik,, can be understood if we look
errors in the elastic constants were determined from thelosely at the band structure. Pt exhibits a wealth of van
least-squares fit t&(y). All of our results were obtained Hove singularities directly at the Fermi energy, making it
from fits of the energy to third order iry because these difficult to integrate over the Fermi surface. A high density

TABLE VII. Parametrizations of the six strains used to calculate the six elastic constants of tetragonal
a-Pt,Si (taken from Ref. 2¥. The energy expressions were obtained from (By.

Strain| Parametergunlistede;=0) AE/V to O(y?)

1 €,=2y, =e3=—y 3(5C11—4C1— 2C15+ C39) ¥

2 €,=6=—Yy, €3=2y (C1+Cp—4C 5+ 2C33) ¥

3 €1=6=7y, €3=—2y, €=2y (C1+C1p—4C 3+ 2C33+ 2C60) V2
_ 1 2

4 e =y 2C11Y

5 e3=vy 3Csy?

6 €,=2y 2¢447°
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TABLE VIII. Parametrizations of the nine strains used to calculate the nine elastic constants of ortho-
rhombic PtSi. The energy expressions were obtained from(&qg.

Strain| Parametergunlistede;=0) AE/V to O(%?)
1 &=y 31y
2 €=y 3Car¥?
3 €=y 3Cay?
4 €1=2y, &=—7y, €=-"7Y 3(4C11—4C1,— AC 5t Copt 205+ C39) ¥
5 €1=—7, €=2v, e=—y 3(Ca1— 4Cyo+ 2015+ 4Ch— 4Cos+ Ca0) Y2
6 €1=—7, €=—Y, €=2y 3(Cy1t+2C1— 4C 5+ Cop— ACo3t 4Cag) Y2
! &=y 3Ca)?
8 €=y 3Css5Y?
9 €= 3Ce67’
of k points(23 328 in the full BZ and a very small smearing C. Si
width of 7 mRy in the higher-order smearing procedtiee Because Si has a cubic structure, it has only three distinct,

essential because the Fermi energy and hence the total efpnvanishing elastic constants. These were determined with
ergy depend quite sensitively on these parameters. The cghe same strains as in the case of Pible VI). Our results
culated value ot4, was found to be more sensitive to tke  are close to experiment, as indicated in Table IX. The bulk
points than the other two elastic constants. Conversely, thgoduli from the total energy minimization and from the elas-
silicides did not warrant such a special treatment and wer@c constants[By=%(cy;+2¢;5)] have the same value of
calculated with a smearing width of 25 mRy. It seems plaug5.9 GPa, close to the one calculated from the experimental
sible that a more accurate treatment of the elastic propertiegastic constants, 97.0 GPa. The Si elastic constants in Table
of Pt may also require inclusion of spin-orbit coupling. The |x also obey the cubic stability conditions in E4.0), mean-
bulk modulus calculated from the theoretical values of theng thatc,,<B,<c;;.
elastic constantsBo=3(cy;+2¢17)] is 290.8 GPa. It agrees |t js perhaps worth noting that the calculation &, re-
well with both the experimental value of 288.4 GPa and theyyired a relaxation of the positions of the Si atoms within the
one extracted from the fit to a Murnaghan equation of stategistorted unit cell. The symmetry reduction by the mono-
287.8 GP4Sec. 11 Q. clinic shear €3 in Table V) allowed the Si atoms to relax
The requirement of mechanical stability in a cubic crystalin the [001] direction. Without this relaxationc,, would
leads to the following restrictions on the elastic constéhts: have been 108.6 GPa; this is to be compared with the relaxed
value of 79.9 GPa and the experimental value of 79.1 8Pa.
(€11=C12>0, €15>0, ©€4>0, (Cy3+2C19)>0. We have also obtained the dimensionless Kleinman internal
(10 displacement parametér which determines the magnitude

The Pt elastic constants in Table IX obey these stability con®f the internal displacements along §01] direction

ditions, including the fact that;> must be smaller thao,;.
These conditions also lead to a restriction on the magnitude a
of By. SinceBy is a weighted average af;; and ¢, and Auf~V=¢—¢,, (12)
o : 4
stability requires that,, be smaller tharc,;, we are left
with the result thaBy, is required to be intermediate in value
betweenc,; andc,, wherea is the lattice constant an},,= e is the appropri-
ate element of the strain tenddfq. (9) and Table V]. Fit-
€1,<Bg<cCy;. (11)  ting our calculated values @fu§ =) to a quadratic function

TABLE IX. Elastic constants of Pt and Si. Calculations were carried out at the theoretical self-consistent
lattice constants odip=7.403 a.u. andig;=10.22 a.u. The theoretical value ©f, in parentheses for Si is the
“frozen” value obtained without allowing for internal relaxation. The bulk modulus is calculated from the
elastic constants &By= %(cll+ 2cq9). In parentheses we givg, from the fit to a Murnaghan equation of
state. Experimental values are extrapolated to 0 K. All values are in units of GPa.

Pt Theory Pt Expt(Ref. 28 Si Theory Si Expt(Ref. 30
Ci1 346.8£0.5 358 163.450.03 165
Cio 262.7+0.3 254 62.13:0.02 63
Cas 87.5+0.3 77 79.85:0.02 (108.6 79.1
By 290.8+0.3 (287.9 288.4 95.9@:0.02 (95.9 97.0
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in ¥ we find a value of =0.53 which agrees very well with TABLE X. Elastic constants of-Pt,Si. Calculations were per-
the experimental value of 0.54. formed at the theoretical self-consistent lattice const@rable II).
“Frozen” refers to fixed atomic positions, whereas “relaxed” in-
dicates that a relaxation of the atomic positions was carried out.
D. a-Pt,;Si Parentheses denote values where no internal relaxation was neces-

We have applied the six strains listed in Table VIl in sary because of symmetry constraitgsall variations in these val-

order to determine the elastic constants of tetragonallles come from using a slightly more stringent convergence criterion

a-Pt,Si. The orthorhombic strains 1 and 4, and the mono_on the energy The bulk modulus is calculated from the elastic

_1 Birch ; i _
clinic strain 6 all reduce the symmetry of the crystal in suchtoNStants aBo= 5(2Cu1+ Cost 2C1pt 4csg). By ~ isfrom a Birch-
. Murnaghan fit. No experimental data is available. All values are in
a way that the positions of the Pt atoms are no longer COM;hits of GPa
pletely fixed by the symmetry. The strain-induced forces '

drive them into energeticglly more favoraple po;itions. How- a-PLSi frozen relaxed
ever, the Si atom occupies a center of inversion symmetry

and thus Si internal displacements are forbidden in all cases C11 347.2¢1.2 332.4-0.9
(i.e., the strain-induced forces are identically 2eymme- Ca3 297.5-0.5 (298.0+0.4)
try also places specific restrictions on the nature of the Pt C1o 225.0+1.2 239.6-1.0
displacements. The symmetry of strain 6, corresponding to Ci3 169.3:0.9 (169.4:0.9
Css, allows Pt internal displacements along both [i0&0] Cas 75.4+0.3 62.7-0.5
and[001] directions, while the inversion operation leads to Ces 169.5-5.2 (169.3+5.2)
the requirement that the displacements must be equal and B, 235.4-0.6 (235.5+0.5)
opposite for the two Pt atoms in the primitive cell. The sym- Bgireh 2335

metry of strain 4, corresponding ®,, is the same as the
symmetry of strain 1 and both allow internal displacements
only along[001]. Once again the presence of inversion re-

quires that the displacements of the two Pt atoms be equ&t3 '° identically zero and if the changes @&, andc,, are
and opposite. Strain 5, correspondingdg, and strain 2 equal and opposite. Moreover, sincg, appears as the sole

result in the same symmetry as the unstrained crystal an((‘]oefﬁcient in the energy expression corresponding to strain 4

therefore there are no internal displacements associated wiff'd Since internal displacements can only lower the energy,
these cases, since there are no degrees of freedom in th§ conclude that the value af, must either decrease or
internal atomic coordinates of the unstrained crystal. Strain $8main the same. This conclusion leads to the seeming para-
does lower the symmetry but internal displacements are stiflox that if c;; decreases then symmetry requires tbat
symmetry forbidden. This fact, combined with the lack of must increase which appears to contradict the fact that inter-
displacements associated with strain 2 meansdjgis un-  nal displacements must always lower the energy. The reso-
affected. We note that since strains 1 and 4 result in the sanlgtion of this seeming paradox comes from the fact that it is
symmetry reduction relative to the unstrained crystal theranot possible to construct a strain in whick, appears as the
will necessarily be a formal symmetry-required relationshipsole coefficient in the expression for the strain energy. It
between the internal displacements for these two strainglways appears in conjunction with; and we have already
This relationship is obtained directly from the first principles seen that,;+c;, is required by symmetry to be unchanged
calculations. while c,,— ¢4, can either decrease or remain unchanged.

In addition to placing restrictions on the nature of the Our results for the six independent and non-zero elastic
internal displacements, symmetry also constrains the corresonstants ofx-Pt,Si are given in Table X. We have calcu-
sponding changes in the elastic constants themselves. Wated the elastic constants for the “frozen” configuratjafi
have already seen that the valuescgf and c,, are both  atoms held at the positions determined solely from @]
allowed to change as a result of internal displacements bwind with the relaxation of the strain-induced forces on the Pt
that c33 and cgg must both remain unchanged. The bulk atoms. In keeping with our general symmetry arguments, we
modulusB, is also required to be unchanged because it repfind a relaxation-induced softening of; by 4% and ofc,,
resents the crystal response to hydrostatic pressure, correy 17%. In additionc,, increases by 6% while the remain-
sponding to a straie® = ydi; which preserves the full sym- ing elastic constants are unchanged to within numerical un-
metry of the unstrained crystal, just as in the case of strains 2ertainties. Our results are also consistent with the symmetry
and 5. The expression for the bulk modulus in terms of theequirement that the changes i, and c,, be equal and
elastic constants By= 5(2¢;;+ C33+ 2Cq,+4C15) While the  opposite, since,; decreases by 14#81.5 GPa whereas,,
energy expression corresponding to strain 2 ¢$,€c;, increases by 14:61.6 GPa. The bulk moduli calculated
— 4¢3+ 2C33) ¥? (see Table VII. Our symmetry arguments from the tetragonal elastic constants and from the fit to a
have required that neither of these expressions can change Bsch-Murnaghan equation of state are almost the same, giv-
a result of internal displacements and therefore the changésg a consistent prediction &,=235 GPa. As required by
in ¢, Cqp, andcy3 must exactly cancel from these two symmetry, the bulk modulus has the same value in the frozen
expressions(\we have already shown in conjunction with and relaxed calculations.
strain 5 thatcgs cannot change The only way to achieve The requirement that the crystal be stable against any ho-
both cancellations is if the displacement-induced change imogeneous elastic deformation places restrictions on the
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elastic constants, just as in the cubic case. For tetragonal TABLE XI. Dimensionless internal displacement parameters
crystals these mechanical stability restrictions are afor Si[Eq. (12), strain 3 from Table V] and a-PtSi [Eq. (17),

follows:2* strains 1, 4, and 6 from Table \llIn the case of strain 6 for
a-P1,Si displacements were calculated along both [ib&0] and
(C11—C12)>0, (Cqqt+C33—2C43)>0, [001] directions, whereas displacements only along[@t] direc-
tion are allowed by symmetry for strains 1 and 4. In addition, there
€110, €33>0, €40, Cee>0, (13 is a strict symmetry-required relationship between the displace-
ments in strains 1 and &ee text Experimental data is available
(2011+ 033+ 2012“1‘ 4013) >0 Only for Si.
The elastic constants in Table X satisfy all of the conditionsMaterial Strainl Theory Experiment Ref.
in Eq. (13). In particular,c, is smaller thanc,; andc3 is Si 3 053 Y -
smaller than the average of; andcs;. The stability condi- . ' '
tions again lead to restrictions on the magnituddgf We a-PLSi 1 0.22
first rewrite By as 4 0.074
6 [010] —-0.12
6 [001] 0.00

1
Bo:§[6011+ 3C33—2(C11— C12) —2(Cq1+C33—2C13) |

(14) wherea is the lattice constant,=1,4,6 corresponds to the
Using Eq.(14) and the first two inequalities in E4L3), we  strains with symmetry-allowed internal displacements and
obtain the following result: is the Cartesian indexi€2,3 for I1=6 andi=3 for |
=1,4). In principle there could be contributions to tha"
which are of higher order iry, but since we are only con-
sidering the second order elastic constants the strain energy
is only expanded to second ordery{see Eqs(5) and(8)],
that is, the bulk modulus must be smaller than the weighte@r equivalently, to second order in the total displacements
average oty; andcss. Similarly, by substituting instead for y,+ Au;. Thus we need only consider the linear term in Eq.

1
Bo<§(2011+ C33), (15

C1; andcgz we obtain (17) in the present context. The calculated values offte
1 parameters are listed in Table XI along with the displace-

By>= (Cpot+ 2C1a), (16) ment par-ameter associated withy in Si. We note that al-

3 though displacements are allowed along both[i&0] and

. . 001] directions in the case of the-PtSi strain 6(corre-
g]vi[r;&eﬂ:)et bu;l:](;ncodulus must be larger than the Welghte%ponding tac,,), the displacements alof@01] are found to
9 12 13 be zero to linear order iy.*® As indicated above, we expect

The Stab'l'ty restrlctlpns do not tell us anythl_ng further the internal displacements for strains 1 and 4 to exhibit a
about the relative magnitudes of the various elastic constants

For example, we find a small value of, in comparison to Symmetry-required relationship and in keeping with this ex-

. : ~1) )
Cgs Which means that the tetragonal unit cell is more easiIypeCtat'on W(?:tll?d thag& is almost exactly three tlme_s
deformed by a pure shear about ther b axis in comparison arger thanis =, the difference likely being due to numeri-
to thec axis. We also find that overall the elastic constants 01cal uncertainty.
a-Pt,Si are much closer to those of pure Pt than pure Si. In
particularc,; andcsz are similar in magnitude to,; in Pt, E. PtSi
but all of these constants are apprOXimately twice the value Nine independent strains are necessary to Compute the
of ¢yy in Si. Similarly ¢;, has approximately the same mag- elastic constants of orthorhombic PtSi. We first performed
nitude for botha-PtSi and Pt, althougly; in the silicide is  calculations of the elastic constants with the internal struc-
about 30% smaller. Howevegy, in Si is a factor of 4 tyral parametersipys; andvpys; held “frozen” at their self-
smaller. Conversely, the value of, is similar in magnitude  consistent equilibrium values. These results are listed in the
for all three materials, witlteg in the silicide being a factor second column of Table XII. ThE(y) curves are well fitted
of 2 Iarger. The bulk modulus in the silicide is about 20% by third-order po|ynomia|s iny, as can be seen from the
smaller than in Pt but still more than a factor of 2 larger thansmall standard errors in the calculateg. The value ofB,
in Si. The connection between the magnitudes of the variougptained from the elastic constanBy= %(Cq3+ Coo+ Ca3
elastic constants and the chemical bonding has been exploredac. .+ 2¢,,+ 2¢,2), agrees reasonably well with the one
in detail in a separate stud§. which was determined from the calculation of the lattice con-
In addition to the relaxed elastic constants we also Obstants. This is not surprising since the lattice constant calcu-
tained the values of the dimensionless paramefetsvhich  |ations were also performed with frozen atomic degrees of
determine the magnitudes of the Pt internal displacement§eedom.
themselves, As expected, the equilibrium atomic positions are not in-
) o 1) dependent of 'ghe §hape and size of the unit cgll—similgrly to
Aui’=agi’y, (A7) the case ot,, in Si as well ascy;, €1, andcy, in a-PtSi,
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TABLE XII. Elastic constants of PtSi calculated at the theoret- 400 T T T T
ical self-consistent lattice constar(fBable 1l). The second column . L f ((:‘-‘n“-‘-z)/ 2 a
shows the elastic constants obtained when the internal structural = . c:: KT i
parameters were held fixed at their theoretical self-consistent values 2 300 [ B, ,32"’ * A
(Table llI). In the third column these were allowed to relax. The ] * -
bulk modulus is calculated from the elastic constants Bas .g L -
=5(C11+ Copt Cazt 2C1+ 2¢15+ 2C,3). BE™ is from a Birch- g 200 - 7]
Murnaghan fit obtained with frozen values of the internal structural © ]
parameters. No experimental data is available. All values are in 3 100 k h
units of GPa. E 3
= 4
PtSi frozen relaxed ol b v b by by
0 02 04 06 08 1
C11 327.5£1.2 298.21.2 Atomic percent Pt
Coo 313.8£0.0 269.3:0.8 ] ) ) )
Cas 345.9+0.1 308.0-0.6 FIG. 2. Trends in th_e el_astlc constants as a functlon_of atqmlc
Cr 157 7-0.6 156.4-0.8 percent Pt for pure cublc-dlamongl-phase Si, orthorhombic PtSi, te-
tragonala-Pt,Si, and fcc Pt. The different curves correspond to the
C13 162.90.6 132.2:0.7 average values of different classes of the individual elastic con-
Ca3 153.4:0.1 165.10.6 stants, as specified in the legend. For example, in the case of the
Caa 141.3:0.3 100.1-0.4 dotted-line curve labeled as,,, the line passes through(c;,
Css 113.1+0.1 104301 +Cq3tCyg) in the case of PtSi and through(c,,+2c,9) for
Cet 74.2+0.2 66.3:0.4 a-P,Si (ci3=C,3 for tetragonal crystajs while the open squares
Bo 215.0:0.2 198.1-0.3 show the actual values @f,, ¢35, andc,3, as appropriate for each
geireh 210.0 material.

. ) . (CootC33—2C23) >0,
as discussed above. The relaxed elastic constants for PtSi are

listed in the last column of Table XII. For examptg,, drops €110, ©€p>0, €330, (18)
from 141.3 GPa to 100.1 GPa when all of the atoms are

relaxed. We find that the Si atoms adjust to this shear about C1.>0, C€55>0, Cge>0,

the a axis by moving mainly along thb axis. Most of the

other elastic constants decrease by 10-20%, except (C111 Coot €3zt 2C5+ 2C13+ 2C3) >0.

o 0 . : )
Yjv:é%g;ncésaﬁﬁsa?éi /0 avrﬁf]vmghczr:a'gsfgfﬁ’é?gmﬁz:y The elastic constants in Table XII satisfy all of these condi-
ged. gy @ g tions and in particularg,, is smaller than the average of;

a-P,Si, we note that for an arbitrary straii,, C.3, andcy andc,,, Ccy3is smaller than the average of; andcss, and
in orthorhombic PtSi never appear isolated but always occuf .
) S . . . . “Co3is smaller than the average of; andcs;. As in the case
in combination with other elastic constants in the expression

for the second-order change in the total enefgy. (8)] of a-Pt,Si, we can obtain restrictions on the magnitude of
These particular elastic constants are therefore not require%o'
to decrease when relaxation is included, even when the en- 1
ergy is lowered. Conversely, the remaining six elastic con- §(c12+ Cqi3t c23)<BO<§(cll+ Coot C33), (19
stantsare required to decrease when relaxation lowers the
energy because strains can be constructed for which eaghat the bulk modulus must be smaller than the average of
appears as the isolated coefficient of the only contribution t@, , c,,, andcgs but larger than the average ©f,, ¢,3, and
the second-order change in the energy. In the case of Pt&,,.
the additional relaxation of the internal degrees of freedom e again find that overall the elastic constants of PtSi are
leads to a significant softening of the elastic constants whicluch closer to those of pure Pt andPt,Si as compared to
must also be taken into account in determining the bulkyyre Sj. In detail, we find that,;, ¢,,, andcsg are approxi-
modulus. Therefore, we prediCt the bulk modulus of PtSi tOrnate|y 10% smaller on average in PtSi tham}.rptzsh and
be 198 GPa, Wh|Ch iS 6% |OWer than the Value Of 210 quhatBo is 16% smaller. In additiomlz, C131 a_ﬂdcz3 for PtSi
determined in our frozen-configuration total-energy minimi-gre close in magnitude t; for a-PtSi, which we saw was
zation. Although we have calculated the changes in the elaghout 30% smaller than,, in both pure Pt and-PtSi.
tic constants when the internal atomic degrees of freedom afiging|ly, c,,,, cs5, andceg for PtSi are similar to the values of
allowed to relax, we have not explicitly extracted the corre-¢ , in al| three of the other materials, but still approximately
sponding internal displacement parameters as we did fog factor of 2 smaller thangg in a-Pt,Si.
pure Si anda-Pt,Si.

Mechanical stability leads to restrictions on the elastic

. . F. Trends in the elastic constants
constants, which for orthorhombic crystals 4re

The trends of the elastic constants as a function of the
(C11+Coo—2C19) >0, (Cqqy+C33—2C13)>0, atomic percent Pt in all four materials are plotted in Fig. 2.
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Each of the curves corresponds to an average of a different
class of elastic constants, while the symbols show the values
of the individual elastic constants themselves. As we saw in
Egs. (15), (16), and(19), mechanical stability requires that
By be larger than the averageof;, c,,, andc,; but smaller
than the average @f;», c;3, andc,3 [note that in the case of
a-P,Si the appropriate averages agd2c;;+Csy) and
1(cqpt+2¢13) becausec;;=c,, and c;3=C,3 for tetragonal
crystald. This stability requirement is reflected in the top
three curves in Fig. 2. We also see that these three curves
each increase monotonically from Si to Pt and we note that
all three classes of elastic constants represented by these
curves correspond to strains in which the volume is not fixed.

]

|

%
5

DOS (Electrons eV-! atom-!)

Conversely, the two lower curves labeled{—c,)/2 and 2 g_pure Si

C44 correspond to the two classes of elastic constants in 1E

which the strains are strictly volume conserviig the case O Y T T
of PtSi the lowest solid-line curve and large open circles -10

-5 0
correspond to elastic constant combinatioféc,;+ Cyp Energy (eV)

1 1
—2C19), 7(Cu1tCa3=2Cag), and 3(CootC33—2C29)]. We [, 3. Total density of states plotted on the same scale for the
see that in this case the two sets of averages are approjsyr materials considered in this work, ordered by decreasing Pt
mately constant as a function of atomic percent Pt. The sigeontent from top to bottom. Only Si is a semiconductor whereas Pt

nificance of this difference in the trends of volume- and the two silicides are metals. The valence band maximum in Si
conserving versus nonvolume-conserving elastic constants j§ labeled as the Fermi levél.

connected to the nature of the chemical bonding in these

materials and has been addressed in a separate®tudy. e note that the basic features of the electronic structure, as
reflected in the total DOS, do not appear to differ very much
IV. ELECTRONIC STRUCTURE between the two silicides. The origin of the various features
in the PtSi DOS has been discussed in detail by Fratco
The self-consistent calculations for the spin-orbit-split en-g| 4°
ergy bands ofe-Pt,Si and PtSi were performed using the  We have also calculated the spin-orbit-split energy bands
WIEN97 implementatiod* of the linear augmented plane near the Fermi level for the two silicides, as shown in Fig. 4.
wave (LAPW) method®>3® The local density approximation In both cases we see that there are a sizable number of small-
was used with the exchange-correlation potential of Perdewnergy splittings between different bands throughout the full
and Wang’’ The effects of the spin-orbit interaction were BZ. These small splittings are of direct interest with regard
included in a second-order variational procedir€In the  to low-energy inter-band transitions which contribute to the
self-consistency cycles approximately 120 irreducilile optical absorption. In a typical good metal such as Pt, the
points (1000k points in the full B4 were used in the modi- optical absorption at low energies is dominated by the free-
fied tetrahedron method of Bthl3® The energy cutoff used electron-like Drude contribution. However, we saw from
for the plane-wave expansion whg,,—4.16 a.u. resulting Fig. 3 that in the case of the silicides they have a low DOS at
in a well converged basis set of about 105 basis functions pehe Fermi level and consequently are poor metals. In this
atom. The experimental values of the lattice constants andircumstance the Drude contribution will be greatly reduced
internal structural parameters from Tables Il and Il wereand therefore the presence of many low-energy splittings in
used in all cases. For the purpose of calculating the densitthe bands near the Fermi level may result in an interband
of states(DOS) we again used the tetrahedron method butcontribution to the optical absorption which is significant
with unshiftedk-point meshes which included tlhepoint. In even at low energies in the infrared range.
the case of fcc Pt, cubic-diamond-phase Si, anBt,Si we
used a 3X 32X 32 mesh corresponding to 897 irreducikle

. . . [ V. SUMMARY
points for the two cubic materials and 2393 for the silicide.
For PtSi we used a 2624x 16 mesh, yielding 1053 irreduc- We have carried out an extensive first principles study of
ible k points. two room-temperature stable Pt silicides, tetragandtt,Si,

The total DOS for all four materials is shown on the sameand orthorhombic PtSi. We have determined the theoretical
scale in Fig. 3. Although both silicides are metals with aequilibrium structural parameters and cohesive energies for
nonzero DOS at the Fermi level, they are found to be pooboth silicides, as well as pure fcc Pt and pure cubic-diamond-
metals since the DOS is much smaller than in the case gfhase Si. In particular, we have carried out a large number of
pure Pt which is a good metal. In pure Pt the Fermi level liescalculations in order to minimize the total energy with re-
near the top but still within the large DOS features of the spect to the two lattice constants in tetragoaaPt,Si and
band but in both silicides the Fermi level lies above thesehe three lattice constants and four internal structural param-
large peaks. In addition, both silicides exhibit a peak in theeters of orthorhombic PtSi. Our calculated structural param-
DOS at around- 10 eV which arises from the Siorbitals.  eters for all four materials are in good agreement with ex-
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(a) oo

4.0

from the large number of van Hove singularities close to the
Fermi level.

N RY
'< We have investigated the trends in the calculated elastic

)
= /

constants, both the trends within a given material as well as
between materials. The requirement of mechanical stability
F places specific restrictions on the relative magnitudes of
some of the elastic constants within a given material, includ-
ing, for example, a restriction on the bulk modulus tBat
< 2(CqyFCoytCa) andBy>1(Cqpt Cia+Cyg). With regard
to the trends among the four materials, we find that in the
metals the elastic constant expressions which correspond to
volume-conserving strains are always smaller than those
which correspond to strains which do not conserve volume.
\ This also turns out to be true in Si with the exceptiorcof
which is less tharc,,. However, the difference in magni-
tudes between volume-conserving and nonvolume-
conserving elastic constants is largest on average in Pt and
gets smaller in the progression-Ptr-Pt,SiPtSi—Si. In gen-
; eral, the volume-conserving elastic constants have similar
d Ep magnitudes in all four materials while the nonvolume-
conserving elastic constants follow this same progression. In
particular, the bulk modulus is found to be a very nearly
linear function of the atomic percentage of Pt. Klepeis
et al3? have studied the close connection between the vari-
FIG. 4. Spin-orbit split energy bands near the Fermi level@r ous trends in the elastic constants and the chemical bonding
a-Pt,Si and(b) PtSi. The primary feature of interest in both plots is in the Pt silicides.
the relatively large number of low-energy splittings between vari- The calculated electronic structure demonstrates that the
ous bands near the Fermi level. two silicides are poor metals with a low density of states at
the Fermi level, and consequently we expect that the Drude
perimental data, validating the method we have used. component of the optical absorption should bg_much smaller
A major portion of our effort here has been directed at théh@n in good metals such as pure Pt. In addition, we find a
elastic constants in the two silicides. All of the independent|2r9¢ number of small-energy differences between various
nonzero elastic constantsix for a-PtSi, nine for PtSi, and bands near the Fermi Ievel_ in the calculated spln-orblt-spllt
three each for the two cubic materialsave been calculated band structure for the two silicides. Thgse two circumstances
from first principles. The silicide calculations required exten-SU99€st that it may be important to include the interband
sive relaxation of the internal degrees of freedom, especiallgontribution to the optical absorption as well, even in the
in the case of the low symmetry structure of orthorhombic'"frared region.
PtSi. Comparing the elastic constants obtained with and
without relaxation we find that relaxation induces significant
changes in the magnitudes of many of the elastic constants. This work was performed in part under the auspices of the
In addition, we have explicitly determined the dimensionlessU. S. Department of Energy, Office of Basic Energy Sci-
internal displacement parameters for the three strains iences, Division of Materials Science by the University of
a-P,Si for which they are nonzero. We also note that theCalifornia Lawrence Livermore National Laboratory under
value ofcy, in pure fcc Pt was found to be extremely sensi- Contract No. W-7405-Eng-48. Partial support was also pro-
tive to the number ok points, much more so than any of the vided by Deutsche Forschungsgemeinschaft, SFB 292 “Mul-
other elastic constants we calculated. This sensitivity resultscomponent Layered Systems.”
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