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First-principles elastic constants and electronic structure ofa-Pt2Si and PtSi
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We have carried out a first-principles study of the elastic properties and electronic structure for two room-
temperature stable Pt silicide phases, tetragonala-Pt2Si, and orthorhombic PtSi. We have calculated all of the
equilibrium structural parameters for both phases: thea andc lattice constants fora-Pt2Si and thea, b, andc
lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental
data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and
predicting values for the six~nine! independent, nonzero elastic constants ofa-Pt2Si ~PtSi!. These calculations
include a full treatment of all relevant internal displacements induced by the elastic strains, including an
explicit determination of the dimensionless internal displacement parameters for the three strains ina-Pt2Si for
which they are nonzero. We have analyzed the trends in the calculated elastic constants, both within each
material as well as among the two silicides and the pure Pt and Si phases. The calculated electronic structure
confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently
we expect that the Drude component of the optical absorption will be much smaller than in good metals such
as pure Pt. This observation, combined with the topology found in the first-principles spin-orbit split band
structure, suggests that it may be important to include the interband contribution to the optical absorption, even
in the infrared region.

DOI: 10.1103/PhysRevB.63.134112 PACS number~s!: 62.20.Dc, 71.20.Be, 71.15.Nc
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I. INTRODUCTION

Metallic Pt silicide compounds are used to make recti
ing junctions on silicon substrates. The Schottky barr
which determines the activation energy for transport of
charge carriers~holes!, is 220–240 meV for orthorhombic
PtSi onp-type Si~001!,1,2 matching an important atmospher
‘‘transparency window’’ in the infrared region. For this re
son these materials are well suited to infrared detector ap
cations. Orthorhombic IrSi has also been used in these a
cations and has a Schottky barrier of 160 meV on Si~001!,3

matching a lower portion of the transparency window. A
important advantage of the silicides is that they are m
compatible with current silicon-based fabrication technolo
than infrared sensitive semiconductors such as InSb
HgxCd12xTe.

Despite their importance in infrared detector applicatio
relatively little theoretical work has been done to investig
the fundamental electronic structure and equilibrium prop
ties of the Pt silicides. Bisiet al.4 used the iterative extende
Huckel method to calculate the angular-momentum-resol
density of states~DOS! for a number of near noble-meta
silicides, includinga-Pt2Si and PtSi. Yarmoshenkoet al.5

compared x-ray photoelectron spectroscopy~XPS! and x-ray
emission spectroscopy~XES! measurements to the electron
structure calculated using a linear muffin-tin orbital~LMTO!
method for a number of 4d and 5d silicides, including PtSi.
In order to provide a more complete understanding of
properties of the Pt silicides we have carried out first pr
ciples electronic structure calculations for two room
temperature stable phases, tetragonala-Pt2Si and ortho-
rhombic PtSi. In addition to calculating all of the equilibriu
structural parameters~Sec. II! we have also obtained value
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for all of the zero-pressure elastic constants~Sec. III! for
both phases. We have investigated the electronic struc
~Sec. IV! which is directly relevant to the infrared detect
applications of these materials. The purpose in all of th
calculations has been to provide a fundamental underst
ing of the ground state properties of the Pt silicides. W
summarize our results in Sec. V.

II. ATOMIC STRUCTURE

A. Crystal structures

Table I summarizes the characteristics of the equilibri
crystal structures for each of the materials considered h
The pure Pt and Si constituents of the Pt silicides both cr
tallize in a cubic structure under normal conditions, fac

TABLE I. Structural characterization of the materials studied
this work. The column labeled ‘‘Structure’’ gives the Strukturbe
icht designations. The columns ‘‘Space Group’’~name and num-
ber!, ‘‘Site’’ ~multiplicity and Wyckoff letter!, and ‘‘1st position’’
follow Ref. 46. See Table III for the values of the internal structu
parametersu andv.

Material Structure Space group Site 1st position Re

Pt A1 Fm3̄m 225 Pt 4a 0,0,0 6

a-Pt2Si L82b I4/mmm 139 Pt 4d 0,1
2 , 1

4
8

Si 2a 0,0,0
PtSi B31 Pnma 62 Pt 4c uPt,

1
4 ,vPt

11, 47

Si 4c uSi ,
1
4 ,vSi

Si A4 Fd3̄m 227 Si 8a 1
8 , 1

8 , 1
8 7
©2001 The American Physical Society12-1
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BECKSTEIN, KLEPEIS, HART, AND PANKRATOV PHYSICAL REVIEW B63 134112
centered cubic~fcc! for Pt ~Ref. 6! and cubic diamond for
Si.7 Both cubic structures are characterized by a single lat
constanta ~Table II!.

The conventional unit cells of the two Pt silicidesa-Pt2Si
and PtSi are illustrated in Fig. 1. The structure of the roo
temperature (T,968 K! a phase of Pt2Si is body-centered
tetragonal~bct! and resembles a distorted CaF2 structure.8,9

A central Si atom is surrounded by eight Pt atoms, which
located in the corners of a rectangular cell elongated al
thec axis. There are two symmetry-equivalent Pt and one
atom in the primitive cell. The unit cell is characterized
two lattice constantsa andc ~Table II!.

PtSi has a primitive orthorhombic structure@see Fig. 1~b!#
with four symmetry-equivalent Pt and four symmetr
equivalent Si atoms per primitive cell in an MnP-typ
lattice.10,11 This structure is characterized by three latti
constants, denoteda, b, andc ~Table II!. Half of the Pt and
half of the Si atoms in the primitive cell are located in
~010! plane at1

4 b with the rest of the atoms in a~010! plane
at 3

4 b. The in-plane atomic coordinates are not complet
specified by the space group symmetry and thus there

TABLE II. Theoretical and experimental lattice constants~in
a.u.! and bulk moduliB0 ~in GPa!. The theoreticalB0 were deter-
mined from a fit to a Murnaghan equation of state for Pt and Si,
to a four-term Birch-Murnaghan equation of state fora-Pt2Si and
PtSi. B0 listed here for PtSi was calculated for fixed values of t
internal structural parameters~see also Table XII!. The experimen-
tal value of the bulk modulus for Pt is extrapolated to 0 K, where
all of the other experimental numbers are given for room temp
ture.

Material a0 b0 c0 B0 Ref.

Pt theor. 7.403 287.8
exp. 7.415 288.4 48, 28

a-Pt2Si theor. 7.407 11.241 233.5
exp. 7.461 11.268 8

PtSi theor. 10.583 6.774 11.195 210.0
exp. 10.539 6.778 11.180 11

Si theor. 10.22 95.9
exp. 10.26 98.8 30
13411
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four free internal structural parametersuPt, vPt, uSi , andvSi
~the ‘‘1st position’’ column in Table I!. The experimental
values are given in Table III. Each Si is surrounded by six
atoms at the corners of a distorted trigonal prism. The
atoms have six Si neighbors at the corners of a disto
octahedron, and four Pt neighbors, which are positioned
four of the octahedral interstices.11 The Pt atoms are ar
ranged in zig-zag chains along the@100# direction.

B. FPLMTO method

The equilibrium structural parameters and zero-press
elastic constants were calculated with a full potential line
muffin-tin orbital ~FPLMTO! method12,13 which makes no
shape approximation for the crystal potential. For ma
ematical convenience the crystal is divided into regions
side atomic spheres, where Schro¨dinger’s equation is solved
numerically, and an interstitial region. In our FPLMT
method the basis functions in the interstitial region a
smoothed Hankel functions.14 This method doesnot require
the use of empty spheres, even for open structures suc
cubic-diamond-phase Si. The atoms were treated scalar
tivistically within the local density approximation, using th
exchange-correlation potential of Ceperley and Alde15

Spin-orbit interactions were not included. The choice of b
sis functions for the Pt and Si atoms was optimized acco
ing to the procedure described in Ref. 12. The parame
describing the basis are listed in Table IV and were used
the calculations for both silicides in addition to pure Pt a
pure Si.16 The Si 3s, 3p, 3d, and 4f as well as the Pt 6s,
6p, 5d, and 5f were all included as valence orbitals. The
semicore 5s and 5p were treated as core orbitals and w
have not used the frozen overlapped core approxima
~FOCA—see Ref. 12!.

The equilibrium volumeV0 and bulk modulusB0 of Pt
and Si were determined by fitting the total energy calcula
at nine different lattice constants to a Murnaghan equation
state.17,18 In the case of Pt~Si! we used a 24324324 (12
312312) cubic specialk-point mesh which gave 6912
~864! points in the full Brillouin zone~BZ! and 182~28!
points in the irreducible wedge. In addition, a real spa
mesh is used for calculating integrals of the potential o

d

s
a-
are
FIG. 1. Conventional unit cells of~a! body-
centered tetragonala-Pt2Si and~b! orthorhombic
PtSi. The relevant lattice constant distances
illustrated in both cases.
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TABLE III. Calculated and experimental internal structural parameters of PtSi. The parametersu andv
are the same as those specified in Table I. These parameters were calculated both for the experimen
constants as well as the self-consistent theoretical lattice constants~Table II!. The experimental interna
parameters for PtSi are also listed.

PtSi uPt vPt uSi vSi

At expt. lattice constants 0.9981 0.1915 0.1777 0.5845
At theor. lattice constants 0.9977 0.1919 0.1782 0.5841
Experiment~Ref. 11! 0.9956 0.1922 0.177 0.583
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the interstitial region. We used a 16316316 mesh for Pt
and an 18318318 mesh for Si. With these choices the to
energies were converged to better than 1mRy per atom.

In order to determine the equilibrium lattice constants
the silicides, the total energy hypersurfaces were minimi
simultaneously with respect to all of the lattice paramete
In the case of tetragonala-Pt2Si, total-energy calculations
were performed at nine different values of each of the t
lattice constantsa and c ~a total of 81 calculations! in the
range 0.93<a/aexp,c/cexp<1.07. For orthorhombic PtSi we
used seven different values ofa, b, andc, respectively~343
calculations!, within the same relative ranges. For bo
a-Pt2Si and PtSi, 216k points were sampled in the full BZ
which reduced to 28 and 27 specialk points in the irreduc-
ible wedge, respectively. In the case ofa-Pt2Si a 16316
316 real space mesh was used for the interstitial integ
and a 24316324 mesh was used for PtSi. With the
choices the energy per atom differed from the fully co
verged value~which was found for approximately 13 000k
points in the full BZ! by 0.20 mRy fora-Pt2Si and 0.19
mRy for PtSi. The resulting total energy hypersurfac
E(a,c) andE(a,b,c), were each fit to a third order polyno
mial in the lattice parameters. These polynomials were t
minimized to yield the equilibrium parameters. The bu
modulus and equilibrium volume were obtained by fitting t

TABLE IV. Parameters describing the basis used in
FPLMTO calculations.RMT is the muffin-tin radius in a.u.,Lmax is
the upper limit on the angular momentum expansion of
smoothed Hankel functions about a given atomic site,Kmax is the
order of the biorthogonal polynomials used in this expansion,Rsm is
the smoothing radius in a.u., and2k2 is the decay energy in Ry
The total number of basis functions per atom is 17 for Pt and 13
Si. See Ref. 12 for a more complete description of the parame

Basis
Atom RMT Lmax Kmax L-Block Rsm 2k2

Pt 2.2 3 4 s 2.865 21.02
p 2.130 21.08
p 1.302 21.53
d 1.000 20.89
d 2.123 20.42

Si 2.1 3 5 s 1.908 21.296
p 1.627 20.302
d 1.601 21.496

s,p 2.200 22.000
13411
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total energy as a function of volume to a four-term Birc
Murnaghan equation of state19

E~V!5 (
n51

4

anV22n/3. ~1!

This fit was differentiated twice, yielding the bulk modulu
B05V0@]2E(V)/]V2#V0

at the theoretical equilibrium vol-
ume.

The four free internal structural parameters of orthorho
bic PtSi (uPt, vPt, uSi , andvSi in Table I! were determined
self-consistently by calculating theab initio forces12,20on the
ions and, within the Born-Oppenheimer approximation,21 re-
laxing the position of each individual atom in the direction
the forces until the absolute values of the forces were c
verged to less than 1.5 mRy/a.u. 512 specialk points were
used within the full BZ~corresponding to 64 in the irreduc
ible wedge!. Initially the atomic positions were relaxed star
ing from the experimental structure11 and holding the three
lattice constants fixed at their experimental values. Us
these theoretically determined internal parameters, the th
retical equilibrium lattice constantsa0 , b0, andc0, as well
as the bulk modulusB0, were determined using the proce
dure described above. A second geometry relaxation
then carried out but now holding the lattice constants fixed
these theoretically determined equilibrium values. T
yielded a second set of internal structural parameters wh
we refer to as the self-consistent theoretical values. In p
ciple this cycle could be repeated many times to obtain a
of lattice constants and internal parameters which are t
‘‘self-consistent.’’22 However, in practice we find that afte
the first cycle there are only small differences between
two sets of internal parameters~see Table III! and so we
regard them as being converged. We also note that the v
of B0 obtained using fixed values of the internal structu
parameters, as described here, is not strictly correct and
we relax the constraint of fixed internal parameters when
discuss the elastic constants~including B0) in Sec. III E.

C. Equilibrium properties

In order to test our method12 and, in particular, to test ou
choice of basis functions, we calculated the equilibrium l
tice constanta0 and bulk modulusB0 for Pt and Si as de-
scribed in Sec. II B. The results are given in Table II a
compared to experimental data. Since we will focus next
the elastic constants, we pay particular attention toB0, which
is essentially an elastic constant. We see in Table II that
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BECKSTEIN, KLEPEIS, HART, AND PANKRATOV PHYSICAL REVIEW B63 134112
obtain rather good agreement between our values and
experimental data. The self-consistent equilibrium latt
constantsa0 and c0 for a-Pt2Si are also listed in Table II
along with the theoreticala0 , b0, andc0 lattice constants for
PtSi. The bulk moduliB0 at the theoretical volumes for bot
Pt silicides are also given.

In Table III we list the internal structural parameters f
PtSi. The values calculated using the experimental lat
constants are very close to those measured by Graebet
al.11 Comparing the atomic positions using the experimen
versus the theoretical internal parameters, we find abso
shifts in the positions of less than 0.028 a.u. The s
consistent internal parameters obtained using the theore
lattice constants are generally even closer to the experime
values. In this case the absolute atomic shifts relative to
experimental geometry are less than 0.023 a.u.

The theoretical cohesive energiesEcoh and heats of for-
mationDH f for the self-consistent equilibrium atomic geom
etries are compared to the experimental values in Table
As is typically the case, our local-density-functional bas
calculations overestimate the cohesive energy. However
calculated heats of formation are much closer to the exp
ment. The experimental heats of formation are given foT
5298.15 K whereas the theoretical values correspond to
and do not include corrections for zero-point vibrations. W
note that the heats of formation are very similar for the t
silicides and that a plot of the theoreticalDH f as a function
of atomic percent Pt is concave up, as required for the
cides to both be thermodynamically stable.

III. ELASTIC CONSTANTS

A. Method of calculation

The elastic constants determine the stiffness of a cry
against an externally applied strain. For small deformati
we expect a quadratic dependence of the crystal energyE on
the strain~Hooke’s law!. The elastic constantsci jkl describe
this quadratic behavior. Consider a displacementu(R) which
takes every Bravais lattice pointR of the undistorted lattice
to a new positionR8 in the strained lattice,

Ri85Ri1ui~R!, ~2!

TABLE V. Cohesive energiesEcoh and heats of formationDH f

in eV/atom. The experimental standard heat of formation is gi
for T5298.15 K whereas theoretical values are valid for 0 K a
do not contain any corrections for zero-point vibrations. The exp
mental cohesive energies for Pt and Si also correspond to 0 K

Material Ecoh DH f Ref.

Pt theor. 7.27 0
exp. 5.84 0 43

a-Pt2Si theor. 7.24 20.65
exp. 6.08 20.64 44, 49

PtSi theor. 6.93 20.67
exp. 5.85 20.62 45, 50

Si theor. 5.23 0
exp. 4.63 0 43
13411
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where the indexi corresponds to Cartesian coordinates. If w
assume the applied strain is homogeneous~uniform through-
out the crystal!, we can rewrite Eq.~2! as

Ri85(
j

a i j Rj with a i j 5d i j 1
]ui~R!

]Rj
. ~3!

For a homogeneous applied strain the displacement grad
]ui(R)/]Rj are simply constants, independent ofR. These
displacement gradients define the nine components of a
sor. However, since the total energyE cannot change unde
rotations of the crystal as a whole,E can only depend on the
symmetric part of the deformation,23 called the strain tenso
e:

e i j 5
1

2 F]ui~R!

]Rj
1

]uj~R!

]Ri
G . ~4!

Expanding the internal energyE(V,e) of the crystal with
respect to the strain tensor gives24

E~V,$emn%!5E~V!1V(
i j

s i j e i j 1
V

2 (
i jkl

ci jkl e i j ekl1•••,

~5!

where the stress tensors is defined by

s i j 5
1

V F]E~V,$emn%!

]e i j
G

e50

, ~6!

the second order adiabatic elastic constants are given by

ci jkl 5
1

V F]2E~V,$emn%!

]e i j ]ekl
G

e50

, ~7!

andV is the volume of the unstrained crystal. It is convenie
to use Voigt notation which takes advantage of the symm
tries of the tensors:xx→1,yy→2,zz→3,yz→4,xz→5, and
xy→6. Using this notation Eq.~5! becomes23

E~V,$ei%!5E~V!1V(
i

s iei1
V

2 (
i j

ci j eiej1••• ~8!

with the strain tensor given by

e5S e1
1

2
e6

1

2
e5

1

2
e6 e2

1

2
e4

1

2
e5

1

2
e4 e3

D . ~9!

In order to calculate allM elastic constants of a crystal w
appliedM independent strainse(I ) to the unit cell, using Eqs
~3! and ~4! to determine the atom positions within th
strained unit cell. In particular, we haveM53 for both cubic
Si and cubic Pt,M56 for tetragonal Pt2Si, andM59 for
orthorhombic PtSi. Each strainI 51, . . . ,M was param-
etrized by a single variableg and we calculated the tota
energyE(I )(g) for a number of small values ofg. For these

n

i-
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small distortions,E(I )(g) was fit to a polynomial ing and
then equated to the appropriate elastic constant expres
E(V,$ei

(I )(g)%) in Eq. ~8!. From all of the fits we obtained a
system ofM linear equations for the elastic constants, wh
was solved for theci j . Since we always take the undistorte
crystal to be the zero-pressure theoretical equilibrium str
ture, the applied stresss is zero and so the second term
Eqs.~5! and ~8! does not enter in the calculations describ
here.

The parametrizations we used for the three independ
strains in the cubic cases of Pt and Si are given in Table
Strain I 51 is a volume-conserving stretch along thez axis,
the second strain is equivalent to simple hydrostatic press
and strainI 53 corresponds to a volume-conserving mon
clinic shear about thez axis. We carried out calculations fo
nine values ofg in the range of20.01 to 0.01 for strains 1
and 2. However, for strain 3 we calculated nine points in
range from20.04 to 0.04 because the changes in the ene
were rather small~a maximum of 0.1 mRy forg50.01),
leading to larger error estimates in the case of the sma
range. In order to calculate the six independent and nonv
ishing elastic constants of tetragonala-Pt2Si we used the
strains given in Table VII.26 Orthorhombic PtSi has nine
independent elastic constants and we chose the nine st
listed in Table VIII. For each of the silicide strains we ca
ried out calculations for seven values ofg in the range of
20.01 to 0.01, except for strains 8 and 9 in the case of P
where only five values ofg were considered~these mono-
clinic strains were particularly CPU intensive!. Calculational
errors in the elastic constants were determined from
least-squares fit toE(g). All of our results were obtained
from fits of the energy to third order ing because these

TABLE VI. Parametrizations of the three strains used to cal
late the three elastic constants of cubic Pt and Si~also used in Ref.
25!. The energy expressions were obtained from Eq.~8!. StrainsI
51 and I 53 are strictly volume-conserving to all orders in th
strain parameterg. If we restrict ourselves to linear order only the
e3

(1)522g and e3
(3)50, with volume conservation preserved

linear order as well.

Strain I Parameters~unlistedei50) DE/V to O(g2)

1 e15e25g, e35(11g)2221 3(c112c12)g
2

2 e15e25e35g 3
2 (c1112c12)g

2

3 e65g, e35g2(42g2)21 1
2 c44g

2
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yielded the smallest errors compared to polynomials of or
two and four; the single exception was Ptc44, where mini-
mum standard errors resulted from a fourth order fit.

Calculations of the elastic constants require a very h
degree of precision because the energy differences invo
are of the order of 10 to 1000mRy. This circumstance re
quires the use of a finek-point mesh. With our choice o
23 328 specialk points in the full BZ for Pt, 864 for Si, and
5832 for a-Pt2Si and PtSi, the energy per atom was co
verged to 1mRy or better in all cases. In order to minimiz
numerical uncertainties we used the samek-point mesh for
all of the calculations in a given material. The differing sym
metries of the various strainsI resulted in differing numbers
of irreduciblek points. We also checked that we obtained t
same total energy forg50, regardless of strainI ~and hence
different symmetry and irreduciblek points!. All of the cal-
culations were carried out at the theoretical equilibrium l
tice constants listed in Table II. Relaxation of the intern
degrees of freedom was carried out in the case of all n
PtSi elastic constants. These relaxations are necessary
cause the atomic positions are not completely fixed by
space group symmetry, even for the unstrained crystal,
consequently there exist free internal parameters~see Table
III ! which must be redetermined for any distortion of t
crystal, including hydrostatic pressure. Relaxations were a
carried out in those cases where the strain-indu
symmetry-reduction prompted it (c44 for Si and strains 1, 4,
6 for a-Pt2Si). For comparison we have calculated ‘‘fro
zen’’ elastic constants in these same cases, where the int
structural parameters where frozen at their zero-strain e
librium values.

B. Pt

The three elastic constants for Pt are listed in Table IX.
is the only one of the metals considered in this work
which experimental data on elasticity is available. MacF
lane et al.28 extrapolated the values to 0 K, which mak
them well suited for a comparison to our zero-temperat
calculations. In the case ofc11 andc12 we find good agree-
ment between our results and the experimental data~within
3–4 %!. The value ofc44 deviates by 14%, although th
absolute error is approximately 10 GPa for all three ela
constants. The error inc44 can be understood if we look
closely at the band structure. Pt exhibits a wealth of v
Hove singularities directly at the Fermi energy, making
difficult to integrate over the Fermi surface. A high dens

-

gonal
TABLE VII. Parametrizations of the six strains used to calculate the six elastic constants of tetra
a-Pt2Si ~taken from Ref. 27!. The energy expressions were obtained from Eq.~8!.

Strain I Parameters~unlistedei50) DE/V to O(g2)

1 e152g, e25e352g 1
2 (5c1124c1222c131c33)g

2

2 e15e252g, e352g (c111c1224c1312c33)g
2

3 e15e25g, e3522g, e652g (c111c1224c1312c3312c66)g
2

4 e15g 1
2 c11g

2

5 e35g 1
2 c33g

2

6 e452g 2c44g
2

2-5
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TABLE VIII. Parametrizations of the nine strains used to calculate the nine elastic constants of
rhombic PtSi. The energy expressions were obtained from Eq.~8!.

Strain I Parameters~unlistedei50) DE/V to O(g2)

1 e15g 1
2 c11g

2

2 e25g 1
2 c22g

2

3 e35g 1
2 c33g

2

4 e152g, e252g, e352g 1
2 (4c1124c1224c131c2212c231c33)g

2

5 e152g, e252g, e352g 1
2 (c1124c1212c1314c2224c231c33)g

2

6 e152g, e252g, e352g 1
2 (c1112c1224c131c2224c2314c33)g

2

7 e45g 1
2 c44g

2

8 e55g 1
2 c55g

2

9 e65g 1
2 c66g

2

g

l
c

th
e
u

rti
he
th
s
th
at

ta
s:

on

ud

e

nct,
with

ulk
s-
f
ntal
able

he
o-

xed
a.
rnal
e

of k points~23 328 in the full BZ! and a very small smearin
width of 7 mRy in the higher-order smearing procedure29 are
essential because the Fermi energy and hence the tota
ergy depend quite sensitively on these parameters. The
culated value ofc44 was found to be more sensitive to thek
points than the other two elastic constants. Conversely,
silicides did not warrant such a special treatment and w
calculated with a smearing width of 25 mRy. It seems pla
sible that a more accurate treatment of the elastic prope
of Pt may also require inclusion of spin-orbit coupling. T
bulk modulus calculated from the theoretical values of
elastic constants@B05 1

3 (c1112c12)# is 290.8 GPa. It agree
well with both the experimental value of 288.4 GPa and
one extracted from the fit to a Murnaghan equation of st
287.8 GPa~Sec. II C!.

The requirement of mechanical stability in a cubic crys
leads to the following restrictions on the elastic constant24

~c112c12!.0, c11.0, c44.0, ~c1112c12!.0.
~10!

The Pt elastic constants in Table IX obey these stability c
ditions, including the fact thatc12 must be smaller thanc11.
These conditions also lead to a restriction on the magnit
of B0. SinceB0 is a weighted average ofc11 and c12 and
stability requires thatc12 be smaller thanc11, we are left
with the result thatB0 is required to be intermediate in valu
betweenc11 andc12,

c12,B0,c11. ~11!
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C. Si

Because Si has a cubic structure, it has only three disti
nonvanishing elastic constants. These were determined
the same strains as in the case of Pt~Table VI!. Our results
are close to experiment, as indicated in Table IX. The b
moduli from the total energy minimization and from the ela
tic constants@B05 1

3 (c1112c12)# have the same value o
95.9 GPa, close to the one calculated from the experime
elastic constants, 97.0 GPa. The Si elastic constants in T
IX also obey the cubic stability conditions in Eq.~10!, mean-
ing thatc12,B0,c11.

It is perhaps worth noting that the calculation ofc44 re-
quired a relaxation of the positions of the Si atoms within t
distorted unit cell. The symmetry reduction by the mon
clinic shear (e(3) in Table VI! allowed the Si atoms to relax
in the @001# direction. Without this relaxation,c44 would
have been 108.6 GPa; this is to be compared with the rela
value of 79.9 GPa and the experimental value of 79.1 GP30

We have also obtained the dimensionless Kleinman inte
displacement parameterz which determines the magnitud
of the internal displacements along the@001# direction

Du3
(I 53)5z

a

4
exy , ~12!

wherea is the lattice constant andexy5
1
2 e6 is the appropri-

ate element of the strain tensor@Eq. ~9! and Table VI#. Fit-
ting our calculated values ofDu3

(I 53) to a quadratic function
istent

the
f

TABLE IX. Elastic constants of Pt and Si. Calculations were carried out at the theoretical self-cons
lattice constants ofaPt57.403 a.u. andaSi510.22 a.u. The theoretical value ofc44 in parentheses for Si is the
‘‘frozen’’ value obtained without allowing for internal relaxation. The bulk modulus is calculated from
elastic constants asB05

1
3 (c1112c12). In parentheses we giveB0 from the fit to a Murnaghan equation o

state. Experimental values are extrapolated to 0 K. All values are in units of GPa.

Pt Theory Pt Expt.~Ref. 28! Si Theory Si Expt.~Ref. 30!

c11 346.860.5 358 163.4560.03 165
c12 262.760.3 254 62.1360.02 63
c44 87.560.3 77 79.8560.02 ~108.6! 79.1
B0 290.860.3 ~287.8! 288.4 95.9060.02 ~95.9! 97.0
2-6
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in g we find a value ofz50.53 which agrees very well with
the experimental value of 0.54.31

D. a-Pt2Si

We have applied the six strains listed in Table VII
order to determine the elastic constants of tetrago
a-Pt2Si. The orthorhombic strains 1 and 4, and the mo
clinic strain 6 all reduce the symmetry of the crystal in su
a way that the positions of the Pt atoms are no longer c
pletely fixed by the symmetry. The strain-induced forc
drive them into energetically more favorable positions. Ho
ever, the Si atom occupies a center of inversion symm
and thus Si internal displacements are forbidden in all ca
~i.e., the strain-induced forces are identically zero!. Symme-
try also places specific restrictions on the nature of the
displacements. The symmetry of strain 6, corresponding
c44, allows Pt internal displacements along both the@010#
and @001# directions, while the inversion operation leads
the requirement that the displacements must be equal
opposite for the two Pt atoms in the primitive cell. The sy
metry of strain 4, corresponding toc11, is the same as the
symmetry of strain 1 and both allow internal displaceme
only along@001#. Once again the presence of inversion
quires that the displacements of the two Pt atoms be e
and opposite. Strain 5, corresponding toc33, and strain 2
result in the same symmetry as the unstrained crystal
therefore there are no internal displacements associated
these cases, since there are no degrees of freedom in
internal atomic coordinates of the unstrained crystal. Stra
does lower the symmetry but internal displacements are
symmetry forbidden. This fact, combined with the lack
displacements associated with strain 2 means thatc66 is un-
affected. We note that since strains 1 and 4 result in the s
symmetry reduction relative to the unstrained crystal th
will necessarily be a formal symmetry-required relations
between the internal displacements for these two stra
This relationship is obtained directly from the first principl
calculations.

In addition to placing restrictions on the nature of t
internal displacements, symmetry also constrains the co
sponding changes in the elastic constants themselves.
have already seen that the values ofc11 and c44 are both
allowed to change as a result of internal displacements
that c33 and c66 must both remain unchanged. The bu
modulusB0 is also required to be unchanged because it r
resents the crystal response to hydrostatic pressure, c
sponding to a straine(B)5gd i j which preserves the full sym
metry of the unstrained crystal, just as in the case of strai
and 5. The expression for the bulk modulus in terms of
elastic constants isB05 1

9 (2c111c3312c1214c13) while the
energy expression corresponding to strain 2 is (c111c12
24c1312c33)g

2 ~see Table VII!. Our symmetry argument
have required that neither of these expressions can chan
a result of internal displacements and therefore the chan
in c11, c12, and c13 must exactly cancel from these tw
expressions~we have already shown in conjunction wi
strain 5 thatc33 cannot change!. The only way to achieve
both cancellations is if the displacement-induced chang
13411
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c13 is identically zero and if the changes inc11 and c12 are
equal and opposite. Moreover, sincec11 appears as the sol
coefficient in the energy expression corresponding to stra
and since internal displacements can only lower the ene
we conclude that the value ofc11 must either decrease o
remain the same. This conclusion leads to the seeming p
dox that if c11 decreases then symmetry requires thatc12

must increase which appears to contradict the fact that in
nal displacements must always lower the energy. The re
lution of this seeming paradox comes from the fact that i
not possible to construct a strain in whichc12 appears as the
sole coefficient in the expression for the strain energy
always appears in conjunction withc11 and we have already
seen thatc111c12 is required by symmetry to be unchange
while c112c12 can either decrease or remain unchanged.

Our results for the six independent and non-zero ela
constants ofa-Pt2Si are given in Table X. We have calcu
lated the elastic constants for the ‘‘frozen’’ configuration@all
atoms held at the positions determined solely from Eq.~3!#
and with the relaxation of the strain-induced forces on the
atoms. In keeping with our general symmetry arguments,
find a relaxation-induced softening ofc11 by 4% and ofc44
by 17%. In addition,c12 increases by 6% while the remain
ing elastic constants are unchanged to within numerical
certainties. Our results are also consistent with the symm
requirement that the changes inc11 and c12 be equal and
opposite, sincec11 decreases by 14.861.5 GPa whereasc12
increases by 14.661.6 GPa. The bulk moduli calculate
from the tetragonal elastic constants and from the fit to
Birch-Murnaghan equation of state are almost the same,
ing a consistent prediction ofB05235 GPa. As required by
symmetry, the bulk modulus has the same value in the fro
and relaxed calculations.

The requirement that the crystal be stable against any
mogeneous elastic deformation places restrictions on

TABLE X. Elastic constants ofa-Pt2Si. Calculations were per-
formed at the theoretical self-consistent lattice constants~Table II!.
‘‘Frozen’’ refers to fixed atomic positions, whereas ‘‘relaxed’’ in
dicates that a relaxation of the atomic positions was carried
Parentheses denote values where no internal relaxation was n
sary because of symmetry constraints~small variations in these val
ues come from using a slightly more stringent convergence crite
on the energy!. The bulk modulus is calculated from the elast
constants asB05

1
9 (2c111c3312c1214c13). B0

Birch is from a Birch-
Murnaghan fit. No experimental data is available. All values are
units of GPa.

a-Pt2Si frozen relaxed

c11 347.261.2 332.460.9
c33 297.560.5 ~298.060.4!
c12 225.061.2 239.661.0
c13 169.360.9 ~169.460.8!
c44 75.460.3 62.760.5
c66 169.565.2 ~169.365.2!
B0 235.460.6 ~235.560.5!

B0
Birch 233.5
2-7
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elastic constants, just as in the cubic case. For tetrag
crystals these mechanical stability restrictions are
follows:24

~c112c12!.0, ~c111c3322c13!.0,

c11.0, c33.0, c44.0, c66.0, ~13!

~2c111c3312c1214c13!.0.

The elastic constants in Table X satisfy all of the conditio
in Eq. ~13!. In particular,c12 is smaller thanc11 and c13 is
smaller than the average ofc11 andc33. The stability condi-
tions again lead to restrictions on the magnitude ofB0. We
first rewriteB0 as

B05
1

9
@6c1113c3322~c112c12!22~c111c3322c13!#.

~14!

Using Eq.~14! and the first two inequalities in Eq.~13!, we
obtain the following result:

B0,
1

3
~2c111c33!, ~15!

that is, the bulk modulus must be smaller than the weigh
average ofc11 andc33. Similarly, by substituting instead fo
c11 andc33 we obtain

B0.
1

3
~c1212c13!, ~16!

that is, the bulk modulus must be larger than the weigh
average ofc12 andc13.

The stability restrictions do not tell us anything furth
about the relative magnitudes of the various elastic consta
For example, we find a small value ofc44 in comparison to
c66 which means that the tetragonal unit cell is more ea
deformed by a pure shear about thea or b axis in comparison
to thec axis. We also find that overall the elastic constants
a-Pt2Si are much closer to those of pure Pt than pure Si
particularc11 and c33 are similar in magnitude toc11 in Pt,
but all of these constants are approximately twice the va
of c11 in Si. Similarly c12 has approximately the same ma
nitude for botha-Pt2Si and Pt, althoughc13 in the silicide is
about 30% smaller. However,c12 in Si is a factor of 4
smaller. Conversely, the value ofc44 is similar in magnitude
for all three materials, withc66 in the silicide being a factor
of 2 larger. The bulk modulus in the silicide is about 20
smaller than in Pt but still more than a factor of 2 larger th
in Si. The connection between the magnitudes of the vari
elastic constants and the chemical bonding has been exp
in detail in a separate study.32

In addition to the relaxed elastic constants we also
tained the values of the dimensionless parametersz i

(I ) which
determine the magnitudes of the Pt internal displacem
themselves,

Dui
(I )5az i

(I )g, ~17!
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wherea is the lattice constant,I 51,4,6 corresponds to th
strains with symmetry-allowed internal displacements ani
is the Cartesian index (i 52,3 for I 56 and i 53 for I
51,4). In principle there could be contributions to theDui

(I )

which are of higher order ing, but since we are only con
sidering the second order elastic constants the strain en
is only expanded to second order ing @see Eqs.~5! and~8!#,
or equivalently, to second order in the total displaceme
ui1Dui . Thus we need only consider the linear term in E
~17! in the present context. The calculated values of thez i

(I )

parameters are listed in Table XI along with the displa
ment parameter associated withc44 in Si. We note that al-
though displacements are allowed along both the@010# and
@001# directions in the case of thea-Pt2Si strain 6~corre-
sponding toc44), the displacements along@001# are found to
be zero to linear order ing.33 As indicated above, we expec
the internal displacements for strains 1 and 4 to exhib
symmetry-required relationship and in keeping with this e
pectation we find thatz3

(I 51) is almost exactly three time
larger thanz3

(I 54) , the difference likely being due to numer
cal uncertainty.

E. PtSi

Nine independent strains are necessary to compute
elastic constants of orthorhombic PtSi. We first perform
calculations of the elastic constants with the internal str
tural parametersuPt/Si andvPt/Si held ‘‘frozen’’ at their self-
consistent equilibrium values. These results are listed in
second column of Table XII. TheE(g) curves are well fitted
by third-order polynomials ing, as can be seen from th
small standard errors in the calculatedci j . The value ofB0
obtained from the elastic constantsB05 1

9 (c111c221c33
12c1212c1312c23), agrees reasonably well with the on
which was determined from the calculation of the lattice co
stants. This is not surprising since the lattice constant ca
lations were also performed with frozen atomic degrees
freedom.

As expected, the equilibrium atomic positions are not
dependent of the shape and size of the unit cell—similarly
the case ofc44 in Si as well asc11, c12, andc44 in a-Pt2Si,

TABLE XI. Dimensionless internal displacement parametersz
for Si @Eq. ~12!, strain 3 from Table VI# and a-Pt2Si @Eq. ~17!,
strains 1, 4, and 6 from Table VII#. In the case of strain 6 for
a-Pt2Si displacements were calculated along both the@010# and
@001# directions, whereas displacements only along the@001# direc-
tion are allowed by symmetry for strains 1 and 4. In addition, th
is a strict symmetry-required relationship between the displa
ments in strains 1 and 4~see text!. Experimental data is available
only for Si.

Material StrainI Theory Experiment Ref.

Si 3 0.53 0.54 31
a-Pt2Si 1 0.22

4 0.074
6 @010# 20.12
6 @001# 0.00
2-8
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as discussed above. The relaxed elastic constants for PtS
listed in the last column of Table XII. For example,c44 drops
from 141.3 GPa to 100.1 GPa when all of the atoms
relaxed. We find that the Si atoms adjust to this shear ab
the a axis by moving mainly along theb axis. Most of the
other elastic constants decrease by 10–20 %, exceptc23
which increases by 8% andc12 which remains approximately
unchanged. In analogy with the case ofc12 for tetragonal
a-Pt2Si, we note that for an arbitrary strainc12, c13, andc23
in orthorhombic PtSi never appear isolated but always oc
in combination with other elastic constants in the express
for the second-order change in the total energy@Eq. ~8!#.
These particular elastic constants are therefore not requ
to decrease when relaxation is included, even when the
ergy is lowered. Conversely, the remaining six elastic c
stantsare required to decrease when relaxation lowers
energy because strains can be constructed for which
appears as the isolated coefficient of the only contribution
the second-order change in the energy. In the case of P
the additional relaxation of the internal degrees of freed
leads to a significant softening of the elastic constants wh
must also be taken into account in determining the b
modulus. Therefore, we predict the bulk modulus of PtS
be 198 GPa, which is 6% lower than the value of 210 G
determined in our frozen-configuration total-energy minim
zation. Although we have calculated the changes in the e
tic constants when the internal atomic degrees of freedom
allowed to relax, we have not explicitly extracted the cor
sponding internal displacement parameters as we did
pure Si anda-Pt2Si.

Mechanical stability leads to restrictions on the elas
constants, which for orthorhombic crystals are24

~c111c2222c12!.0, ~c111c3322c13!.0,

TABLE XII. Elastic constants of PtSi calculated at the theor
ical self-consistent lattice constants~Table II!. The second column
shows the elastic constants obtained when the internal struc
parameters were held fixed at their theoretical self-consistent va
~Table III!. In the third column these were allowed to relax. T
bulk modulus is calculated from the elastic constants asB0

5
1
9 (c111c221c3312c1212c1312c23). B0

Birch is from a Birch-
Murnaghan fit obtained with frozen values of the internal structu
parameters. No experimental data is available. All values ar
units of GPa.

PtSi frozen relaxed

c11 327.561.2 298.261.2
c22 313.860.0 269.360.8
c33 345.960.1 308.060.6
c12 157.760.6 156.460.8
c13 162.960.6 132.260.7
c23 153.460.1 165.160.6
c44 141.360.3 100.160.4
c55 113.160.1 104.560.1
c66 74.260.2 66.360.4
B0 215.060.2 198.160.3

B0
Birch 210.0
13411
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~c221c3322c23!.0,

c11.0, c22.0, c33.0, ~18!

c44.0, c55.0, c66.0,

~c111c221c3312c1212c1312c23!.0.

The elastic constants in Table XII satisfy all of these con
tions and in particular,c12 is smaller than the average ofc11
andc22, c13 is smaller than the average ofc11 andc33, and
c23 is smaller than the average ofc22 andc33. As in the case
of a-Pt2Si, we can obtain restrictions on the magnitude
B0,

1

3
~c121c131c23!,B0,

1

3
~c111c221c33!, ~19!

that the bulk modulus must be smaller than the average
c11, c22, andc33 but larger than the average ofc12, c13, and
c23.

We again find that overall the elastic constants of PtSi
much closer to those of pure Pt anda-Pt2Si as compared to
pure Si. In detail, we find thatc11, c22, andc33 are approxi-
mately 10% smaller on average in PtSi than ina-Pt2Si, and
thatB0 is 16% smaller. In addition,c12, c13, andc23 for PtSi
are close in magnitude toc13 for a-Pt2Si, which we saw was
about 30% smaller thanc12 in both pure Pt anda-Pt2Si.
Finally, c44, c55, andc66 for PtSi are similar to the values o
c44 in all three of the other materials, but still approximate
a factor of 2 smaller thanc66 in a-Pt2Si.

F. Trends in the elastic constants

The trends of the elastic constants as a function of
atomic percent Pt in all four materials are plotted in Fig.

FIG. 2. Trends in the elastic constants as a function of ato
percent Pt for pure cubic-diamond-phase Si, orthorhombic PtSi
tragonala-Pt2Si, and fcc Pt. The different curves correspond to t
average values of different classes of the individual elastic c
stants, as specified in the legend. For example, in the case o
dotted-line curve labeled asc12, the line passes through13 (c12

1c131c23) in the case of PtSi and through13 (c1212c13) for
a-Pt2Si (c135c23 for tetragonal crystals!, while the open squares
show the actual values ofc12, c13, andc23, as appropriate for each
material.
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Each of the curves corresponds to an average of a diffe
class of elastic constants, while the symbols show the va
of the individual elastic constants themselves. As we saw
Eqs. ~15!, ~16!, and ~19!, mechanical stability requires tha
B0 be larger than the average ofc11, c22, andc33 but smaller
than the average ofc12, c13, andc23 @note that in the case o
a-Pt2Si the appropriate averages are13 (2c111c33) and
1
3 (c1212c13) becausec115c22 and c135c23 for tetragonal
crystals#. This stability requirement is reflected in the to
three curves in Fig. 2. We also see that these three cu
each increase monotonically from Si to Pt and we note
all three classes of elastic constants represented by t
curves correspond to strains in which the volume is not fix
Conversely, the two lower curves labeled (c112c12)/2 and
c44 correspond to the two classes of elastic constants
which the strains are strictly volume conserving@in the case
of PtSi the lowest solid-line curve and large open circ
correspond to elastic constant combinations1

4 (c111c22
22c12),

1
4 (c111c3322c13), and 1

4 (c221c3322c23)]. We
see that in this case the two sets of averages are app
mately constant as a function of atomic percent Pt. The
nificance of this difference in the trends of volum
conserving versus nonvolume-conserving elastic constan
connected to the nature of the chemical bonding in th
materials and has been addressed in a separate study.32

IV. ELECTRONIC STRUCTURE

The self-consistent calculations for the spin-orbit-split e
ergy bands ofa-Pt2Si and PtSi were performed using th
WIEN97 implementation34 of the linear augmented plan
wave~LAPW! method.35,36 The local density approximation
was used with the exchange-correlation potential of Perd
and Wang.37 The effects of the spin-orbit interaction we
included in a second-order variational procedure.36,38 In the
self-consistency cycles approximately 120 irreduciblek
points~1000k points in the full BZ! were used in the modi
fied tetrahedron method of Blo¨chl.39 The energy cutoff used
for the plane-wave expansion waskmax54.16 a.u. resulting
in a well converged basis set of about 105 basis functions
atom. The experimental values of the lattice constants
internal structural parameters from Tables II and III we
used in all cases. For the purpose of calculating the den
of states~DOS! we again used the tetrahedron method
with unshiftedk-point meshes which included theG point. In
the case of fcc Pt, cubic-diamond-phase Si, anda-Pt2Si we
used a 32332332 mesh corresponding to 897 irreduciblek
points for the two cubic materials and 2393 for the silicid
For PtSi we used a 16324316 mesh, yielding 1053 irreduc
ible k points.

The total DOS for all four materials is shown on the sa
scale in Fig. 3. Although both silicides are metals with
nonzero DOS at the Fermi level, they are found to be p
metals since the DOS is much smaller than in the case
pure Pt which is a good metal. In pure Pt the Fermi level l
near the top but still within the large DOS features of thed
band but in both silicides the Fermi level lies above the
large peaks. In addition, both silicides exhibit a peak in
DOS at around210 eV which arises from the Sis orbitals.
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We note that the basic features of the electronic structure
reflected in the total DOS, do not appear to differ very mu
between the two silicides. The origin of the various featu
in the PtSi DOS has been discussed in detail by Francet
al.40

We have also calculated the spin-orbit-split energy ba
near the Fermi level for the two silicides, as shown in Fig.
In both cases we see that there are a sizable number of s
energy splittings between different bands throughout the
BZ. These small splittings are of direct interest with rega
to low-energy inter-band transitions which contribute to t
optical absorption. In a typical good metal such as Pt,
optical absorption at low energies is dominated by the fr
electron-like Drude contribution. However, we saw fro
Fig. 3 that in the case of the silicides they have a low DOS
the Fermi level and consequently are poor metals. In
circumstance the Drude contribution will be greatly reduc
and therefore the presence of many low-energy splitting
the bands near the Fermi level may result in an interb
contribution to the optical absorption which is significa
even at low energies in the infrared range.

V. SUMMARY

We have carried out an extensive first principles study
two room-temperature stable Pt silicides, tetragonala-Pt2Si,
and orthorhombic PtSi. We have determined the theoret
equilibrium structural parameters and cohesive energies
both silicides, as well as pure fcc Pt and pure cubic-diamo
phase Si. In particular, we have carried out a large numbe
calculations in order to minimize the total energy with r
spect to the two lattice constants in tetragonala-Pt2Si and
the three lattice constants and four internal structural par
eters of orthorhombic PtSi. Our calculated structural para
eters for all four materials are in good agreement with

FIG. 3. Total density of states plotted on the same scale for
four materials considered in this work, ordered by decreasing
content from top to bottom. Only Si is a semiconductor whereas
and the two silicides are metals. The valence band maximum i
is labeled as the Fermi levelEF .
2-10
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perimental data, validating the method we have used.
A major portion of our effort here has been directed at

elastic constants in the two silicides. All of the independe
nonzero elastic constants~six for a-Pt2Si, nine for PtSi, and
three each for the two cubic materials! have been calculate
from first principles. The silicide calculations required exte
sive relaxation of the internal degrees of freedom, especi
in the case of the low symmetry structure of orthorhom
PtSi. Comparing the elastic constants obtained with
without relaxation we find that relaxation induces significa
changes in the magnitudes of many of the elastic consta
In addition, we have explicitly determined the dimensionle
internal displacement parameters for the three strains
a-Pt2Si for which they are nonzero. We also note that t
value ofc44 in pure fcc Pt was found to be extremely sen
tive to the number ofk points, much more so than any of th
other elastic constants we calculated. This sensitivity res

FIG. 4. Spin-orbit split energy bands near the Fermi level for~a!
a-Pt2Si and~b! PtSi. The primary feature of interest in both plots
the relatively large number of low-energy splittings between va
ous bands near the Fermi level.
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from the large number of van Hove singularities close to
Fermi level.

We have investigated the trends in the calculated ela
constants, both the trends within a given material as wel
between materials. The requirement of mechanical stab
places specific restrictions on the relative magnitudes
some of the elastic constants within a given material, incl
ing, for example, a restriction on the bulk modulus thatB0
, 1

3 (c111c221c33) and B0. 1
3 (c121c131c23). With regard

to the trends among the four materials, we find that in
metals the elastic constant expressions which correspon
volume-conserving strains are always smaller than th
which correspond to strains which do not conserve volum
This also turns out to be true in Si with the exception ofc12
which is less thanc44. However, the difference in magni
tudes between volume-conserving and nonvolum
conserving elastic constants is largest on average in Pt
gets smaller in the progression Pt→a-Pt2SiPtSi→Si. In gen-
eral, the volume-conserving elastic constants have sim
magnitudes in all four materials while the nonvolum
conserving elastic constants follow this same progression
particular, the bulk modulus is found to be a very nea
linear function of the atomic percentage of Pt. Klepe
et al.32 have studied the close connection between the v
ous trends in the elastic constants and the chemical bon
in the Pt silicides.

The calculated electronic structure demonstrates that
two silicides are poor metals with a low density of states
the Fermi level, and consequently we expect that the Dr
component of the optical absorption should be much sma
than in good metals such as pure Pt. In addition, we fin
large number of small-energy differences between vari
bands near the Fermi level in the calculated spin-orbit-s
band structure for the two silicides. These two circumstan
suggest that it may be important to include the interba
contribution to the optical absorption as well, even in t
infrared region.
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