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We have carried out a detailed study of the chemical bonding for two room-temperature stable platinum
silicide phases, tetragonalPt,Si and orthorhombic PtSi. An analysis of the valence electronic charge density
reveals surprising evidence of covalent three-center bonds in both silicide phases, as well as two-dimensional
metallic sheets inv-Pt,Si. These elements of the bonding are further analyzed by constructing valence force
field models using the results from recent first principles calculations of thésig) independent, nonzero
elastic constants of-Pt,Si (PtS). The resulting volume-, radial-, and angular-dependent force constants
provide insight into the relative strength of various bonding elements as well as the trends observed in the
elastic constants themselves. The valence force field analysis yields quantitative information about the nature
of the chemical bonding that is not easily discernible from the more qualitative charge density plots. More
generally, this study demonstrates that the detailed variations in the elastic constants of a material contain
useful information about the chemical bonds that can be extracted using valence force field models. Inversely,
these models also allow for identification of specific elements of the chemical bonding with particular trends in
the elastic constants, both within a given material and among a class of related materials.
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[. INTRODUCTION of the chemical bonding in the two silicide phases studied
previously. Towards that end we have calculated and ana-
Deposition of metallic platinum silicide compounds on lyzed the valence electronic charge density for both silicides.
silicon substrates leads to the formation of rectifying junc-However, this analysis is only qualitative and thus we have
tions, with a Schottky barrier of 220—240 méfér holeg in ~ made further attempts to gain a more quantitative under-
the case of orthorhombic PtSi gmtype Si(001).%? This  standing. The previous first principles study noted a number
energy matches an important atmospheric “transparencygf interesting trends in the elastic constants, both within a
window” in the infrared region, making these materials well given material and among the two silicides and the pure Pt
suited to infrared detector applications. PtSi has also beeand pure Si phasésin the present work we analyze these
discussed as a promising candidate to replag8iTn poly-  trends in much greater detail and in a more quantitative fash-
silicon interconnect applications in sub-half-micron ion by constructing valence force field models for all four
technologies™ In light of these and other technological ap- materials. The models are obtained by fitting the first prin-
plications, as well as a general paucity of earlier treatmentsiples elastic constants while also using insights gained from
of the fundamental properties of the platinum silicides, therghe charge density analysis to guide the particular choice of
have been two recent in-depth studies of the atomic and elecadial and angular interactions. In turn, the magnitudes of
tronic structures of two room-temperature stable platinunthese various interactions, as obtained from the fits, provide a
silicide phases, tetragonal-Pt,Si and orthorhombic PtSi. quantitative measure of the relative importance of different
Becksteinet al® have carried out an extensive set of firstelements of the chemical bonding. In addition, the models
principles electronic structure calculations for both materialscan be inverted by expressing the various elastic constants in
In addition to the electronic structure, they have calculatederms of the volume-, radial-, and angular-dependent interac-
all of the equilibrium structural parameters and zero-pressurgons. We are thus able to identify the individual trends in the
elastic constants for both phases. Fraatal”® used a com- elastic constants with particular elements of the chemical
bination of photoelectron spectroscopy, soft x-ray emissiorbonding.
spectroscopy, and x-ray absorption spectroscopy to study the In the present work we have two overall goals. The first is
detailed electronic structure of orthorhombic PtSi. First prin-to gain a quantitative understanding of the chemical bonding
ciples calculations of the partial density of states were alsin tetragonala-Pt,Si and orthorhombic PtSi. The second
carried out in order to aid in interpreting the experimentalgoal is to demonstrate, through a case study of these two
spectra. silicides as well as pure Pt and pure Si, that in general terms
The present study is complementary to these two earliethe variations of the elastic constants of a material contain
treatments and makes contact with them in a number ofiseful information about the chemical bonding and that va-
ways. The combination of the atomic and electronic structuréence force field models are a convenient means for extract-
gives rise to the chemical bonding of a material. The elastiéng this information. Moreover, by inverting the models and
constants and the various experimental spectroscopies refladentifying the chemical interactions responsible for the ob-
the details of this bonding but they do so indirectly. One ofserved trends in the elastic constants we are thereby able to
the goals here is to directly elucidate the fundamental naturebtain a more intuitive understanding of the connection be-
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TABLE I. Equilibrium theoreticalfrom Ref. § and experimen-

‘ Pt ‘._,/ SI tal lattice constantsin a.u) and internal structural parametéfer
PtSi).

Material ag by Co Ref.
Pt theor. 7.403 6
expt. 7.415 30

a-PtSi  theor. 7.407 11.241 6
expt. 7.461 11.268 12

PtSi theor. 10.583 6.774  11.195 6

expt. 10.539 6.778  11.180 15
Si theor. 10.22 6
expt. 10.26 31

FIG. 1. Conventional unit cells df) body-centered tetragonal
a-Pt,Si and (b) orthorhombic PtSi. The relevant lattice constant
distances are illustrated in both cases. theor. 0.9977 0.1919 0.1782 0.5841 6
expt. 0.9956 0.1922 0.177 0.583 15

PtSI uPt U pt uSi Usgj Ref.

tween chemical bonding and the mechanical properties of a
material. Given this more general goal we have therefore

described the construction of the models and the analysis cHriefIy summarize them here. The change in the internal en-

v_arious elastic constant trends in_some detail._Section Il proérgy, AE, of the crystal is expanded to second order in the
vides the relevant details regarding the atomic structure foLiements of the strain tensey, using Voigt notation

the two platinum silicides studied here. In Sec. Ill we sum-

marize the previous elastic constant calculations from Ref. 6. Vv

The valence electronic charge densities are analyzed in Sec. AE(V {e})= > Z cijee, (1)
IV and the valence force field models are presented in Sec. V. 4

Our results are summarized in Sec. V. whereV is the volume of the unstrained crystal and the
are the second-order elastic const&md.of the elastic con-
Il. ATOMIC STRUCTURE stant calculations were carried out using the theoretical equi-

The stable phase of pure Pt at ambient conditions is facdiPrium structural parameters listed in Table I.
centered cubi¢fcc),® while for pure Si it is cubic diamondf. Crystals with cubic space group symmetry have only
The conventional unit cells of the two platinum silicides three distinct, nonvanishing elastic constants. The theoretical

a-Pt,Si and PtSi are shown in Fig. 1. The room—temperaturé’alues of these three elastic constants for both pure Pt and

(T<968 K) a-phase of PSi occurs in the body-centered PUre Si, as obtained in Ref. 6, are listed in Table Il together
tetragonal(bc) structure'2 The Strukturbericht designa- with the corresponding experimental values. The theoretical
tion is L'2, and the spéce group ig¥mmm (No. 139.13 bulk moduli were obtained from the theoretical elastic con-

_1 : .
The two symmetry-equivalent Pt atoms in the primitive cell STANS Bo=5(C1112C17)]. We note that in the case of Si the
occupy Wyckoff 4€) sites and the one Si atom occupies acalculation ofc,, required a relaxation of the positions of the
2(a) site. The atom positions are completely determined b I atoms within the.dlstort.ed_ unit cell.
the space group symmetry but there are two independent Tetragonake-P%Si has six independent and nonzero elas-
lattice constants andc. PtSi has a primitive orthorhombic UC constants. Three of these elastic constanyg, C1,, and
structure with four symmetry-equivalent Pt atoms occupyingC4s: Correspond to strain-induced symmetry reductions for

Wyckoff 4(c) sites and four symmetry-equivalent Si atoms Which the positions of the Pt atoms are no longer completely
also occupying @) sites*~18 The Strukturbericht designa- fixed by the symmetry. The strain-induced forces drive them

tion for this MnP-type lattice i831 and the space group is ?nto energetically more favoraple p(_)sitio(tse correspond-
Pnma (No. 62.12 The atom coordinates along tieand c ing forces on the Si atoms are identically zero by symmetry

axes are not completely specified by the space group synlhe first principles results for the six elastic constants of

metry and thus there are four free internal structural paramg'P:EZS' are glvgn |r|1( Tab_le IHiI Tpehvalues IaLbel(Ije?_I az fror-]
etersup, vpt, Usgj, anduvs;. The structure also has three zen” correspond to keeping all of the atoms held fixed at the

independent lattice constarasb, andc. All of the relevant positions determined solely from the strain tensor, while the

equilibrium structural parameters for each of these four ma.?IaStIC constants labeled “relaxed” were obtained by relax-

terials are given in Table I, including both the experimentalIng the ;tram-mduced forces on the Pt atom;. The bulk
values and the self-consistent theoretical values calculat Odli'lus is calculated from the tetragonal elastic constants,
from first principles in Ref. 6. 0=75(2Cq1+C33t+2Cq,+4cCq3), and has the same value in

the frozen and relaxed calculations.
There are nine independent and nonzero elastic constants
for orthorhombic PtSi. Relaxation of the internal degrees of
Since we will rely heavily on the detailed results of the freedom was necessary in calculating all nine PtSi elastic
first principles elastic constant calculations from Ref. 6, weconstants because the atomic positions are not completely

Ill. ELASTIC CONSTANTS
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TABLE Il. Elastic constants of Pt and Si. The first principles calculations, described in Ref. 6, were
carried out at the theoretical self-consistent lattice constan@pef7.403 a.u. andag;=10.22 a.u. The
theoretical value ot,, in parentheses for Si is the “frozen” value obtained without allowing for internal
relaxation. The bulk modulus is calculated from the elastic constan%a%(clﬁ 2cq,). Experimental
values are extrapolated to O K. All values are in units of GPa.

Pt, theory(Ref. 6  Pt, expt.(Ref. 32 Si, theory(Ref. 6 Si, expt.(Ref. 3]
C1p 346.80.5 358 163.450.03 165
Cio 262.7+0.3 254 62.130.02 63
(o 87.50.3 7 79.85-0.02 (108.9 79.1
Bg 290.8+0.3 288.4 95.96:0.02 97.0

fixed by the space group symmetry, even for the unstrainedtrains in which the volume is not fixed. Conversely, the two
crystal. The results of the calculations are listed in Table Ill.lower curves labeledcd;— c45)/2 andcy, correspond to the
The labels “frozen” and “relaxed” have the same meaning two classes of elastic constants in which the strains are
as in the case of-Pt,Si. The two values 0B, are obtained strictly volume-conservindin the case of PtSi the lowest
from the elastic constantsBy=3(Cq;+Cy+Ca3t+2¢,  solid-line curve and large open circles correspond to elastic
+2¢13+2C,3). As expected, the relaxed value &, is  constant combinations 7(Cy;+Co—2C15), 5(C11+Cag
smaller than the frozen value. —2C13), and3(C,,+ C33— 2C»9) |. We see that in this case the
Figure 2 summarizes the calculations for all four materialswo sets of averages are approximately constant as a function
in terms of the trends of the elastic constants as a function aff atomic percent Pt. The significance of this difference in
the atomic percent Pt. Each of the curves corresponds to ghe trends of volume-conserving versus non-volume-
average of a different class of elastic constants, while theonserving elastic constants is connected to the curve labeled
symbols show the values of the individual elastic constant€, and is discussed in Sec. V along with a general discussion
themselves. Mechanical stability requires tha{c,,+c;3  of the relationship between the magnitudes of the various
+Cp5) <Bg<3(Cy1+CptCzy) [note that in the case of elastic constants and the chemical bonding.
a-PtSi the appropriate averages aggc,+2c;3) and
2(2c1+ C33) becausec;3=C,3 and c;=c,, for tetragonal
crystald. This stability requirement is reflected in the top
three curves in Fig. 2. We also see that these three curves In order to provide insight into the nature of the chemical
each increase monotonically as a function of atomic percerttonding in a-Pt,Si and PtSi we have analyzed the valence
Pt from pure Si to pure Pt, and we note that all three classeslectronic charge density in these materials. We have chosen
of elastic constants represented by these curves correspondttoplot charge density differences, the superposition of free

IV. ELECTRONIC CHARGE DENSITY

TABLE lll. First principles elastic constants ei-Pt,Si and PtSi from Ref. 6. Calculations were per-
formed at the theoretical self-consistent lattice const@able |). “Frozen” refers to keeping the atoms fixed
at the positions determined solely from the strain tensor and, in the case of PtSi, with the internal structural
parameters held fixed at their theoretical self-consistent vdllesle ). “Relaxed” indicates that a relax-
ation of the atomic positions was carried out, including a relaxation of the PtSi internal structural parameters.
Parentheses in the case of the relaxeBt,Si elastic constants denote values where no internal relaxation
was necessary because of symmetry constrégmsll differences with the frozen values come from using a
slightly more stringent convergence criterion on the energfge bulk modulus is calculated from the elastic
constants asy=5(2C;;+ Caz+ 21+ 4C;2) for a-PtSi andBo= 5(Cyq+ Copt Cagt 2C1o+ 2C15+ 2C,7) for
PtSi. No experimental data is available for either material. All values are in units of GPa.

a-P1,Si, frozen(Ref. 6  «-Pt,Si, relaxed(Ref. 6  PtSi, frozen(Ref. 6  PtSi, relaxed Ref. 6

Ci 347.2+1.2 332.4-0.9 327512 298.2-1.2
Cas 313.8:0.0 269.3-0.8
Cas 297.5-0.5 (298.0-0.4) 345.9-0.1 308.0:0.6
Ci 225.0+1.2 239.6:1.0 157.7:0.6 156.4-0.8
Ci3 169.3+0.9 (169.4-0.8) 162.9-0.6 132.2:0.7
Cos 153.4+0.1 165.1-0.6
Caa 75.4+0.3 62.7-0.5 141.3-0.3 100.1-0.4
Css 113.1+0.1 104.5-0.1
Ces 169.5-5.2 (169.3-5.2) 74.2:0.2 66.3-0.4
Bo 235.4-0.6 (235.5-0.5) 215.0:0.2 198.1-0.3
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400 T on the local density approximation, using the exchange-
© (e mey)/2 correlation potential of Ceperley and Ald&as parametrized

5 F 2:: KT b by Vosko, Wilk, and Nusaif’ The scalar-relativistic Schro
2 300 [~ a-p; 3§' * A dinger equation was solved self-consistently. We did not in-
= T P clude spin-orbit interactions and we used atomic sphere radii
3 L (_:,0./ //E( ] equal to one-half the nearest-neighbor bond lengths. In the
g A o 1 case ofa-Pt,Si we included an empty atomic sphere at the
o F ] octahedral interstitial site, as well as the usual empty spheres
B 100 L ’ in the interstitial sites of pure cubic-diamond-phase Si. How-
@ " ever, these empty spheres do not contribute to the basis but
= - merely improve the accuracy of the interstitial interpolation
04‘/./.|...|...|...|...' procedure.
0 02 04 06 08 1 The Pt &, 6p, 5d, and 5 orbitals as well as the Sis3
Atomic percent Pt 3p, 3d, and 4 orbitals were all treated as valence states.

The semicore Pt$and 5 orbitals were treated as full band
FIG. 2. Trends in the elastic constants as a function of atomigtates by carrying out a “two-panel” calculation. The second
percent Pt for pure cubic-diamond-phase Si, orthorhombic PtSi, teyane| hand calculation for the semicore orbitals included the

tragonala-Pt,Si, and fcc Pt. The different curves correspond to thel:,t 5s, 5p, 5d, and 5 orbitals as well as all of the Si valence
average values. pf qlﬁerent classes of the |nd|V|QuaI elastic cong iio 1 The Brillouin zondBZ) sums were carried out us-
stants, as specified in the legend. For example, in the case of t

dotted-line curve labeled as,,. the line passes through(c I]ﬁg_ the tetrahedron meth&ﬂi.V\_le used the same mesh lof
ety in the case of Iézt’Si and through(cyy+ 2 flz points for both the self-consistent total energy and charge

13772 UGR(Cyt 2;q) for density calculations. In the case @fPt,Si we used a shifted
a-P1,Si (cq3=Cy3 for tetragonal crysta)s while the open squares 24% 24% 24 (12x 12 12) mesh in the full BZ, resulting in
show the actual values a@f;,, c,3, andc,3, as appropriate for each 1056(159 ireduciblek poi in the fi ' N
material. TheC, force constant curve is scaled by the inverse of the ( . ) irre ucible points in the !rst(second panel. In
volume per atom in order to be able to plot it on the same scale ag"e PtSi ca_lculatlons we used_ a shlﬁedmx 12 (_6>< 8
the elastic constants. The significanceafin connection with the < 6) mesh in the full BZ, resulting in 28€86) irreduciblek

X 16X 16) mesh in the full BZ was used for fcc Pt, resulting

atom densities subtracted from the fully self-consistent crysin 2030(408) irreduciblek points in the firs{second panel.

tal density, thus emphasizing the formation of bonds. Sincéinally, a shifted 1 12x12 mesh in the full BZ was used
we are using an all-electron method even the valence chard@r cubic-diamond-phase Si, resulting in 182 irreducikle
density has a large amplitude close to each of the atomiBOINts.

positions. Subtracting two such large numbers can some-

times produce unusual features in the plots described below, B. Pt and Si

but these are of no consequence to' our'discussior'l. Rather We \we start with the well-known cases of pure diamond-
focus on the smoothly varying density differences in betweemn,,ase Sj and fec Pt in order to provide a baseline with which

the atomic positions. In all of the gray-scale plots presenteg, compare the results we obtain for the silicides. In Fig) 3
below the brighter spots represent an increase in the densifye see the localized piling up of additional charge between
relative to superimposed free atoms while the darker spotgach pair of Sj atoms that corresponds to the covalent bonds
represent a decrease, with exactly the same scale being USGtihis material. Except for these bonds, the density is rela-

in all of the plots. tively unchanged from the free-atom superposition in the re-
maining regions outside of the atomic cores, as can be seen
A. FPLMTO method by identifying the “0” level in the accompanying scale bar.

The valence electronic charge densities were obtained u his circumstance is in stark contrast to the case of fcc Pt in

ing a full-potential linear muffin-tin orbital(FPLMTO) ig. 3(b). In Pt the increase in density is spread approxi-

method”18 which makes no shape approximation for themately uniformly throughout all of the regions outside the

crystal potential. The crystal is divided up into regions insideatomlc cores. In fact, from this perspective Pt appears almost

atomic spheres, where Schinger’s equation is solved nu- gtz(iéile;t.rs(?:'l':fri'md‘teﬁg'tea:?ae"mggec IO.(?;:LZ:: d nit#rz ofethe
merically, and an interstitial region. The wave functions in ISIng partially up! - us W

the interstitial region are Hankel functions. An interpolation see that charge density difference plots such as those in Fig.

procedure is used for evaluating interstitial integrals involv-.3 are clearly able to distinguish metallic bonding, as occurs

ing products of Hankel functions. The triplebasis is com- in Pt, from covalent bonding, as oceurs in Si. _For_later ptg-_
posed of three sets af p, d, andf LMTOs per atom with poses we no}ée_that the nearest-neighbor spacing is 2.35 A in
Hankel function kinetic energies ef k> =—0.01,— 1.0, and Siand 2.77 Ain Pt.

—2.3 Ry (48 orbitals per atom The Hankel functions decay )

exponentially ase™ *". The angular momentum sums in- C. a-PtSi

volved in the interpolation procedure are carried up to a Each Si atom inw-Pt,Si has eight Pt nearest-neighbors at
maximum ofl =6. The calculations presented here are based distance of 2.47 Asee Fig. 1a)]. In addition to four Si
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(a) (b)
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FIG. 3. Superposition of free atom densities subtracted from the
fully self-consistent crystal density fda) cubic-diamond-phase Si
and(b) fcc Pt. In both plots there are 51 contour levels plotted with
pure black corresponding to-10 and pure white to+10
millielectrons/boht, as indicated in the scale bar. (@ thex axis is
along[110] and they axis along[001] while in (b) the x axis is
[100] and they axis [010]. In both cases the calculations were
carried out at the experimental equilibrium volume and only the FIG. 4. Superposition of free atom densities subtracted from the
density from the valence states was considered, excluding the defully self-consistent crystal density for tetragomaPt,Si. The same
sity arising from the core states. In the case ofdbthe density was 51 contour levels and gray scale are used as in Fig. 3. The two-
calculated at 78101 grid points while for Ptb) there were 101  dimensional Pt-Pt second-nearest-neighbor metallic sheets are
X 101 grid points. shown in(a) with thex axis along 100] and they axis along 010].

In (b) we show the three-center Pt-Si-Pt covalent bonds involving
nearest-neighbors, each Pt atom also has four Pt seconglo second-neighbor Pt atoms, with thexis along{ 110] and the
nearest neighbors at a distance of 2.79 A and two Pt thirdy axis along 111]. The second set of three-center Pt-Si-Pt covalent
nearest neighbors at 2.98 A. The Pt second-nearest neighbasends involving two third-neighbor Pt atoms is illustrated (@)
form two-dimensional001) planes while the Pt third-nearest with the x axis along[100] and they axis along[001]. All three
neighbors form lineaf001] chains. The Pt second-nearest- calculations were carried out for the experimental equilibrium struc-
neighbor distance is very close to the nearest-neighbor digure and only the density from the valence states was considered.
tance in pure fcc Pt and thus we might expect these twoThe density was calculated at 20101 grid points in(a), 151
dimensional planes to exhibit evidence of metallic bonding.x 201 grid points in(b), and 101 151 grid points in(c).

This is in fact what we see, as shown in Figadwvhich bears

a strong resemblance to the analogous plot in Figp).3 [Fig. 4@)]. It would thus appear that rather than four-center

However, this approximately uniform increase in the chargecovalent bonds, a more appropriate description of the bond-
density in the regions outside the atomic cores is confined tihg in «-Pt,Si would be three-center bonds interconnected

the two-dimensional second-nearest-neighbor (@01 by two-dimensional metallic sheets.

0)

planes. In particular, t.here is little eviden(_:e of bond(hg., They axis of Fig. 4b) is along the[111] direction and
little or no increase in the charge density relative to freehighlights two of the central Si atom’s three-center bonds.
atoms along the third-nearest-neighbj@01] Pt chains. However, from Fig. 1a) we see that there are four of these

In addition to the two-dimensional “metallic” bonding, crystallographic directions and therefore a total of eight of
we find strong evidence of covalent bonding between the Phese three-center bonds for each Si atom. As noted above,
and Si nearest neighbors, illustrated in Figo)4Unlike the  the pair of Pt atoms participating in a given three-center
case of pure Si where the increase in charge density occurrésbnd are second-nearest neighbors themselves. Figore 4
between pairs of atoms, here the density increase is localizeshows that there is another set of three-center bonds involv-
between three atoms, two Pt and a Si. For this reason Wigig one Si atom and a pair of Pt atoms that are third-nearest
refer to these features as three-center covalent bonds. Weighbors oriented along ti601] chains. Thex axis in Fig.
might even be tempted to call these four-center bonds be4(c) is along[100] and they axis is along[001]. There is
cause there is a smaller increase in the density, in betwesdiitle or no indication of an increase in charge density along
the two Pt atoms, which connects two of the three-centethe Pt-Pt[001] chains. In addition to the two three-center
bonds. However, we note that theaxis in Fig. 4b) is along  bonds in Fig. 4c), there are two more of these bonds located
the [110] direction and that each of the Pt-Pt pairs in be-in the plane obtained by a 90° rotation about [B61] axis
tween two of the three-center bonds are also located in onfsee Fig. 18)], for a total of four of these three-center bonds
of the (001) planes that exhibit evidence of metallic bonding for each Si atom.

155110-5



J. E. KLEPEIS, O. BECKSTEIN, O. PANKRATOV, AND G. L. W. HART PHYSICAL REVIEW B4 155110
Thus we see that each Si atomdaPt,Si participates in  (a) (b)
12 three-center bonds, eight with Pt-Pt second-nearest
neighbors and four with Pt-Pt third-nearest neighbors, and
that these three-center covalent bonds are interconnected t
two-dimensional second-nearest-neighbor Pt-Pt metallic
sheets. Given the large increase in the number of bonds it
a-PtSi relative to pure Si we expect that each individual
bond will be weaker than one of the covalent bonds in Si.
However, taken as a whole and in terms of the material
strength, the more distributed nature of the bonding in
a-Pt,Si may indicate something closer in character to the
pure metallic bonding in fcc Pt. This interpretation is sup-
ported by the calculated elastic constants in Fig. 2, where the

non-volume-conserving elastic constants ferPt,Si are
much closer to those of fcc Pt as opposed to pure Si. We FIG. 5. Superposition of free atom densities subtracted from the
address this issue in more detail in Sec. V C. fully self-consistent crystal density for orthorhombic PtSi. The same

51 contour levels and gray scale are used as in Fig. 3a)lnve

show the three-center Pt-Si-Pt covalent bonds withxth&is along

D. PtSi [TOO] and they axis along[001]. The covalent Pt-Si bonds that

In the orthorhombic PtSi structure each Si atom has six PfONnect atoms in adjacebtaxis planes are shown {ib) with thex
neighbors, with one Pt at 2.41 A, two at 2.43 A, one at 2.522XiS approximately alon§304] and they axis along[010]. Both
A, and two at 2.64 A. In view of the fact that the nearest_calculatlons were carrle_d out for the experimental equilibrium _struc-
neighbor Pt-Si distance is 2.47 A inPLSi it is perhaps not ture and gnly the density from the valen_ce st'ates_ was considered.
surprising that we find the two Pt neighbors at 2.64 A appeaFhe def‘s'ty was calculated at 10101 grid points '.n(a) and 81
to contribute little to the bonding in PtSi. Each Si also has 65 gnd points in(b). The I.eﬂm95t Pt atom i) with the label
two Si fifth-nearest neighbors at 2.84 A but again we findcontalned |nS|d_e a dotted circle is npt gctually located in the plane
. . : - . of the plot but is close enough that its influence can still be seen.
little evidence of bonding between these atoms, which is
consistent with the fact that the nearest-neighbor distance in
pure Si is only 2.35 A. In addition to six Si neighbors at the angles involving one Pt second neighbor and one third neigh-
same distances listed above, each Pt atom also has two Bar are very nearly equal to the perfect tetrahedral angle of
neighbors at a sixth-nearest-neighbor distance of 2.87 A anti09.47° in pure Si, but the remaining four bond angles vary
two more at a seventh-nearest-neighbor distance of 2.90 Aonsiderably, ranging from 71° to 132°.
These distances are somewhat larger than the 2.77 A nearest-There is very little evidence of an appreciable increase in
neighbor distance in pure fcc Pt. the charge density between the Pt and Si fourth-nearest

The striking appearance of three-center bond&+RtSi  neighbors and the Si-Si fifth neighbors, as we mentioned
is repeated in orthorhombic PtSi, as shown in Fi@5As  above. The Pt-Pt sixth-nearest neighbors in Fig) Show
we see in Fig. (), a convenient way to think of the PtSi some evidence of charge accumulation but the Pt-Pt seventh
structure is as two alternating planes of atoms stacked alongeighbors do not. We thus see that there appears to be only
theb axis. Figure %a) shows the charge density difference in two sets of strong covalent bonds in orthorhombic PtSi, the
one of these planes. As in the casenePt,Si [Figs. 4b) and  three-center Pt-Si-Pt bonds within a giveraxis plane and
4(c)] we see a pileup of charge relative to the free atomhe two-center Pt-Si bonds between atoms in adjabentis
density that is not localized between a single pair of atomsglanes, resulting in a total of only three bonds per Si atom. In
but rather between one Si and two Pt atoms. These Pt neighhis sense the bonding in PtSi appears to be qualitatively
bors participating in the three-center bond are the first- anéhuch more similar to that in pure Si as compared to pure Pt
third-nearest neighbors of the Si atom and are at distances gf evena-Pt,Si. In particular, we are unable to identify any
2.41 A and 2.52 A. The two Pt atoms are themselves sixthconcrete evidence in PtSi of a uniform increase in interstitial
nearest neighbors, with a bond length of 2.87 A. There apcharge density that might be associated with an element of

pears to be a small increase in the charge density betwegRetallic bonding. We revisit this subject in Sec. V D.
these two Pt atoms. We note that the two different three-

center bonds shown in Fig(& are equivalent by symmetry.

The two se_cond—neig_hbor Pt atoms of a giyen Si atom are V. VALENCE EORCE FIELD MODELS
located in adjacenb-axis planes from the Si. The charge
density difference for these bonds is shown in Fi¢h)5 In order to provide a more quantitative analysis of the

which indicates that they are of the standard two-center vatrends in the elastic constants as well as the various elements
riety. In addition to these two-center bonds, the plot alsoof the chemical bonding, we construct simple valence force
shows part of the bond with the first-neighbor Pt atom on thdield model$??3to describe the interatomic interactions for
left side of the figure. In fact, the two second neighbors agpure Pt, pure Si, and the two silicides. In these models the
well as the first and third neighbors form a very distortedchange in the internal energy upon distorting the cryst&l,
tetrahedron around the central Si atom. The Pt-Si-Pt bond given as follows
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N (AV) 2 N Ad, TABLE IV. Force constants of valence force field modgEs).
n 0 -
V

2 N

AE= 5 C + 5 2 Ci( a ) +E E Kij(A 0”-)2, (2)] for fcc Pt, tetragonak-Pt,Si, orthorhombic PtSi, and cubic-

! I " diamond-phase Si. Th€, force constant represents the volume-

2 dependent interaction, each of the remaindgis a radial force

whereN is the number of primitive cells in the crystal,is ~ constant for théth nearest-neighbor bond, aid; is an angular
the number of atoms in the primitive cel, is the volume, force constant for the bond angle between ittreand jth nearest-
Ad, is the change in theth bond length, and\ 6, is the neighbor bonds. All of the force constants are in units of eV.
change in the bond angle between ttieandjth bonds. We

determine theC andK force constants by equating this ex- Pt a-PLSi PSi Si
pression forAE to the corresponding elastic constant expres- ¢, 16.54 13.88 10.38
sions derived from Eq(l), examples of which are given in C, 16.10 13.58 42.58 54.06
Ref. 6. These coefficients are referred to as force constants ¢, 26.03 48.26
because Eq(2) could also be used to analyze the phonon 8.39 10.90
spectrum and in this case, within a constant factor, the coef- ¢ 18.32
ficients play the role of Hooke’s law force constants. c, 3.91

The factor ofn in the first term of Eq.2) is explicitly K 506 313
included so that the resulting force const&@y represents KM 1'87 '
the volume contribution per atom, thus facilitating the com- Klz ’ 1.29
parison between materials with different numbers of atoms in K13 7.62
the primitive cell. Similarly, the indices andj are summed K22 15'01

23 '

over all of the relevant bonds for each of the atoms in the
primitive cell (avoiding any double countingwhich results

in force constants that represent the interaction strength for
single bond C;) or bond angle Kj;). The volume term in
Eq. (2) is needed for metals ssuch as Pt and is reminiscent
the embedded-atom metfféd® that has been successful in 8\/' respectively. The fact that the two numbers differ is an

treating fcc metals. Similarly, the angular terms are needemdication of the incomoleteness of the two-parameter
for covalently bonded systems such as Si; such terms are a b P

part of the Tersoff potential formulatiéhthat has been used n;ods!. d#fse(?eg];éht?utev)\(/zeggnneeqaaéleeslzsml|Cuosnestﬁthv)gZ\ld: :f
successfully in semiconductor systems. Both the volume an gge wo values for th’e UrboSe of,com aring to thegsili-
the angular terms lead to deviations from the Cauchy . purp paring
. 7 . i . .“cides,
relations?’ which are strict equalities between various elastic
constants that apply when the interatomic interactions _
are purely pairwisdi.e., including only the second term Ci1=v[(C11—C12) +Cyql. )
in Eq. (2)].

Bt. For the purpose of internal consistency we use the theo-
0rfetical equilibrium volume as well. The resulting two values
of C; obtained from Eqs(3) and(4) are 15.78 eV and 16.42

Evaluating Eq.(5) using the theoretical elastic constants we

A. Pt obtain C;=16.10 eV, while the experimental elastic con-

stants correspond to a value of 16.95 eV. We note that

In the case of fcc Pt we construct a two-parameter modelye could have eliminated the need to use the averaged ex-
considering only the nearest-neighbor bond length and a volyression in Eq(5) by including additional force constants
ume term, but no angular terms. The radial force con&Zant pyt we prefer to maintain the conceptual simplicity of

can be obtained from the volume-conserving strains correge two-parameter model. For example, including an angular

sponding to eitherdy;—Ci2) Or Cya, interaction in Eqs(3) and (4) results in a small and slightly
negative angular force constahkt which is conceptually
E(Cu— Cip) = l lCl 3) unsatisfying.
2 v 4 The uniform expansion and compression represented by
and the bulk modulusB, can be used to obtain the following
expression involvindC, andC4,
! 1C (4) 1 1 2
Cuy=—=Cq,
2™ 5025(011+2012):;(C0+§C1)- (6)

wherev = ;a® is the volume per atom. Taken together, these
two equations provide an explanation for the fact that, (  Equations (5) and (6) together yield a value ofCy
—Cyp) andcy, for pure Pt are similar in magnitude in Table =16.54 eV using the theoretical elastic constants, and 15.73
II. They also satisfy the cubic mechanical stability require-eV using the experimental values. The value<gfand C,
ments that ¢;;—C;,) >0 andc,,>0.28 obtained from the theoretical elastic constants are listed in
In order to facilitate comparison with the silicides where Table V. We note that the volume force constant has ap-
there is no experimental data for the elastic constants, wproximately the same magnitude as the radial force constant
also use the theoretically determined elastic constants for fcand that both are important in contributing to the large bulk
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modulus. For completeness we also give the expressions fare close in magnitude in Table Il is merely a coincidence

€11 @andcq, in terms of Cy andC4, having to do with the specific values of tlig andK 4 force
constants.
1 The final independent elastic constant is the bulk modulus
Cll:;(COJ“ Cy), ) B, that corresponds to an isotropic expansion or compression

and therefore only involves radial but not angular distortions.
) In addition, this distortion is not volume-conserving and thus

1
Co+ _Cl

5 (8)  we could also have included tt@&, volume term from Eq.

(2), which would not affect either of the volume-conserving
strains corresponding to Eq&.0) and (11), but would yield
the following equation for th&, distortion,

Cio=—
121)

Equations(6)—(8) explicitly satisfy the mechanical stability
requirement that;,<By<c;;.°

The Cauchy relation for cubic crystals is thgb=c,4.%’ 1 1 5
Using Egs.(4) and (8) we obtain the following expression BO=§(C]_1+ 2C1p)= ;(CO+ —Cl). (12

for the deviation from the cubic Cauchy relation: 9
Our two-parameter model h&,=0 and thus the extent to
(Cip—Can) = ECo 9) which C, obtained from Eq(12) deviates from zero pro-

vides a direct measure of how well the two-parameter model
. o is able to describe the elastic constants. Using the theoretical
Thus we see that the large and positive deviation from thg ;| ,es determined here EGL2) yields Co=—0.18 eV

Cauchy relation in pure Pt is due to a large volume contriyyhich demonstrates that the two-parameter model is indeed

bution toc,,. Moreover, the presence of the volume contri- g fficiently accurate for describing the elastic constants in Si.
butionC, is responsible for the fact thai,, ¢1,, andBo are oy the sake of completeness we give the expressions for
all significantly larger than the volume-conserving elastlcCll ¢y, and the deviation from the Cauchy relation,

constants; (Cy;— 1) andcyy in Table Il. —Cy44), including a volume contribution,
B. Si 1 2 8
I 011:_(Co+§C1+§K11>, 13
In the case of Si we also construct a two-parameter model v

but instead consider only the nearest-neighbor bond length

and the tetrahedral bond angle and set all of the athend :} c EC _ fK 14
4 : C12 ot gC1 11/ (14

K force constants to zero. Since there are three elastic con- v 9 3

stants and we allow only two force constants, we can check

the accuracy of the model. The volume-conserving strain 1 16
- - (Cip—Cgg)0%eN=—| C,— —K (15)
corresponding to d;;—cq,) leaves the nearest-neighbor 12 a4 v\ 70 o "1y
bond lengths unchanged to first order in the distortion and
thus only the angular force constant enters, We can compare our two-parameter model to the one de-

rived by Harrisorf? His angular term has the identical form
as ours and his value df,,=3.2 eV differs from ours of
5(C11=C19) = 2Kyy, (100 3.13 eV only because we have used the theoretical elastic
constants and equilibrium lattice constant while he uses the
wherev = a2 is the volume per atom. Comparing this result experimental value® We derived the value of the radial
to Eq.(3) we see that (c;1—Cyp) has a very different origin - force constantC, using the frozenc,, elastic constant
in Si as compared to fcc Pt, despite the fact that the twavhereas Harrison derives his radial force constant fByn
values are approximately the same in Table II. The two values would be identical if the value ©f derived
The volume-conserving,, strain in Si involves both ra- from Eq. (12) were exactly zero. The small deviation from
dial and angular distortions and can thus be used in conjunczero, in addition to the difference in the lattice constants
tion with Eq.(10) to determineCy, used, leads to a small difference between Harrison’s value of
C,=55.0 eV and our value of 54.06 eV.
We have found that for Si the angular force constapt
is more than an order of magnitude smaller than the radial
force constantC; (Table IV). The angular interaction is,
wherec!19%*" corresponds to a pum, strain, without allow-  nonetheless, of particular importance for two reasons. The
ing for any internal relaxation. This choice is convenient butfirst is that the crystal would be unstable in the absence of
not essential and we can test how well the two force conangular interactions sincec{;—c45)=0 [Eq. (10)] and B,
stants we obtain describe the final remaining elastic constant c;=c4» [EQs. (12)—(14)] for purely radial interactions,
Using the theoretically determined elastic constants andoth of which violate the cubic mechanical stability condi-
equilibrium volume, Egs. (100 and (11) yield C; tions that €;;—C15)>0 andc;,<By<c;;.5?% The second
=54.06 eV anK,,=3.13 eV, which are listed in Table IV. reason is that the angular interaction is responsible for the
Based on this analysis, the fact thaj{—c;,) andc,, for Si  fact that the elastic constants do not obey the Cauchy relation

1(2 4
Ci "= ;(gcl"‘ gKu

: (1D
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for a cubic crystalc,,= 44 [Eq. (15)]. Including a volume C. a-Pt,Si

term but not an angular interaction vyould_ stiII_ result in an | order to provide a more quantitative description of the
unstable crystal since thec{;—c;,) distortion is volume  chemical bonding ine-Pt,Si we describe the interatomic in-
conserving and the dependence ©p is identical forBy,  teractions using a valence force field model, just as we did
Cy11, andcy,. In addition, a positive volume contribution in for pure fcc Pt and pure Si. In view of the analysis of the
the absence of an angular interaction could not account fojalence charge density in Sec. IV C, we include first-,
the fact that the deviation from the Cauchy relation is negasecond-, and third-nearest-neighbor radial force constants as
tive (c1,<cC44). Thus we see that E¢15) and the fact that well as a volume term. We also consider some of the angular
K,; is small combine to provide an explanation for the factinteractions. In keeping with our neglect of angular interac-
that c,, is smaller tharc,,, but only by a relatively small tions in pure Pt we also neglect the bond angles between any
amount. This is in sharp contrast to pure Pt where the devigwo Pt-Pt bonds, both in the two-dimensiori@01) metallic

tion from the Cauchy relatiofEq. (9)] arises fromC, and is ~ sheets and thED_Ol] Pt chains. In consideration of the three-
large and positive, resulting in a value of, that is more center bonds discussed earlier, we include both the Pt-Si-Pt

than four times larger than in Si. More generally, the absenc@nd the Si-Pt-Pt bond angles relevant to the three-center
of a volume contribution in Si is responsible for the fact that?°nds ||r_1|volvmg one Si rlaltomhang tvgo se(I:ond-rllelghbor Fr:t
¢y, and B, are similar in magnitude to the volume. 2toMS. However, we neglect the bond angles relevant to the

conserving elastic constant§c;,—cy;) andc,y, in contrast three-center l_)onds _qulvmg one Si and two th|rgl-ne|ghb0r
Pt atoms. This choice is based on the expectation that the
to the case of Ptsee Table .

. . strength of the angular interactions will generally be smaller

Frpm the force constants "Ste@_' in Table IV we see Gat than that of the radial interactions and that the three-center
for Siis more than a factor of 3 times larger than for fcc Pty inyolving two Pt second-neighbors is stronger than the
which is consistent with the presence of strong covalenpne jnyolving two third neighbors. We thus have six force
bonds in Si and distributed metallic bonding in Pt. In addi-constants that can be fit to the six elastic constants. For the
tion, the volume contributiorC, is equally important in  sake of convenience we fit the force constant expressions to
terms of the metallic bonding in Pt but plays no role in Si.the “frozen” elastic constants, where no internal relaxations
The influence on the elastic constants of these qualitativgere carried out. This choice is not essential and need not be
differences in the chemical bonding are clearly illustrated byconsidered an additional approximation because the resulting
comparing Egs(6) and(12) for the bulk moduliin Ptand Si,  force constants could be used to directly calculate the inter-
respectively. We see that the geometry coefficienCefis  nal relaxations.
three times |arger for Pt than for S|, I’efleCting the difference The V0|ume_conserving Strains Corresponding Ql(
in the nearest-neighbor coordination and nearly compensat- ¢1,) andcg, both depend only on the first-nearest-neighbor
ing for the difference in the magnitudes of the two force pt.gj radial force constart; since the second- and third-
constants. Given thal, andC, are approximately the same nearest-neighbor Pt-Pt bond lengths are left unchanged to
in Pt, we see from E¢(6) that the volume contribution B, first order. In addition, €1~ C1,) depends on the Si-Pt-Pt
is approximately 50% larger than the contribution fr@my. bond angle but not the Pt-Si-Pt bond angle, whilg de-
In the case of Si th€, force constant is essentially zero and pends on both. We label the force constant for the Pt-Si-Pt
this difference accounts for most of the difference in thepgng angle a¥,; because it is the angle between two first-
magnitudes 0B, between Pt and Si. The prefactors 06 1/ neighbor bonds. Similarly we label the Si-Pt-Pt force con-
accoun? for the remajning difference since the volume pektant aK ,,. Equating the elastic constdiiiq. (1)] and force
atomu is 30% larger in Si. constantEq. (2)] expressions for the change in the energy

We therefore see that the presence or absence of metallihd using the theoretical lattice constants from Table I, we
bonding, as reflected in th€, and C, force constants, is gptain the following two equations,

intimately connected to the magnitudesByf Similar analy-

ses can be used to explain the fact tbatandc,, are also 1 1

larger in Pt, the predominant reason being the presence of a 5 (€11~ Clz)fmze”:;(o-268531+ 1.155XK;,)  (16)
large volume contributioffor equivalently, metallic bonding

in Pt but not Si. Conversely, the elastic constants correspondnd

ilng to both of the volume-conserving distortions in Pt,

5(C11—Cq1p) andcy,, are approximately the same as in Si, 1

indicating that they are |e22 sensitivg to the differences in Cz{gzen: ;(0-3091:1+0-2874411+ 0.808K1p), (17)
chemical bonding for these two materials. These differing

trends in the volume-conserving versus non-volumewherev=0.252%° is the volume per atom. We note that in
conserving elastic constants were already noted in Sec. Ithese equations and all of those that follow, the numerical
and are illustrated in Fig. 2. The volume force cons@gis  coefficients are simply geometrical factors containing vari-
included in the figure on the same scale as the elastic cormus combinations of tha andc lattice constants. Examining
stants by dividing by the appropriate volume per atom the geometry coefficients df; in Egs. (16) and (17), to-
(note thatCy/v is precisely the combination that enters all gether with the expectation that the angular force constants
of the expressions for the non-volume-conserving elastiovill be significantly smaller in magnitude thad,, we see
constants that these two equations provide a natural explanation for
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the fact thatj (c,;— Cy,) is similar in magnitude but slightly 1

smaller thanc,, in Table lll. We also see that two of the C13=(Co+0.309Z; ~0.331K ;- 0.165K ). (24)
mechanical stability requirements for tetragonal crystals,

(cy1—C1)>0 andc,,>0,%8 are explicitly satisfied. Equations(20)—(24) explicitly satisfy the mechanical stabil-

The volume-conserving strain corresponding tgs ity requirements thatBo<3(2ci;+Cg) and Bo>3(cy,
changes the second-neighbor Pt-Pt bond length, leaving the 2013).6 We note that in contrast to the case of Si, all of the
other two bond lengths unchanged to first order. This straifmechanical stability requirements would be satisfied even for
also modifies the two bond angles, yielding purely radial interaction§.e., no angular interactiohs

Equations(16)—(19), (21), and(22) represent six linearly
independent equations in the six unknown force constants.
Solving this linear system of equations yields the force con-
stants listed in Table IV for-PtSi. The volume force con-

) ? stantCy is only 16% smaller than in pure Pt. This finding is
Table Il is somewhat more than two times larger thaR,  consistent with the presence of two-dimensional metallic
we expect that the second-neighbor Pt-Pt force con&ant  peets jiny-pt,Si and the fact that there are a large number of
must be approximately two times larger than the first-gigyinyted three-center bonds all interconnected by these
heighbor Pt-Si force_: constadl. We ‘.N'” in fact find th's 0 sheets. The first neighbor Pt-Si force const@ntis nearly

be the case. Equatidii8) also satisfies the mechanical sta- four times smaller thar€; in pure Si. This large reduction

o . 28
blllflyhre?wrlemem t.haCGGTO' : . q results from the fact that each Si atomarP,Si has eight Pt
_The final remaining volume-conserving strain Correspondy,qarest neighbors and participates in 12 different three-center
ing to (Cy;+ C3—2Cqg) changes all of the first-, second-, and ;g Conversely, the second-neighbor Pt-Pt force constant

third-neighbor bond lengths, as well as the two bond anglese2 is 60% larger than the correspondiBg force constant in

1/1
066:; §C2+ 12394<11+0619K12 . (18)

Thus we can see from Eg&l7) and (18) that sincecgg in

1 pure fcc Pt, despite the fact that the two Pt-Pt bond lengths
—(Cq1+ Cg3— 2C,g)O%eN are very nearly the same. We can understand this result be-
4 cause each Pt atom in pure Pt has 12 nearest neighbors while

1 1 1 each.Pt ina?PtZSi has only four Pt second neighbors anq_ t\_No

=21 0.068TC,+ ~=Cy+ =C3+0.372K 1+ 0.475K | . Pt third neighbors. Moreover, the Pt atoms in the silicide
v 12 6 participate in covalent three-center bonds in addition to the
(19 metallic bonding within the two-dimensional sheets. The dis-

We note thatt (C1;+ Ca33— 2¢15) >0 as required for mechani- tributed nature of these bonds and the large number of them
cal stability?® and that it is similar in magnitude td(c,;  In the primitive cell are both consistent with the fact tkat
— ) andcy, in Table 111 is still a factor of 2 smaller thai©; in pure Si. We found

The uniform expansion and Compression Corresponding tbttle evidence of an increase in the electronic Charge denSity

the bulk modu'ugo Changes the volume and all of the bond between the Pt-Pt third neighbors and this is reflected in the
lengths but leaves the bond angles fixed, fact thatCs is more than three times smaller th@s. We

also find that the angular force constamtg, and K, are
similar in magnitude to th&,; force constant in pure Si.
These angular terms play an important but less crucial role in
the silicide as compared to pure Si.

Having determined the values of the individual force con-
stants we can now use them to understand the trends in the
elastic constants. For example, the two Cauchy relations for
tetragonal crystals are that,=cCgg and c;3=C44.2" Using
Egs.(18) and (23) the deviation from the first Cauchy rela-
tion is given by

1
8025(2011+ C33+ 2C12+ 4C13)

1 8 4 2
= ; C0+ _C1+ _Cz+_C3

27 27 27 %) (20

The final two equations resulting from tleg; andcs; strains
both include a contribution from a change in the volume,

1
cfﬁ’ze“:; Cy+0.537@; + §C2+ 0.165% 1, + 1.2381(12) 1
(22) (C1o— c66)”°ze“:;(co— 1.073K;;,—1.692%K,,). (25
and

Similarly, the deviation from the second Cauchy relation is

1 2
033:; ( Co+ 0356@1“1‘ §C3+ 06619(11+ 03310(12) .

(Ci3— c44)”oze“:E(C0—O.6184<11— 0.9744,,). (26)
(22) Y
As in the case of pure BPEqg. (9)], it is the presence of the
volume interaction that produces a positive deviation from
1 the Cauchy relations. The angular interactions provide a
Co+ §C2+ 0.165%K ,,— 1.0726<12> (23)  negative contribution to Eq$25) and (26), just as they did
for pure Si[Eq. (15)]. From the geometry coefficients of the

and angular terms we see that,— c44) must be larger in mag-

Similarly, the equations foc,, andc,5 are

frozen__

1
C f—
12 v
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nitude than €¢,,—Cgg). The net result is that the deviations stantc,, is similar in magnitude for all three materials. Com-
from the Cauchy relations fo#-Pt,Si are still positive but  paring Egs.(4), (11), and (17) we see that in pure Rty
are factors of 2—3 smaller than the deviation in pure Pt.  arises solely fronC; whereas in pure Si and-PtSi it arises

In pure Pt we found that the volume-conserving elasticfrom a combination ofC; and angular contributions. In Si
constants were all significantly smaller than the others an#he split is 90:10, radial to angular, while in the silicide the
that this was due predominantly to the presence of a largéPplit is only 60:40 sinceC, is a factor of 4 smaller. In addi-
volume contributionC,. We find the same trend ia-Pt,Si  tion, the volume per atom is 30% larger in Si than in the
With 1(Cy3— C12), Cas, aNd2(Cyy+ Caz— 219 all being simi- other 'Fwo mate.nalls. The remaining ellast|c constants for
lar in magnitude and smaller than all of the remaining elastic-P£Si can be similarly analyzed in relation to those of pure
constantgsee Table 1l The notable exception to this trend Pt @nd pure Si.
is cgg- In conjunction with Eq(18) we already noted that the _
large value ofcgg in relation to the other volume-conserving D. PtSi
elastic constants is due primarily to the fact that the second- Once again we construct a valence force field model to
neighbor Pt-Pt force consta@, is a factor of 2 larger than describe the chemical bonding and elastic constant trends in
the first neighbor Pt-Si force consta@. This result is in  PtSi. In keeping with the discussion of the valence charge
turn directly related to the presence of the network of threedensity in Sec. IV D, we include first-, second-, and third-
center bonds interconnected by two-dimensional metalli®eighbor Pt-Si radial force constariabeledC,, C,, and
sheets. We also saw that mechanical stability for tetragondFs) as well as sixth- and seventh-neighbor Pt-Pt radial force
crystals requires thatc,,<cCy;, C13<3(C;;+Czs), B,  constants(labeledCg and C;). We also include a volume
<1(2cqy+ g9, and By>1(ciot2¢19).%% In addition, the  term (Cp) and three Pt-Si-Pt angular force constants. The
deviations from the Cauchy relations are positive. The re@ngular force constants are labeteg;, corresponding to the
maining variations among the six elastic constants in Tabl®ond angle between first- and third-neighbor Pt-Si bonds,

Il are determined by the detailed dependence on the variod§22, corresponding to the bond angle between two second-
force constants as described above. neighbor Pt-Si bonds, and,;, corresponding to the bond

One interesting example is theys is found to be essen- angle between second- and third-neighbor Pt-Si bonds. These

tially identical tocgs. Comparing Eqs(18) and (24) we see f[hree bond angles are the ones we have found to be most
that in the case o3, positive volume and first-neighbor important and are the ones that_ corr_espond to the distorted
radial terms are partially counterbalanced by negative angt}gtrahedral Pt-Si-Pt angleg described in Sec. IV D. The fourth
lar contributions, whereasgs corresponds to a volume- and last of these angles is represented by the force constant
conserving distortion and has positive angular contributionsK 12 Put we found it to be unimportant and have not included
In addition, thec,5 distortion changes the first-neighbor bond it In the analysis presented here. Part of the reason for this
lengths, leaving the others fixed, while tlgg distortion ~ finding may be that this bond angle is 131.72°, which is

changes the second-neighbor bond lengths, leaving the otquite different from the perfect tetrahedral angle of 109.47°.
ers fixed. We have already noted thag is anomalously We thus have nine force constants that can be fit to the nine

large in comparison ta,, predominantly becaus€, is elastic constants. As in the case @fPt,Si we fit the force

twice as large a€,. The elastic constart,, is larger than constant expressions to the “frozen” elastic constants out of
cys for the same reason, thus explaining how it is at leas onvenience, but this choice is not essential because the re-

possible for the volume-conserving elastic constggto be axations ;:O#Id be caIc_uIatefd frc;lm tTe r.esultmg mod_el.
similar in magnitude to the non-volume-conserving elastic . MOst of the expressions for the elastic constants in terms

constantc,s, despite the presence of a large volume forceOf the force constants involve all of the radial and angular

constantC,. In summary, while we are able to explain the [rMS and thus there is not much to be learned by writing
overall magnitudes of the individual elastic constants, we aréhem down. Two .exceptlons are the volume-conserving
forced to conclude that the specific equalitycgf andcgg in strains corresponding i, andces, which depend only on
Table IIl depends on the precise values of the individuaf® Sécond-neighbor Pt-Si and seventh-neighbor Pt-Pt radial
force constants and is therefore simply accidental. force constants, as well as the angular force condtast

We saw in Eq.(6) for the bulk modulus of Pt that the Using the theoretically determined structural parameters

volume contribution represented 60% of the total, with thelTom Table I we obtain the following two expressions:

contribution from the radial interaction making up the rest. 1

The same approximate 60:40 split between the volume and cﬁ{gzenz —(0.1601C,+0.118,+0.327K,3) (27
radial contributions applies to the expression for the bulk v

modulus ofa-Pt,Si in Eq.(20). In addition, the volume per 44

atomv is nearly the same in the two materials. Thus we see

that the 16% reduction i€, for a-Pt,Si relative to Pt, com- tozen 1

bined with a similar reduction in the overall radial contribu- Ces — 5, (0.0882L,+0.0000Z7+0.175K ), (28)
tion, leads to a bulk modulus that is approximately 20%

smaller ina-Pt,Si. As we noted previously, there is no vol- wherev =0.084 64 is the volume per atom. The force con-
ume contribution in Si where the bulk modulus is a factor ofstantC, will turn out to be small and thus we can see from

2-3 smaller. Conversely, the volume-conserving elastic conEgs. (27) and(28) that cﬁ{f{ze“ is approximately a factor of 2
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larger thancie?®" purely because of geometrical factors. In constant isKp; with the corresponding bond angle of
addition, the orthorhombic mechanical stability requirementst09.75° being nearly identical to the perfect tetrahedral

that® c,,>0 andces>0 are satisfied by a combination of angle. While the trend in the angular force constants in PtSi
radial and angular terms. However, as in the case-BL,Si is understandable in terms of the deviation relative to the

the angular terms are not essential with regard to stabilitfU"® tetrahﬁdral anlgle% the large magmtudd(gé ,'”F%)rg_'
since the crystal would still be stable under purely radialParison to ttedan_?# ar orC(la consttantst.m pure Sia t2 L ¢
interactions. It turns out that this circumstance is true for all> UNeXPeCted. € anguiar Iinteractions appear 1o be o

of the orthorhombic mechanical stability requirements. Wegreater importance in PtSi than they were dfPLSi. An

: . attempt to fit the elastic constants of PtSi using a valence
also note that all of the volume-conserving elastic constantsfbrce field model including only radial interactions plus a

1 _ 1 _ 1 _ . :
3(C11F €2~ 2C19), 3(CratCa3—2C19), 3(CootCaz—2Co9), volume term resulted in nonsensical values for these force

Cas, Cs5, andCes are similar in magnitude and smaller than .,qiants. A sensible fit was only achieved after including
the other non-volume-conserving elastic constésie Table angular terms.

lll). The primary exception 'Sz{g_zen7 although including the We can now examine some of the trends in the elastic
effects of internal relaxation brings it in line with the other constants of PtSi using the calculated force constants. In par-
volume-conserving constants. ticular, the Cauchy relations for an orthorhombic crystal are

Solving the linear system of nine equations in the ninethatc,,=Cgq, C13=Css, aNdCys=C,4.2” The expressions for
unknown force constants, we obtain the values listed in Tabléhe deviations from these Cauchy relations are as follows,
IV. The volume force constai@y is nearly 40% smaller than
in pure Pt and 25% smaller than irPt,Si. Nonetheless, the
value is still sizeable and perhaps somewhat surprising given
that we found no evidence of metallic-type bonding in our
analysis of the charge density in Sec. IV D. The first- and
second-neighbor Pt-Si radial force constants are quite large
and nearly as large as the first-neighbor Si-Si force constant
in pure Si. This result is consistent with the fact that we 1
found only a small number of two- and three-center bonds ~ (Ca3— C44)™**"=~(C—0.320XK 5, 0.454K55). (31)

. . . . v
for each Si atom in PtSi. This small number of bonds means
that each bond is relatively strong, as is the case in pure SAs in the case ofx-Pt,Si the volume interaction makes a
but in contrast to the situation ir-Pt,Si where the Pt-SC;  positive contribution to the deviations from the Cauchy rela-
force constant is more than a factor of 3 smaller. The factions while the angular interactions make a negative contri-
thatC, andC, in PtSi are still smaller tha@, in Si may be  bution. The geometry coefficients for the angular terms in
due to the fact that the bond angles in PtSi are considerabligs.(29)—(31) are smaller than fox-Pt,Si in Egs.(25) and
distorted away from the perfect tetrahedral angle. The Pt-Si26), reflecting the smaller multiplicity of the bond angles in
C; force constant in PtSi is approximately a factor of 4 PtSi. This reduction is more than compensated by the larger
smaller thanC; and C,, which may be due in part to the magnitude of the force constants in PtSi, particuldfly.
correspondingly longer bond length. The volume per atorn is similar in the two silicides but the

The Pt-Pt sixth-neighbor force constady is larger than  magnitude ofC, is smaller in PtSi. The combined effect of
C; in pure Pt which is likely due to the fact that this inter- the smallerC, and the largeK,3 is that the deviations from
action contributes to the three-center bonds in PtSi. Howthe Cauchy relations in Eq$29)—(31) are still positive but
ever, Cgz is 30% smaller than the corresponding Pt  approximately 30% smaller on average thami®t,Si. This
force constant imv-Pt,Si, reflecting the longer bond length in conclusion remains true for the relaxed elastic constants, al-
PtSi and the presence of two-dimensional metallic sheets ithough the specific numerical details are changed. For ex-
a-Pt,Si. Although the seventh-neighbor Pt-Pt bond length inample, the larger geometry coefficients i§,, and espe-
PtSi is only 0.03 A larger than the sixth-neighbor bondcially K3, in Eq.(31) result in a very small deviation from
length, the seventh-neighbor bond does not participate in ane third Cauchy relationcps— c4,) ™?®" for the frozen elas-
three-center bonds and we found little evidence of any iniic constants. When relaxation is includeg, drops by 29%
crease in the charge density. It is thus not surprising@at while c,5 increases by 8%, resulting in a significantly larger
is more than a factor of 4 smaller th&,. deviation. However, ¢;3—Css) becomes much smaller so

We find that the angular interactions are sizeable in PtSithat on average the deviations are still approximately 30%
as they were inv-Pt,Si. However, in PtSi these interactions smaller in PtSi.
show a wider variation in magnitude, witk,; being more The requirements of mechanical stability in orthorhombic
than an order of magnitude larger thEn;. We can under- crystals constrain the elastic constants by requiring ¢that
stand the variation in these Pt-Si-Pt force constants by 100k< 3(C;;+C5y), €13<3(C11+C33), C23<3(Cy*C33), Byg
ing at the sizes of the bond angles themselkeg, corre- < 3(Cqy+ Cont Caq), aNdBy™> 2 (Cqo+ C13+ Cog) o2 However,
sponds to a bond angle of 71.09°, which is very far from thethere are additional trends among the elastic constants. We
perfect tetrahedral angle of 109.47°. The bond angle assoditave already noted that the volume-conserving elastic con-
ated withK,, is a lot closer, having a value of 94.64°, re- stants in PtSi are all smaller than those where the corre-
sulting in a larger force constant. The largest angular forcesponding distortion does not conserve volume. The predomi-

1
(Cyp— Ceg) 02N ~(Co—0.17685,—0.0869), (29)

1
(C13— Csg)T0%8M= ;(co— 0.447%K 13— 0.345% ,3), (30)
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nant reason for this occurrence is the presence of the positiveonserving elastic constants are all relatively small and simi-
volume contributionCy, just as it was in the case of pure Pt lar in magnitude in all four materials.

and ina-P4,Si (see Fig. 2 The positive deviations from the

Cauchy relations in Eqs(29)—(31) provide specific ex- VI. SUMMARY

amples of this trend. We noted above that the relatively large \We have carried out an extensive study of the chemical
value ofCy in PtSi seemed surprising given the lack of evi- bonding and elasticity of two room-temperature stable plati-
dence for metallic bonding in the charge density. In fact, ithum silicides, tetragonat-Pt,Si and orthorhombic PtSi, as
appeared that the chemical bonding in PtSi was much moreell as pure Pt and pure Si. We have investigated the trends
similar to that in pure Si than in either-Pt,Si or pure Pt. in the calculated elastic constants, both the trends within a
However, the trends in the elastic constants of PtSi, the posgiven material as well as between materials. The Cauchy
tive deviations from the Cauchy relations, and the smallerelations, that;,=Cgg, C13=Css, andCy3=Cyq, apply to a
values of the volume-conserving elastic constants are muc#fystal in which the interatomic interactions are purely ra-
more similar to those in the materials that do exhibit directdial. Real materials deviate from these relations and we find
evidence of metallic bonding, thus requiring a sizeaBjg that in pure _Pt as well as t.he two silicides the dewatlon's are
volume contribution in PtSi as well. This conclusion is not @ways positive(left-hand side greater than right-hand gide

one that we would have reached based on the charge densfyt In Si the deviation is negative. More generally, we find
alone, thus demonstrating the need for care when examinin at in the metals the elastic constant expressions that corre-

such qualitative characteristics. By contrast, the analysis g ond to volume-conservmg_stralns are always smaller than
those that correspond to strains that do not conserve volume.

the elastic constants us_ing a valenc_e _force field model_ ha'?his also turns out to be true in Si with the exception that
allowed a more quantitative description of the chemical.

bonding. We note that the finding of both metallic and cova- less thanc,, (negative deviation from the Cauchy rela-

I he bonding in PLSi 1a®LS: ‘tion). However, the difference in magnitudes between
ent components to the bonding in PtSI as well@®LSl 41 me-conserving and non-volume-conserving elastic con-

indicates a strong similarity between these two materials andignts is largest on average in Pt and gets smaller in the
may also be connected with the fact that the heats of form&brogression Pt a-PLSi— PtSi—Si. In  general, the
tion for the two are very nearly the sarhe. ~volume-conserving elastic constants have similar magnitudes

Finally, we examine how the elastic constants of PtSi fitin || four materials while the non-volume-conserving elastic
into the trends among the different materials studied heregonstants follow this same progression. In particular, the
The expression for the bulk modulus in PtSi is bulk modulus is found to be a very nearly linear function of
the atomic percentage of Pt.

We have analyzed the valence electronic charge density in
BNOZeN_ — (¢ 1+ Copt Cagt 2C o+ 2C15+ 2C53) 078N order to gain insight into the nature of the chemical bonding
in the silicides. In the case af-Pt,Si we find striking evi-

1 1 1 1 1 1 Qencg of a wi_de net\{vork of covalent three-center bond_s, each
==|Cy+ :5C1+ =Cp+ -=C3+ =Cg+ -=C-|. involving a single Si atom and two Pt atoms. Each Si atom
v 18 9 18 18 18 participates in 12 different three-center bonds. We also find
(32) evidence of two-dimensional metallic ®X01) sheets that act
to interconnect the network of three-center bonds. The Pt-Pt

bond length in these two-dimensional sheets is very nearly

Using the force constants listed in Table IV we find that ther ; : o
is a roughly 50:50 split between the volume and radial Cone_the same as in pure fcc Pt. The widely distributed nature of

- . . the bonding ina-Pt,Si appears to be closer in character to
tributions to B, in Eq. (32) compared to an approximate o e metallic bonding in fcc Pt than the covalent two-

60:40 split in pure P{Eq. (6)] and a'PtZS', [EC_]' (_20)]_' We " center bonds in Si. The trends in the elastic constants support
already noted that the volume per atemis similar in all i interpretation. PtSi also exhibits evidence of covalent
three materials. Thus we see that the smaller valueos  pt-j-pt three-center bonds in addition to more standard
partially compensated by an increase in the radial contribupt-Sj two-center bonds. Each Si atom participates in one
tion, yielding a value ofB, that is only slightly smaller in  three-center bond and two two-center bonds with the four Pt
PtSi than ina-Pt,Si, but still approximately a factor of 2 neighbors forming a very distorted tetrahedron. Two of the
larger than in pure Si. We can now see that the nearly lineasix corresponding bond angles are very nearly equal to the
relationship between the bulk modulus and the atomic perperfect tetrahedral angle but the other four angles vary from
cent Pt, evident in Fig. 2, has a direct connection with the71° to 132°. Qualitatively the bonding in PtSi appears much
nature of the chemical bonding in these materials. Conmore similar to the covalent bonding in pure Si than the
versely, the fact that the volume-conserving elastic constant®etallic bonding in pure Pt, but the trends in the elastic
are similar in magnitude in all four materials demonstrateonstants indicate that there are actually elements of both.
that they are less sensitive to the nature of the bonding. Fofhe finding of strong Pt-Si covalent bonding in PtSi is con-
example,c,, in Pt[Eq. (4)] arises purely from radial inter- SiStent with the experimental study of Franeoal."” in
actions while the split is 90:10, radial to angular, in[B. which they found spectroscopic evidence that the influence

(1D)]. In the two silicides[Egs. (17) and (27)] the split is of the Pt &l orbitals extends throughout the entire valence

approximately 60:40. Despite these variations in the split beband'

tween radial and angular contributions and variations in thefw
individual force constants themselves, the volume-

Q| -

We have constructed valence force field models for the
o silicides as well as pure Pt and pure Si. These models
provide a quantitative basis for understanding both the trends
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in the elastic constants and the various elements of thstants contain a great deal of information about the nature of
chemical bonding. We have included volume-, radial-, andhe chemical bonding in a material but since this information
angular-dependent contributions in the models. The volumeis not readily apparent, an analysis such as the one presented
dependent contribution, which reflects the presence of metahere is necessary in order to extract the information. We have
lic bonding, turned out to be a crucial element of the modelsattempted to make the case here that an analysis in terms of
The presence or absence of this term and the magnitude ¥glence force field models provides a convenient and fruitful
the volume force constai@, are predominantly responsible W&y to analyze the_ ela_lstlc constants and their connection to
for the observed trend in the non-volume-conserving elastid® chemical bonding in a material. _

constants as a function of Pt concentration. In addition, the Our purpose in developing the V?"ence forcg f|gld models
absence of this contribution in the volume-conserving elastijjes.cr'bed. In 'th|s work was to provide a quantitative means
constants is largely responsible for the fact that these co or investigating the nature of the chemical bonding in the

sarts have simiar magritdes i al four materias. TGS SIG0ES 1 Eebarecr 16 e 7L e e = o
variation in the sign and magnitude of the deviations from P 9

the Cauchy relations is a specific example of these mor{alon bfet\r:veen the ch?mﬁal bor?dlmg and mecrg)a_nlfclzal propgr-
general trends and is once again due primarily to the variat-'r?s oft %S'I? m:;terlis. onectj (Iaess, Wg can frlle_ y consider
tion in the magnitude o€,. The models also provide expla- e possibility that these models may be useful in carrying
nations for differences in magnitude between specific elasti8'“!t f_uture studies of silicide-silicon mterfaces_ whe_re first
constants for a given material, such as the anomalously lar r|nC|pI|es dmethogg woulthe vas%rr]]wore gItPU 'mi?s'vﬁ: Fdor
value of g in a-PLSI, which we find to be closely con- thﬁﬁ?lﬁne, ro?r?gnlr;gsicl)igon iugtj)r:trate ?:21?1 tIJ(IaOQthiIi;ejlilr(l:Iar?
nected to the three-center bonds in this material. 9

In addition to providing explanations for the trends in the amorphous phase. The only hope of treating such a structure

elastic constants, the magnitudes of the various force Convyould be to use a more efficient semle_mplrlcal ”_‘eth"d such
s a valence force field model. We believe that in general it

stants themselves provide a direct indication of the nature Ozhould be possible to develop such a model given that our

the chemical bonding. The magnitude of the volume terlﬁq)asic formulation includes the same fundamental elements as
provides an indication of the relative importance of metallic.

: . ) , . in other successful models, such as the embedded-atom
bonding. This analysis demonstrated that there is an impof ethod and Tersoff potentials. One possible point of concern

tant element of metallic bonding in PtSi, despite the lack of !

direct evidence in the analysis of the charge density. Thié:S the well-known fact that valence force field models in

conclusion is required as a result of the specific values of thgeneral tend to converge very slowly with respect to the

elastic constants in this material and would not have beeHumber of Interaction parameters in the model. This issue
would certainly need to be explored before any attempt was

possible based solely on the qualitative features of the charge . i
density. Similarly, the magnitudes of the radial and angula%?ri%?a:%ndsevebp models that could be used in large-scale

force constants are directly connected to the importance ot
covalent bonds in the material. The trends in these constants This work was performed in part under the auspices of the
confirm the general conclusions made on the basis of th&).S. Department of Energy, Office of Basic Energy Sciences,
charge density analysis. In addition, the conclusion that therBivision of Materials Science by the University of California
are elements of both metallic and covalent bonding inLawrence Livermore National Laboratory under Contract
a-Pt,Si as well as PtSi may be connected to the fact that th&o. W-7405-Eng-48. Partial support was also provided by
heats of formation for the two silicides are nearly the sameDeutsche Forschungsgemeinschaft, SFB 292 “Multicompo-
One general conclusion of this study is that the elastic connent Layered Systems.”
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