
Direct enumeration of alloy configurations for electronic
structural properties

Peter A. Graf, Kwiseon Kim,a! and Wesley B. Jones
National Renewable Energy Laboratory, Golden, Colorado 80401

Gus L. W. Hart
Department of Physics, Northern Arizona University, Flagstaff, Arizona 86011-6010

!Received 23 June 2005; accepted 17 October 2005; published online 8 December 2005"

We present and apply an approach to directly enumerate the band gaps and effective masses of all
possible zinc blende-based alloy configurations whose unit cell contains up to a specified number of
atoms. This method allows us to map the space of band gaps and effective masses versus alloy
composition and atomic configuration. We demonstrate that a large number of band gaps and
effective masses are available. We also discuss convergence of the method with respect to unit cell
size and the combined optimization of band gap and effective mass for AlGaAs and GaInP
semiconductor alloys. © 2005 American Institute of Physics. #DOI: 10.1063/1.2142091$

We address the atomistic design of materials with de-
sired electronic properties.1,2 One obstacle in this search is
the need to quickly scan the electronic properties of a large
number of proposed materials. Here we present a straightfor-
ward but effective approach to this problem in which we
enumerate all unique unit cells and bases derived from the
faced centered cubic !fcc" lattice containing up to N atoms
and calculate the band gap and effective mass of each with a
fast empirical pseudo-potential based electronic structure
code. The method of direct enumeration has been used in the
context of the ground state search of binary metal alloys.3

However, it has not been applied to electronic properties un-
til now. In this letter we demonstrate the feasibility of a
direct enumeration approach to the search for materials
with desired electronic properties. The specific properties
we focus on here are band gap and effective mass.

The specific space of structures we will examine is the
space of mixed-cation pseudo-binary alloys, e.g., AlGaAs
and GaInP. The possible materials represent different com-
positions and atomic configurations. For pseudo-binary al-
loys such as AlGaAs, attempts to treat the material design
problem at the atomistic level founder on the fact that for a
given number of atoms N, there are roughly 2N structures to
consider. So for systems of substantial size, only a small
fraction of the available configurations are usually examined.
The observation underlying our method is that the range of
electronic structure properties of semiconductor alloys over
all unit cells is approximately spanned by the range of prop-
erties over all unit cells of up to only N atoms, where N is
rather small. The number of configurations for small N is
small enough that, combined with a fast electronic structure
method,4 it becomes feasible to “search” by simply checking
every possible configuration.

We work here exclusively with zinc blende alloys; we
say “all possible configurations” with the understanding that
we mean all possible zinc blende-based alloys. Making no
assumptions about the configuration of the cations in a cer-
tain cell or about the cell shape, we consider all possible unit
cells containing no more than N cations, for N!8. We are
faced with a difficult problem in combinatorics—find all

possible binary structures on a fcc lattice with a given size
unit cell. Fortunately, this problem was addressed earlier by
Ferreira, Wei, and Zunger, who give a robust algorithm for
generating a list of all possible binary structures on a fcc or
body centered cubic lattice.3

Although the 629 structures generated by the abovemen-
tioned algorithm have small basis sizes, the unit cell vectors
vary in direction. For example, many of the structures are
#hk!$ superlattices with none of h , k , ! equal to zero. The
smallest fcc supercell containing all these structures com-
mensurately is 4096 atom, 8"8"8 fcc cell. This large cell,
containing roughly 22048 structures, is the size cell we would
need to search to find all the cells of our enumeration in a
search within a fixed fcc supercell. Thus, provided the struc-
tures we enumerate span the space of structures of interest,
an issue we address below, our direct enumeration approach
is vastly more efficient.

We have scanned the band gap as a function of alloy
composition for AlxGa1−xAs and GaxIn1−xP. The results are
summarized in Figs. 1 and 2. The atomic configurations gen-
erated by our enumeration consist of a unit cell, a basis, and
a list of which of the two cation species !e.g., Al and Ga"
occupy which of the sites in the basis. For band gap, the unit
cell is expanded by two in all directions in order to sample
some of the zone edges, e.g., X and L, with a single band
structure calculation at #.2

The atoms in the cell are relaxed according to a valence
force field model, then atomic potentials are generated by the
method of empirical pseudo potentials !EPM". The AlGaAs
and GaInP EPM parameters used here are described in Refs.
5 and 6, respectively. The Schrödinger equation is solved by
the folded spectrum method, which gives us the eigenvalues
near the band edges.4 The fidelity of the empirical pseudo
potentials used here is well established in Ref.s. 5–15.

Our first observation is that there is a wide spread of
band gaps possible for any given composition x. Thus the
picture of a bowing curve describing the band gap as a qua-
dratic perturbation of a linear interpolation based on compo-
sition is incomplete. In fact, the space of possible band gaps
forms a region. This dependence of band gaps on atomic
ordering is partially known from experiment16 and previous
theoretical work17 with more limited ranges of configura-
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tions, but our calculations confirm and extend these results to
a wider range of configurations.

We find that a directional decomposition of the struc-
tures is most relevant. Depending on the periodicity in the
multiples of zinc blende cell, different electronic states in the
Brillouin zone interact with zone center states.18 In particu-
lar, the useful decomposition is found to be in terms of one-
dimensional !1D" superlattices !SLs". First, a division is
made between #001$, #111$, #110$ and more general direc-
tions. Structures that, although ordered, are not 1D superlat-
tices are denoted “others.” This decomposition is used
throughout this letter.

Obvious trends emerge when the results are examined
this way. Generally, #0hk$ and #hk!$ SLs have higher band
gaps than the rest.17 All the maximum band gap configura-
tions for both AlGaAs and GaInP are of this form. Also,
#111$ SL’s have lower band gaps than #001$ SLs due to L
folding that repels the # conduction band minimum to lower
energies more than the X folding.18 All the minimum band

gap configurations except one is of this form. The exception,
the x=0.75 minimum band gap AlGaAs structure, is not a
superlattice. However, it is a structure with strong #111$ or-
dering known as “Luzonite”.19 The spontaneous atomic or-
dering along #111$ for GaInP was found to induce the reduc-
tion of band gap by %0.2–0.5 eV16 relative to the random
alloy consistent with our result in Fig. 2.

For AlGaAs, there is the well known direct to indirect-
at-X transition at x%0.5 in the random alloy curve. The bend
due to this transition in the maximum gaps is visible. For the
minima there is no visible transition because the conduction
band minimum !CBM" of the minimum gap configuration is
of the same character in all the #111$ ordered structures.

For effective mass, we perform a series of calculations
for different k points near the # point, compute the numerical
second derivatives, and construct and diagonalize the effec-
tive mass tensor m*. We take the geometric average and also
record the anisotropy. We limit the electronic effective mass
comparison to the CBM at # in the composition range where
for the random alloys the CBM is at #.

In Figs. 3 and 4 we plot the effective mass versus band
gap for AlGaAs and GaInP, respectively. We find that the
effective mass is approximated very well by a composition
weighted average of the effective masses at the end points,

FIG. 1. !Color" Band gap vs composition for AlxGa1−xAs alloys. Every
symbol !except for the random alloys" represents a unique unit cell with
eight or less cation atoms. The random alloys are randomly created 12
"12"12 !13824 atom" supercells. The different categories of superlattice
are represented by different colors and symbols. We see clear trends; mini-
mum band gap configurations are #111$ superlattices, while maximum band
gap configurations are #0hk$ for 0$h!k and k%2 or #hk!$ for 0$h!k
!! and k%2 superlattices. Note that the symbols for different SLs are
slightly displaced in x direction to enable visual distinction. The abscissa of
each symbol should be read from the nearest red symbol.

FIG. 2. !Color" Band gaps vs composition for “free-floating” InxGa1−xP
alloys. As in Fig. 1, every symbol represents a unique structure. Similar
trends are evident. Again the minima are #111$ superlattices. There is an
indirect-direct transition near x%0.7. which can be seen from the kink in the
random alloy band gap line.

FIG. 3. !Color" Calculated electronic effective mass vs band gap for Al-
GaAs alloys. The Pareto front for the “minimum mass maximum gap” prob-
lem is indicated, as well as the 1.85 eV line for the “minimum mass target
gap” problem.

FIG. 4. !Color" Calculated electronic effective mass vs band gap for GaInP
alloys. The Pareto front for the minimum mass maximum gap problem is
indicated, as well as the 1.85 eV line for the minimum mass target gap
problem.
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e.g., 0.16 for AlAs and 0.082 for GaAs calculated from the
EPM parameters,5 except for the outliers mentioned below.
Despite this near linear relationship versus composition, the
effective mass versus band gap has a large spread above the
linear average between the direct !i.e., at #" end point band
gaps of 3.03 and 1.52 eV for AlAs and GaAs, respectively.
This average is shown as a thick gray line. The effective
masses lie above the line due to the large range of reduced
band gap versus a linear average as seen in Figs. 1 and 2.

However, even in these compositions, certain configura-
tions allow the folding of X or L to #, and the interaction of
different zone edge states with the CBM at # alters the ef-
fective masses. This explains the outliers with even larger
masses than the end points. These represent structures with
anisotropic masses having X-like effective mass properties
and some larger isotropic masses. This behavior is observed
in both AlGaAs and GaInP. The outlying values in AlGas
typically occur for #001$ superlattices and other, nonsuperlat-
tice ordered structures. For GaInP they occur for #001$ and
#111$ superlattices. This feature may be used in special
applications such as in Ref. 20.

Suppose now that we wish to maximize the band gap at
the same time as we minimize the effective mass. Attempts
to optimize multiple properties generally involve a trade-off,
since it is rare that both properties are optimized by the same
solution. The set of points in a multicomponent search space
which cannot be improved upon is known as the Pareto op-
timal set.21 The set of objective function values of the mem-
bers of the Pareto optimal set is known as the Pareto Front.22

In Figs. 3 and 4 we have highlighted the Pareto front for the
“minimum effective mass maximum band gap” question. We
see there is no perfect solution, only a series of trade-offs.

As a further example, consider the question, “What is
the configuration with band gap closest to 1.85 eV and mini-
mal effective mass?” This question arises in coated, surface
modified photoelectrical chemical applications to hydrogen
production, where the band gap must span the redox poten-
tial of water as well as satisfy other constraints.23 There is no
unique answer to this question, since minimum effective
mass and 1.85 eV band gap do not occur in the same struc-
ture. In Figs. 3 and 4 we have indicated by a vertical line the
structures with the desired band gap. Our method enables us
to map the Pareto front for such problems in a straight-
forward way.

The relevance of this approach lies in the convergence of
electronic properties as we increase the cell size. To investi-
gate this issue we have studied the span of band gaps exist-
ing in the configurations for N=4, 8, 12, and 16. Figure 5
shows the results. The trend of ordering by superlattice is
still evident. We see that already at N=8, the maximum val-
ues have converged to within a few meV. The minima for
GaInP have also converged. The minima for AlGaAs do not
converge. This is to be expected. The band gap of GaAs is
the minimum over all compositions, so as the cell size
grows, the minimum is achieved by a configuration with as
much phase separation as the cell allows. On the other hand,
the minimum band gap of GaInP does not occur at one of the
end points, so the phase separation possible for larger cells
does not result in lower band gaps.

To summarize, we have shown a method of rapidly scan-
ning electronic properties of semiconductor alloys involving
configurational degrees of freedom. We have shown an ex-

ample of combined optimization of two different electronic
properties. We have presented evidence of the convergence
of extrema with increasing unit cell size. Material properties
design involving supercell calculations would benefit from
the efficiency and effectiveness of this approach.
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FIG. 5. !Color" Calculated band gaps vs number of cations in unit cell for
Al0.25Ga0.75As alloys !left" and for Ga0.25In0.75P alloys !right". Same symbols
as in Fig. 1. Solid gray lines mark the extrema. There are 7, 42, 391, and
2986 unique configurations in the unit cell consisting of 4, 8, 12, and 16
cation atoms, respectively.
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