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sitions to the stable X; (iU2p3/2) state. 12 The rate de
termining steps for the overall rate of conversion of 
X+(2PI/2) into this ion are the rate coefficient for the 
Reaction (3) and the mean lifetime of X:i(iu 2pI/2) against 
collisional breakup [reverse of Reaction (3)J as compared 
to the radiative lifetime of this complex. The rate coef
ficients for Reaction (3) and the reverse of Reaction 
(3) are naturally sensitive to the ratio of the mean trans
lational ion-neutral energy to the binding energy of the 
complex ion in (3). 

Applied to the present problem this means that in 
xenon the reaction rate for (3) is appreciable due to the 
high binding energy of the Xe; complex. In argon, 
which is supposed to have a lower binding energy for 
the complex in (3), this reaction is not appreciable at 
room temperature. If, however, the mean ion-neutral 
energy is lowered by a factor of 4, Reaction (3) pro
ceeds with high probability. Krypton at room tempera
ture takes an intermediate position: In neon the reaction 
rate for (3) is small even at 77 K because of the small
ness of the binding energy of the Nez (iu 2P 1I2 ) complex. 

F rom this model it is also conceivable that in the lim
it of small ratios of ion energy to binding energy the rate 
of conversion of both atomic ion species into molecular 
ions is about equal; This is because collisional breakup 
of the molecular ion X;(i u 2 P1/2) is unlikely then and the 
rate determining factor for (1) as for (3) is the long 
range polarization attraction which is naturally the same 
for both atomic ion species. 

Molecular ions produced via Reaction (3) and an opti
cal transition must initially be in highly excited vibra-

tional states. This vibrational excitation may however 
be easily removed in further collisions with the parent 
gas. 13 
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A classical path approximation has been obtained by 
Millerl to compute the diagonal part of the density ma
trix. The idea of the method, as described in Ref. 1, 
is to use the exact integral expression for the density 

for N = 2; (note that this, by itself, is not an approxima
tion) and evaluate the matrix element (rle-aHI2Ir2) by 

the method of steepest descent. The resulting partition 
function is hence given by 

z~ (2!Y' f dp f drexp[ _218/2 
H(t)dt] (2) 

for n degrees of freedom, and using natural units Ii = 1 
and the particle's mass m = 1. Here the actionlike in
tegral is to be integrated over a "classical trajectory" 
but with an upside down potential, which makes the 
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Hamiltonian time dependent H(t). The results obtained 
by Miller! for a smooth potential are indeed very good, 
yielding corrections, to all orders in Ii, to the classical 
result. When compared to the Wigner-Kirkwood 
asymptotic expansion, discrepancies arise in order 1z4, 
in terms involving the fourth derivative of the potential. 

We have carried out the calculation of the second virial 
coefficient for hard spheres of diameter a within the 
classical path approximation. 2 The results that we ob
tain in this case are not as pleasing. We do find a cor
rection to the classical result which is proportional to 
the thermal wavelength A (and thus to Ii), in agreement 
with the behavior of the leading term of the high temper
ature asymptotic expansion. As will be seen, however, 
the coefficient of AI a does not agree with the known re
sult.3 

For our case it is enough to compute the contribution 
I from the relative motion of two hard spheres with re
duced mass jJ. = 1 12 

I=Z _Z(O) , 

where n =3. 

(3) 

Let us now evaluate the integrals appearing in (2) to 
obtain Miller's approximation. Dividing the integration 
over r into two volumes, a sphere 0 1 of radius a and the 
remainder of space Oz, we obtain 

I=Ic! + s7 f dp 

(4) 

where the part from O! is the classical result 

I 1 I~ d 2 -Bp2 47T 3 ,f2 (a)3 
cl = - 2;l" 0 P P e 3" a = - """3 7T ~ , (5) 

and A is the thermal wavelength A=) 27Tf3. 

Outside the sphere, the only trajectories giving a finite 
contribution to I are those which reach the sphere 0 1 
within a time f3/2. In this event the "action integral" 
diverges, While Z(O) does not vanish. Otherwise we are 
faced with a free particle problem, yielding no contri
bution to the virial coefficient. For a fixed momentum 
p, the relevant paths must intercept the sphere O! so 
they must start off from a distance x S pf3. Referring to 

where we have fixed the z and Pit axes, we can write 
the integral as 

where, for a given x, only a cone of angles contributes, 
from e = a which corresponds to a head-on collision to 
e =8 when the collision is a grazing one. 

Associated with these angles would be two values of y: 

y! =x + a and Yo =) x 2 + a 2
• Changing an integration vari

able to x, we find 

In this form the integral can be readily evaluated, with 
the end result 

(9) 

The normalized quantum correction in this approxima
tion is obtained as the quotient between Eqs. (9) and (5), 
i. e. , 

(10) 

If we now compare this result with the correction3 to 
first order in A 

(11) 

we notice that Eq. (10) is wrong by a factor of 7T. 

We would like to conclude that in this particular case, 
the fact of using exact classical dynamics for each piece 
in the trajectory represents no real advantage, sin«e 
the paths which do contribute are always straight lines 
with constant velocity. On the other hand, to include 
only one intermediate point in the closed path is not a 
good approximation for the case of hard spheres. 
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