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Minimal Quantum Electrodynamics 

R. J~uregui and M. Berrondo 
Instituto de Ffsica, UNAM, Cd. Univeristaria 
Apdo. Postal 20-364, M6xico, D.F., 01000 

Abstract 

A simple and coherent formulation of quantum 

electrodynamics is obtained within the general frame- 

work of the LSZ field theory. The commutation re- 

lations for the intereactin~ fields are obtained rather 

than being postulated a priori and the current densi- 

ties fulfill the one particle stability conditions. 

Thus, the inconsistencies which appear in the canoni- 

cal formalism are avoided. The resulting spectral 

rcpresentations do not have any ambiguities so that 

we do not have to introduce the "renormalization" 

c o n c e p t .  
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I.INTRODUCTION. 

The great sucess of quantum electrodynamics (QED) 

in providing the necessary means for making quantitative pre- 

dictions of physical data { , is partially obscured by the ul 
n 

timate problems QED faces. The Lagrangian approach and the 

perturbation method, both in the interaction picture ~ and 

in the Heisenberg picture 3 , have run up against difficul- 

Ties of principle that have been solved, at most, from a pras 

tical point of view. The canonical formalism implicitly assumes 

that all the results in the theory should follow from the postu 

lated Lagrangian and the field (anti-)commutation relations. 

However, the product of operators at equal spacetime events 

is ill-defined ~ so that the equal time commutation relations 

for the interacting fields cannot be assumed in advance in a 

consistent fashion, thus questioning not just the existence 

of the interaction picture but also of a well defined Lagran- 

gian in Heisenberg's picture. As a consequence, QED in the c~ 

nonical formalism cannot be regarded as a conceptually consis 

tent, physically complete relativistic quantum field theory. 

Taking that into account, the axiomatic approaches 

arose not just in the natural search of generality but,most of 

all, trying to achieve the neccessary logical coherence in qua~ 

rum field theories. Thus,very general assumptions which seem to 

be compatible to one another, are made. These include basic pro 

perties of the physical state taken as a Hilbert space and tran~ 

formations therein, causality, locality, uniqueness of the va- 
5-7 

cuum state and asymptotic completeness. In the LSZ version 

there is a relationship between the interacting field (or inter 

polating field) and a corresponding free field (in or out) 

through the asymptotic boundary conditions. These schemes usually 

leave open the question of how to build a specific theory, ~.~. 

QED, since their interest lies in defining a general framework. 

This work is devoted to the construction of a field 
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theory of QED with a minimun of asstunptions-which can be taken 

essentially as those of the LSZ formulation- and avoids the in 

compatibilities which appear in the canonical approach. 

In section II, the notation is set and the consequen- 

ces of the general assumptions that give rise to the inconsis- 

Tencies of the canonical approach are clearly stated. In order 

to avoid them, we do not take any ~ priori form of the equal- 

time commutation relations for the interacting fields. Neither 
3 

do we take the usual definition for the current density and 

the interaction term in the equations of motion. In section III, 

we do show that they both follow in an unique fashion as results 

from our general postulates and the first order interaction 

which defines QED. Finally section IV contains a general discu- 

ssion and comparasion with other approaches. 

II. GENERAL FRAMEWORK. 

QED describes the interaction of structureless charged 

particles(_e.~, electrons) via photons. We assume the existence 

of Heisenberg fields for the photon and the electron A~(x),~(x). 

These fields tend asymptotically to f~ee incoming fieldsa~(x), 
out. . out 

~(x) when t --N-~ and free outgoing fields ap txj,~ (x) 

when t ~ § . They both fulfill the sourceless equations: 

a 

in the Lorentz gauge, the usual commutation relations for the 

photon free field: 

[ a.(~a,~] =-~ De, (x-x'), (2.2) a 

and anticommutation relations for the electron-positron field: 

Here D and S are the Jordan-Pauli functions. 

The in fields are unitarily related to the out fields 

by the S-matrix 

S"a,  5 = a; Cx , (2.s) a 
g' C ,s - f%)  (2.3)b 
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which) assuming asymptotic completeness in the usual sense 

can be expanded in terms of normal ordered products of the 

in fields 

- -  S=J. '/-,~" ~ ) ,  IL~,~kx ,..., x . ; ~ / , , . . . , ) ' , s  ~ / :),r..,z,):~(x.)"~(x,l~(~}"'~(~lJa(',)'"a~.(~,l: .(2 �9 tt) 
m, l l ) l  . ~ �9 

The expanslon coefficients are given by the reduction for- 
%m. 

mulae s)} in terms of the 2m+n-point propagator 

S-9 
) 

K, 

I t  can be shown a ' g t h a t  d e f i n i n g  t he  c u r r e n t  d e n s i t i e s  i ~ ( x )  

and [ ( x )  f rom the  S m a t r i x  as 

c~)-- ~ [s s/8~o.%). ] 5* ( 2.6)b 
t h e  Heisenberg  f i e l d s  A v ( x ) ) ~ ( x )  obey t h e  equa t i ons  of  motion 

~) ~ (x )=  s  ( 2 "7 )b  

in the Lorentz gauge. The integral form of these equations in 
12 �9 

terms of the in fields is 

rt) 

( 2 . 8 )  b 

Now) taking into account the relativistic covariance 

of the theory as well as the existence of a unique vacuum, it 

can be shown~~ the current densities must fulfill the sta 

bility conditions 

<Of il,(X) ~t p~.>= 0 ( 2.9 ) a 

<OI r~)11r  (2 -9 )  b 

Notice that these conditions are not fulfilled by the canoni- 

cal current densities. We may also observe that a similar re- 

lationship, related to the vacuum stability, gives rise to the 

need of introducing normal ordering in the definition of the 

free electron current In fact the free currents 
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satisfy the identities 

:o 

<oi Io),o <ol o 

( 2 . 1 0 )  a 

( 2 .10 )  b 

(2 .11 )  a 

(2 .11 )  b 

so that in a coupling constant expansion of the ineracting cu- 

rrents, they can be taken to be the lowest order terms. Equa- 

tions (2.10) then correspond to chosing the elementary vertex 

to be such that 

(2.12) 

This is, of course, the "minimal coupling" interaction�9 It is 

local and yields a gauge inavariant theory�9 As it is well known, 

it is also C, P and T invariant. 

We have then found that the canonical currents contra 

dict our general postulates. What about the equal time commutation 
6~9 

relations? That they are ill-defined is a well known fact 

In particular Haag's theoremg'13shows that they cannot be assumed 

to be the canonical ones�9 These apparently negative result may 

be seen from a different point of view. We may ask how much the 

general postulates restrict the commutation rules. Or even better, 

given the elementary interaction and the general assumptions, can 

the commutation rules be uniquely determined? As already antici- 

pated in the introduction, the answer is affirmative and part of 

purpose of the next section is precisely to show it: 

III. CONSTRUCTION OF QED. 

Given the specific form of the elementary interaction, 

we can already calculate tree diagrams. It is just necesssary 

to calculate the appropiate functional derivatives . The deri- 

vative with respect to a r , e.~., is obtained by introducing an 

infinitesimal change a~--~ a N + Sat, taking ~a r as an external 

field. 
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Consider then the equation of motion (2.8) b to lowest 

order we then get j 

hence the first functional derivative yields 

~ : ~ S '~q)VS' (b~) .  ca.2) 
{P 

This gives an extra elementary vertex with a factor e; functio- 

nal differentiation increases in one order a perturbative term. 

Hence, the second derivative will give the lowest order Compton 

scattering term: 

settlng S a =0, and using the reduction formula (2.3) b together 

with equation (3. 1) we get 

su dl 
The other t ree diagrams can be obtained in  a s i m i l a r  way. Addi- 

t i o n a l  f unc t i ona l  de r i va t i ves  give r i se  to h igher  order terms 

w i th  add i t i ona l  ve r t i ces .  Extra e lect ron terms are obtained by 

tak ing func t i ona l  de r i va t i ves  w i th  respect to ~ and ~ , i n  a 

we l l  known procedure. 

However, since f unc t i ona l  d i f f e r e n t i a t i o n  does not 

create any closed loop, we cannot obtain by t h i s  s ing le  proce- 

dure any r ad i a t i ve  cor rec t ions.  We have thus to study the s 

r a l  behaviour of the two e lect ron propagators, where the loops 

first appear. 

g a~ gat.~'ao C~ 
Figure 1 
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Two point functions.- The spectral representation for the photon 
16p17 

and electron propagators can be found , with the aid of the 

integral equations (2.8) and the stability condition (2.9). We 

shall explicitly do it for the photon propagator and, at the end, 

it will be self evident that an entirely similar result holds for 

the exact electron propagator . 

The exact photon propagator is defined as 

In order to have a correct relativistic definition of the T pro- 

duct we introduce the scalar function: 

x g " ( x , - x , )  �9 % ( a .  6)  

and use the transversality propertgoll8: 

in momentum space. Substituting now Eq.(2.8) a into Eq.(3.5) 

There are several points worth remarking in this expression. 

The first one is that the cross terms vanish, in view of the 

one photon stability property (2.9) a. The second one is that 

the causal character of the propagator follows directly from 

its definition in terms of the T-product, so it becomes irre- 

levant whether we use retarded functions in the integrand, or 

any other photon free propagator. Thirdly, we notice that the 

argument in the step functions refers to the ori$inal variables, 

and not to the integration variables, appearing as arguments of 

the current densities. Finally, the current-current correlation 

function is a well defined function (more precisely a tempered 

distribution~'i% with well known spectral properties *~ . Its 

Fourier transform has the form: 
J . . ~kl 

, , ( 3 . 9 )  3 

where J depends on k 2 only. It can be obviously calculated 

knowing the current density jr(y). 

The last step to obtain the spectral representation 

of~C(k) is to take the Fourier transform of Eq. (3.4), yielding 
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a convolution in &), the conjugate variable of the time difference Z 

using the representation of e : 

eC,z)- ~b r - . (3.10) 

So we finally have: ~. 

. Lk',.~',i& -~',~,~e.J 
( 3 . 1 1 )  

where 

q " :  ( " ' ~ ' )  " ( 3 . 1 2  ) 

As we mentioned above, we see that we do not need to specify the 

character of the Green function 1/q 2. 

If we now change the integration variable in Eq. (3.11) 

to the scalar 

we get 

.~'@1" D'(N .r/[ ~ ._IL- 
' z~ 2' ,X. kL,if. (3.14) 

@ 

This spectral representation shows that the c ormect spectral den- 

sity for the interacting part of the photon propagator is J(A)/A 2. 

The photon proper energy function is defined through 

the relation le : 

49' :D '  + D"[TD" ( 3 .15 )  a 

"rr(~'): k' [ ~'(k~ - D'(~] k' ( 3. ~5 )b 

and the transverse projection gives the gauge invariant function: 

It then follows immediately, from Eq. (3 .1 t i )  and (3.15),that 

2iT , ( 3 .17 )  
A similar procedure for the electron propagator yields *G 

~ ' C i 4 , 5 ' ( p ) -  ~:n- ~ j~.m~)'(,~.p.,,) ' 
in terms of the functions 

~,(~) =2~"* R,(~) +~mL)~z(~) ( 3 .19 )  a 

L ,  (,~) = (~,.') ~,(x), z,, P,,C~) ( 3  ~9)b 
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with ~,<[ (~.ls = e (p.) [#  R,(I~), R, Cp,)]. 

The e l e c t r o n  p r o p e r  e n e r g y  

is hence given by " 

F_ (~)-.% c~-~)' J(;~-.,.)'(~.-o-~O a~. 

( 3 . 2 0 )  

( 3 . 2 1 )  

( 3 . 2 2 )  

The contribution of the two-point propagators to 

the S-matrix obtains from the reduction formulae, Eq. (2.5) 

and 

Q,,(z,,~,/:4 ~(,,-~) ( 3 . 2 3 )  a 

C~,;y,):~ E, ~,-~). (3.23)b 
These expressions automatically fulfill the usually 

i~osed "renormalization conditions" 3~i 0,1,8 

: 

,T_-,(~)l : n'c~,)l :o. 
p,,,, ~,m 

The origin of subtraction terms in Eqs. 

(3.24) a 

(3.24) b 

(3.16) and (3.22) is 

the appearence of the inverses of K and~ respectively when 

solving the equations of motion (2.7). This is in agreement 

with the fact that the interaction implies necessarily subs 

tracted dispersion relations 19 

Now, we observe that, due to the e 2 factor in the 

spectral representations, we can calculate the lowest order 

radiative corrections for the two point propagators from 

Eqs. (2.4-5). In the case of vacuum polarization, we need 

to compute the j-j correlation function. To lowest order 

the current is 

~r = t : (2"10)a 
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so that 

e' <irCx.)" ") 
and the function J in Eq. (3.9) is , to this order 

~' Jc"(D' "-~" ~c,~) eCX" 4m')~x (k+2m*) 

and hence : , =  

~, | ~ ~  x,_~_~ ; 

for small k 

ITC"(h ') ~ - ,~=--~ 

where ~= e2/qW is the fine structure constant. 

3 
( 3 . 2 5 )  

(3 .26)  

( 3 . 2 ? )  

( 3 . 2 8 )  

<) 
2 

e <jj> 

figure 2 

Thus, a loop is formed through the correlation function. However, 

since there is no multiplication by step functions, The product 

in Eq. (3.25) is well defined as a product of distributions 7 

The diagram in Fig. 2 is then similar to the one used in S-matrix 

theory 2o. However, in the present work there are no assumptions 

about the analytic properties, and the substractions in the dis- 

persion relations , Eq(3.1?) are derived, instead of being ~m~sc~ 

k similar calculation gives the radiative correction to 

the electron propagato~ "21 Again a loop is formed in the computa 

tion of the f-f correlation function. In general, all the new loops 

result from the contractions appearing in the spectral densities 

J(k), ~(k),~k). These are not time ordered functions and are 

well behaved. 
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e 2 ~.~" 

Figure S 

Iteration.- We have thus shown that the second order terms 

can be computed just on the basis of our general assumptions 

and the elementary vertex. The higher order terms can be com 

puted by iteration: from the two and four-point propagators 

to second order, we construct the S-matrix, and hence the c~ 

rrents to the same order, using Eqs. (2.4-6). At the same time, 

we can compute the third order contributions to the vertex by 

taking the functional derivative %~/~a,-- ,which yields the S-me_ 

trix to third order. Substituing these expressions for the cu- 

rrents in the spectral representatoions for the photon and e- 

lectron proper energies, Eqs (3.17) and (3.22), gives their c 2 

rrect expression to fourth order, and the process can be itera 

ted once the other n-propagators have been calculated to that 

order by functional differentiation. The result obtained in 

this way concide with the usual perturbation expansion, once 

the latter has been properly renormalized. 

Commutation relations.- By the iterative procedure we have just 

described, QED can be constructed. Thus, the commutation rela- 

tions can be calculated to the desired order. However, the prs 

cedure applied for obtaining the spectral representations 

of the two-point propagators can be applied to obtain similar re- 

lations for the vacuum expectation value of the (anti-)commuta- 

tion relatlong. Starting from Eq. (3.14) in configuration space 
m 

~)  (X.X,)=b(.~,.Xz ~ . O (x,-x,:~}~ (3.29) 
with 
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(3.30) 

Taking the even part of Eq.(3.5), and using Eqs. (3.7) and (3.29), 

Taking the time derivative of Eq. (3.31) and evaluating it at 

equal times tl=t2, we get 

l:i' 
in Loretz gauge. 

Similarly, for the electron anticommutation relation, 

we get 

Just as expected, the commutation relations depend on 

the interaction. Furthermore, since the delta functions factor 

out~ we are left with a divergent constant multipl~ing the delta 

function, in both cases. 

IV. CONCLUSION. 

A coherent and systematic picture of QED has been obtained 

by defining current densities which obey the one-particle stability 

condition, and taking the integral form of the equations of motion 

as a starting point. The commutation relations for the interacting 

fields are computed a posteriori, instead of being assumed, as it is 

done in canonical theory. In this way we work with "renormalized" field~ 

from the very beginning. The z~esulting expressions for the two-point pro- 

pagators turn out to be the correct ones. The rest of the n-point 

functions arecomputedbytaking the appropiate functional derivatives. 

In our procedure, there is no need to impose any additio- 

nal conditions, either on the mass shell 2~ , or for large moment~ 3 

The electron and photon propagators fulfill automatically the "re- 

normalization conditions 2,]0 while the other propagators inherit 
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the correct boundary conditions by functional differentiation, and 

no quasilocal operators remain undetermined 

It is also very clear that the starting point for the 

chain of functional derivatives should not be the vacuum to vacuum 

amplitude. Instead, we must start from the two-point propagators. 

The reason is apparently, that in this way we defined the intera- 

ction in a unique way .9 ~ and compute the modification suffered 

by the free propagators due to the interaction. 
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