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Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory,
we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the

current densities fulfill the one-particle stabihty condition, and the commutation relations for the in-

teracting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies

which appear in the canonical formalism. This is possible due to the fact that we use the integral

form of the equations of motion in order to compute the propagators and the S matrix. The result-

ing spectral representations automatically fulfill the correct boundary conditions thus fixing the ubi-

quitous quasilocal operators in a unique fashion.

I. INTRODUCTION

Quantum electrodynamics (QED) persists as the most
accurate theory in physics, and it is used as the ideal pat-
tern to build other gauge —as well as more general —field
theories. In spite of this, a coherent quantum-field-theory
description of QED has failed to exist hitherto. It is well
known that the original theory based on the canonical for-
malism is plagued with infinities and internal inconsisten-
cies, which have to be remedied a posteriori, both in the
interaction picture' and in the Heisenberg picture. ~ The
original renormalization program' 3 is at variance with
the basic idea of the canonical formalism, which implicit-
ly assumes that all the results in the theory should follow
from the postulated Lagrangian and the field (anti-)
commutation relations. Thus the parameters appearing in
the original Lagrangian should be the physical parameters
from the very beginning, as they are indeed for few-body
theories, or for free fields, where the canonical formalism
does give a satisfactory description. Por the interacting-
fields ciise, instead, we find that the product of operators
at equal-spacetime events are ill defined; knowledge of
the commutation relations for a pair of arbitrary events
requires the exact solution of the problem we are seeking
to solve, while equal-time commutation relations for the
interacting fields cannot be assumed in advance in a con-
sistent fashion, thus questioning the very existence of a
well-defined interaction Lagrangian in the Heisenberg pic-
ture.

The alternative presented by the axiomatic field
theories5 gives a framework to define relativistic quan-
tum field theories, making some very general assumptions
which seem to be compatible with one another. These in-
clude basic properties of the physical state space taken as
a Hiibert space and transformations therein, causality, lo-
cality, uniqueness of the vacuum state, and asymptotic
completeness, as is well known. In the Lehmann-
Symanzik-Zimmermann (LSZ) version, ' ' there is a rela-
tionship between the interacting field (or interpolating
field) and a corresponding free field (in or out) through
the asymptotic boundary conditions. These schemes usu-

ally leave open the question of how to build a specific
theory, e.g., quantum electrodynamics, since their interest
lies in defining a general framework.

This work is devoted to the construction of a field
theory of QED with a minimum of assumptions which
can be taken essentially as those of the LSZ
formulation —and avoids the incompatibilities which ap-
pear in the canonical approach.

Along with these general assumptions, we take the usu-
al commutation relations for the photon asymptotic free
field a„:

I PN(x), gp(x') ) = iSNii(x ——x'), (1.2)

where D and S are the Jordan-Pauli functions.
The stability of the one-particle states 9 is a conse-

quence of the general assumptions and the asymptotic
condition, both for the photon and the electron fields.
This result has far-reaching consequences: in particular,
it constrains the possible definitions of the corresponding
currents, which appear as the source terms in the equa-
tions of motion. Let us recall that the usual canonical
electron-positron current density j„(x), inferred from the
classical theory, and involving a product of two Heisen-
berg fields with the same argument x, does not fulfill this
stability condition. This is apparently the reason why a
"renormalized" current2' has to be redefined a posteriori.
The same applies indeed to the interaction term f(x) in
the Dirac equation.

The fact that equal-time commutation relations for in-
teracting fields are ill defined is well known. ' In partic-
ular, Haag's theorem ' shows that they cannot be as-
sumed to be the canonical ones in a relativistic theory. It
is one of the aims of the present work to show that, in
fact, they are determined by the theory, once the asymp-
totic free-fields commutation relations (1.1), (1.2), and the
elementary interaction are assumed. This fact can be il-

[a„(x),a„(x')]= iD„„(x——x'),
and anticommutation relations for the electron-positron
free spinor field P:
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lustrated in a simple example proposed by Sokolov and
Tumanov:" let us take a classical harmonic oscillator in-
teracting with a quantized electromagnetic field obeying
the canonical commutation relations (GCR). The equa-
tions of motion for the position q and momentum p are
those of a forced harmonic oscillator with a classical self-
interaction term, and where the forcing tom is given by
the interaction with the quantized field. Expanding in
normal modes, the equations for the oscillator can be
solved for q and p thus becoming functions of the fields.
Using the latter's CCR, the commutator between q and p
can be worked out. It is no surprise to find out" that the
resulting commutator is not the canonical one, but instead
depends on the interaction, and includes radiative effects.
Only to the lowest order in the interaction do we get the
CCR for the oscillator variables.

In this sense, the question of what is not assumed in
this work becomes very relevant. We do not take any a
priori form of the commutation relations for the interact-
ing fields. Neither do we take the usual definition for the
current density and the interaction term in the equations
of motion for the fields. They both follow as results,
starting from the first-order interaction which defines
QED.

The way this is achieved is as follows. The asymptotic
completeness of the free fields allows us to expand all
physical quantities (interacting fields, currents, and S ma-
trix) in terms of them. ' Once the general framework is
set, we can define our particular theory, namely, QED,
through the free-field equations of motion (sourceless
Maxwell and Dirac equations for the photon and electron
in fields a&,P, respectively), the commutation relations for
them, Eqs. (1.1) and (1.2), and the interaction, given in
terms of these asymptotic in fields as the first-order terin
in the S matrix. This is, in fact, equivalent to giving the
interaction Lagrangian in the interaction picture, i and de-
fines a local theory. The solution of the problem consists
in finding the complete S matrix given the first-order
term, much in the same way as we solve for the evolution
operator in quantum mechanics, once we are given the
Hamiltonian of the problem. From the S matrix we can
find the current densities and then the interacting fields.
The resulting equations are obviously coupled. Since all
physical quantities are expanded in terms of the asymp-
totic fields, the direct iterative procedure leads to a pertur-
bative expansion: assume S up to first order, obtain the
currents and fields up to second order, the n-point propa-

gators and hence the S matrix to higher orders, and then
iterate the procedure.

The way to sidestep the use of preassumed commuta-
tion relations for the interacting fields is by means of the
Yang-Feldman equations. ' Since these constitute the in-
tegral form of the equations of motion, they allow us to
derive general expressions for the two-point photon and
electron propagators in terms of the current-current corre-
lation functions, which have we11-defined spectral proper-
ties. The resulting expressions are nothing else but the
Kiillen-Lehman spectral representations with the correct
ultraviolet behavior (i.e., "already renormalized"). The
n-point propagators (n )2) follow from computing the
corresponding functional derivatives of the two-point
functions.

In Sec. II we present the general framework, starting
from the Yang-Feldman integral equations and the defini-
tion of the interaction in terms of the asymptotic in fields.
Section III deals with the derivation of the spectral repre-
seiitation for the two-point functions, while Sec. IV in-
cludes the second-order results. The equivalence with the
renormalized Feynman diagrams is surtnised in Sec. V.
Finally, Sec. VI contains a general discussion and a com-
parison with other approaches.

II. GENERAL FRAMEWORK

(2.1b)

in the Lorentz gauge.
We also assume asymptotic completeness in the usual

sense, ' so that the unitary S matrix relating in fields to
out fields,

S 'a&(x)S =a„'"'(x),

S 'P(x)S =P'"'(x),
(2.2a}

(2.2b)

can be expanded in terms of normal-ordered charge-
conserving products of the in fields:

We assume the existence of Heisenberg fields for the
photon and electron A&(x), %(x), as well as the n-point
propagators, formed as the vacuum expectation values of
time-ordered products of them. These fields tend asymp-
totically5 to free incoming fields a (x), P(x), when
t~ —oo, and free outgoing fields a& (x), P'"'(x) when
t-+ ~. They both satisfy the sourceless equations

K~aq(x) =BiB aq(x) =0, (2.la)

& P(x) =(iyiB"—m)P(x—)=0,

0) i'&I( )&&&

S =1+
&»&&&( 1& ' ' »&»yi»y»» i» &&

}
n!(m!}

X:y(xi). y(x )y(yi) * y(y )ap, (zi) . ap (z„}:dx, dz„. (2.3a)

The expansion coefficients are given by the reduction formulas ' ' in terms of the (2m +n)-point propagator

C „(xyz)=&i . W Ki . K(TT}( |&)x. .if(yi) . A~(zi) . )&i (2.3b)
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The interaction is now defined by the elementary vertex,
as the first-order S-matrix term, and it contributes only to
the three-point function:

S"'= i—e f:P(x)y P(»)a "(x):dx . (2.4)

This is, of course, the "minimal coupling" interaction. It
is local, conserves charge, and yields a gauge-invariant
theory. As is well known, it is also C, I', and T invariant.

The next step is to define the current densities j&(x)
and f(x) from the S matrix:

From the asymptotic conditions and Eqs. (2.7), it follows
that these current densities fulfill the stability conditions

(0
~
j&(»)

~

1 ph) =0,
(0

~ f(x) (
1 el) =0,

(2.9a)

(2.9b)

in contradistinction with the canonical ones.
From the definition of the currents Eq. (2.5), and the

interaction given by Eq. (2.4), we find the usual lowest-
order terms:

ej&(x)=S 'K„[Ta„(x)S],

ef(x)=S '&„[TP(x)S].

(2.5a)

(2.5b)

ej „"'(x ) =e:p(x)y&p(x):,

ef'"(x)=ecr(x)P(x) .

(2.10a)

(2.10b)

(This is, of course, equivalent to the definition of the
currents in terms of functional derivatives with respect to
the fields. ' '9'~) Here T is Wick's time-ordering opera-
tor. ' Since it contains step functions in the time r, it
does not commute with K, &, or with the integrations
appearing in Eq. (2.3) in general. We can easily show,
however, that Wick's theorem'~ is valid in this case, so the
combined effect of K and T in Eq. (25) is to "drop" one
of the a's in Eq. (2.3), and substitute its argument by x in
the integral. By the mme token, we can prove ' that

a&"'(x)—a„(x)=S '[a&(x),S]
=—e D&„x—x' j"x' x', 2.6a

P'"'(x) —P(x)=S '[$(x),S]
=e f S(x x')f(x')dx', —

thus showing that j„and f are the correct current densi-
ties.

The Heisenberg fields A„(x),%(x) obey now the equa-
tions of motion

III. TWO-POINT PROPAGATORS

We can now find the spectral representation for the
photon and electron propagators, ' ' with the aid of the
integral equations (2.8) and the stability condition (2.9).

Let us start with the photon propagator, defined as

&„'„(xi—x2) =i ( TA&(xi )A„(xz) ) . (3.1)

+8( r)( A "(xi)—A„(xi ) )],

and use the transversality property '
(3.2)

In order to have a correct relativistic definition of the T
product, we introduce the scalar function

& '(x i —x2) =—( TA„(x i )A "(x2))
l

3

=—[8(~)(A„(xi)A "(x2))
3

K„A&(x)=ej&(x),

&„e(x)=ef (x)

(2.7a)

(2.7b)

~k„u„'„(k)-D„'„(k)= g„„"," [u-'(k)-D'(k)]pv pv pv

A„(x)=a„(x)—e J D„"„'(x—x')j "(x')dx',

%(x)=P(x)+e JS'"(x —x')f (x')d»' .

(2.8a)

(2.8b)

in the Lorentz gauge. The integral form fo«hese equa-
tions in terms of the in fields is'

(3.3)

in momentum space. This is a consequence" of the fa«
that the longitudinal part of B' cancels out in Eq. (3.3),
thus yielding a gauge-invariant expression, as is well
known. Substituting now Eq. (2.8a) into Eq. (3.2)

4

&'(x, x, )=D'(x, —x )+ — e(v) D"'(x, y, )D"'(», y)+(j—(y j)"(y ))—dy dy +(1 2)
3 P (3.4)

There are several points worth remarking about in this
expression. The first one is that the cross terms vanish, in
view of the one-photon stability property (2.2a). The
second one is that the causal character of the propagator
follows directly from its definition in terms of the T
product, so it becomes irrelevant whether we use retarded
functions in the integrand, or any other photon free prop-
agator. Third, we notice that the argument in the step
functions refers to the original variables, and not to the in-

tegration variables, appearing as arguments of the current
densities. Finally, the current-current correlation function
is a well-defined function (more precisely a tempered dis-
tribution~ ) with well-known spectral properties. Its
Fourier transform has the form

——J (j„(y j)"(y ))e'+dy =&(k')e(k ),
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where J depends on k only. It can be obviously calculat-
ed knowing tlie cllrreilt dellslty j~(y).

The last step to obtain the spectral representation of
&'(k) is to take the Fourier transform of Eq. (3.4}, yield-

ing a convolution in ro, the conjugate variable of the time
difference r, using the representation of 8:

8(+~)= f da) . (3 6)
2F —co +6)+16'

The photon proper energy function is defined through
the relation'8

~ c Dc+DcllDc

II(k )=k [&'(k)—D'(k)]k

(3.11a)

(3.11b)

and the transverse projection gives the gauge-invariant
function

So we finally have

& '(k) =D'(k)

e " J(q )
dN

2m — q4

8(to)

k —CO+1 6

ll~„(k}= gq„— " " II(k').
kz

(3.12)

11(kz)= "k'f" "",
2' o A, A, k —ie—

satisfying

(3.13)

It then follows immediately, from Eqs. (3.10) and (3.11),
that

(3.7) II(A, ) i o
——II'(A, )

i o
——0 . (3.14)

where

q"=(a),it} . (3.8)

k=—qz=kz —(ko) +a)

we get

(3.9)

As mentioned above, we do not need to specify the char-
acter of the Green's function 1/q .

If we now change the integration variable in Eq. (3.7) to
the scalar

These are usually imposed as renormalization conditions
for the photon propagator. ' ' It is also evident that a
dispersion relation appropriately subtracted obtains direct-
ly from Eq. (3.13)

(3.15)
g (A, k i—e)—

We can use a similar procedure' for the electron prop-
agator mutatis mutandis, namely, using Eqs. (2.8b) and
(2.9b) in

&'(k)=D'(k)+ f, , dA, .
k .—ie— (3.10)

This spectral representation shows that the correct spec-
tral density for the interacting part of the photon propa-
gator is J(A, )/A, .

8"tt(x, x,}=—i &Tq—(x, )yp(x, )&

= —i [8(i)& g (x
& )gp(xz) &

—8( —)&it/( )y ( )&],

so that

(3.16}

&a&»i —»2) =SNtt(xi —xz) —ie' 8(&) f Say(xi —y i) &fr(y i )fs(yz) &S s'tt(xz yz)dy idyz—

—8( —r) f &fs(yz)$ "p(x y)S"„'(» y—}f„(yz)&dy i—dyz

where S=y S+y . We now introduce the well-defined spectral representation of the f fcorrelation fu-nction: '

~&f(y )f(y )&=8(p')Lit& (p')+& (p')],

(3.17)

(3.18)

where R, and Rz are functions of the scalar p, in view of the Lorentz and parity invariance. Hence Eq. (3.17) gives the
matrix

&'(p) =S'(p)+ f de o . +
p —co+ i6

8( —co) S'(q)[q~ i(q')+~2(q')]S'(q»—P +N+16
(3.19)

so now

So( ) —PPl
2 2

and a substitutes p' in

q"= (te, p)

(3.20)

(3.21)

q2 p2 (pO)2+ 2 (3.22)

is the new integration variable. The spectral representa-
tion of the electron propagator reads
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Xi(A. )+PXz(A, )g (p)=S'{p)— f .. . dA, , (3.23)
2m o (A, —m2) (A, —p —ie)

Taking the time derivative of Eq. (3.31) and evaluating it
at equal times ti —t2—, we get

in teens of the functions

Xi(A) =2kmR i(A, )+ (A, +m )R2(A),

Xz(A, )=(A, +m )Ri(k, }+2mR2(A, ) .

The electron proper energy

(3.24a)

(3.24b)

{[B,A„{x),A„(x')) ) (,

e "J(A,)= —i5(x—x')g „1— dA,2n. (3.32)

X(p) =(p —m)[S'(p) —S'(p)](Jt —m) (3.25)

is hence given by

Xi(A, )+@Xi(A,)
X(p) = — (p —m)'f,2, dA,

(A, —m2)2(A, —p2 —ie}

(3.26}

automatically fulfilling the "renormalization conditions"

The origin of the subtraction terms in Eqs. (3.13) and
(3.26) is the appearance of the inverse of E and &,
respectively, when solving the equations of motion in Eq.
(2.8). This is in agromnent with the fact that the interac-
tion implies necessarily subtracted dispersion relations. '

The contribution of the two-point propagators to the S
matrix obtains from the reduction formulas, Eq. (2.3b},

in the Lorentz gauge.
Similarly, for the electron anticommutation relation, we

get

{If (x),gp(x')] ) ~,

~ ~AXi(A, )+X2(A, )=y~p5(x —x') 1+
(I,—m )

J

(3.33)

Just as in the case" mentioned in the Introduction, the
commutation relations depend on the interaction. Fur-
thermore, since the 5 functions factor out, we are left with
a divergent constant multiplying the 5 function, in both
esses.

Cp 2(zi,z2) = —iII(zi —z2) (3.28a) IV. SECOND-ORDER TERMS

Cl, o(xl~yi } iX(xi yi ) ' (3.28b)

Finally, let us obtain the (anti-) commutation relations.
Starting from Eq. (3.10) in configuration space

et~"'(x i
—xz) =D'(x i —xz )

D' x )
—x2,', 3.29

ei " J(A, )

2it 0

with

(a'+X)D'(x;X) = —5{x) . (3.30)

Taking the even part of Eq. (3.1), and using Eqs. (3.3) and
(3.29), we get

All the tree diagrams are calculated directly from func-
tional derivatives of the free electron propagator S' (Refs.
13, 20, and 21). The derivative with respect to a„ is ob-
tained, by introducing an infinitesimal change a&~a&
+5a&, taking 5a„as an external field.

To lowest order, we can use the equation of motion Eq.
(2.8b), together with (2.10b), to get

&„5S'(x,y) =e5a'(x )S'(x,y) . (4.1)

{We use the shorthand notation S'(x,y) to denote
S'[x,y;5a&] which has a functional dependence on the
(infinitesimal) external field. ) Hence the first functional
derivative yields ' '

{[A„(xi),A„(x2)]}

i D„„(x—i —x2)

5S'(x,y) =eS'(x,g)yI'S'( f,y) . (4.2)

f i D„„(xi—x2,'A, )dA,
e "J(A,)

2m' o A,
i

(3.31)

This gives an extra elementary vertex, with a factor of
e. Hence the second derivative will give a second-order
term. It represents the lowest-order Compton see.ttering
term:

5 S'(x y)
5a„(g')5a „(i1)

=e2[S'(x,g)y"S'(g,7})y"S'(ri,y) +S'(x, ri )y"S'(ri, g)y "S'(g',y) ] .

Setting 5a& ——0, and using the reduction formula Eq. (2.3b) together with Eq. (4.1) we get

(4.3)

~(2)~ Compton

~ 2 'I

f:P(g)a(g)S'(g rt)a'(q)P(ri):d /de —f:a(g)P(g)S'(ri f—)P(ri)a(g):de g— (4.4)
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ej„"'(x)=e:p(x)y„4 (x): (2.10a}

(See Fig. 1.) The rest of the tree diagrams are obtained in
a similar way. Additional functional derivatives give rise
to higher-order terms with additional vertices. Extra elec-
tron terms are obtained by taking functional derivatives
with respect to p and p, in a well-known procedure. '3'2o'2'

Since functional differentiation does not create any
closed loop, all the results for tree diagrams are obviously
the same as in the usual unrenormalized Feynman-
Dyson-Wick procedure.

I.et us now look at the most interesting case of the
lowest-order radiative corrections for the two-point propa-
gators, starting from the spectral representations Eqs.
(3.13) and (3.26). In the case of vacuum polarization we
need to compute the j-j correlation function. To lowest
order the current is

FIG. 2. The j-j correlation function gives rise to a loop asso-
ciated with we11-defined product of distributions.

rather than being imposed. "
A similar calculation gives the radiative correction to

the electron propagator. To order e, it is enough to take

so that ef"'(x)=ea(x)P(x) (2.10b)

e (j„(xi)j"(xi))"'
=ei(:P(xt)y P(xi)::P(xg)y"P(x2):)

= —e tr[S (xi —x2}y„S+(x2—x))y"], (4.5)

so the f fcorrel-ation function yields

e (f(x&)f(x2))"'=e'(y"a„(xi)P(x~)P(x2)a„(x2)y")
= e D+(x

~
—xi )y"S+(x

&

—x2)y„.
and the function J in Eq. (3.5) is approximated as

' 1/2

e J' '(A, )=— 8(A4rn ).— ™
3(2n ) A,

(A+2m )

(4.6)

and hence

2
' i/2

2
11(i)(kg) e k$ f dA A 4m A +2rrt

12rr 4~' A,
' ~ A, —k2 —ie

Hence, from Eqs. (3.18) and (3.24), we get

2 4 2e
&& 2) 2(m —A )m

4(2n ) A,

2 2 2
2 (2)(~) e

g(~ i) 4m (A, —m )

4(2m )

(4.9)

(4.10a)

(A, —m2)3
2

(4.10b)

(4 7} so we finally get

For small k

Il' '(k ) — — k
k2~0 15AM,

(4.8)

where a =e /4n is the fine-structure constant.
It is evident from Eq. (4.5) that a loop is formed in the

correlation function. However, since there is no multipli-
cation by step functions, the product in Eq. (4.5) is well
defined as a product of distributions. The diagram in
Fig. 2 is then similar to the one used in S-matrix
theory. 2 ' 3 However, in the present theory there are no
assumptions about analytic properties, and the subtrac-
tions in the dispersion relations Eq. (3.15} are derived,

X'2'(p) = — (p —m }
4m

xf",
A, —p —lE'

2m (A, +m )

A(A, —rn )

A, —m 2

+p
4m

A(A, —m )
(4.11}

disregarding the harmless "infrared catastrophe. "
We notice again from Fig. 3 that a loop is formed in

the computation of the f-f correlation function. In gen-

SS
Sap8ev Compton

FIG. 1. The Compton scattering term can be easily computed
by taking the second functional derivative of the free electron

propagator.

& gf (X)$(Xlg

FIG. 3. The f-f correlation function loop also corresponds to
well-defined product of distributions.
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eral, all the new loops result from the contractions ap-
pearing in the spectral densities J(A, ), Xi(A, ), and Xq(A, ).
These are not time-ordered functions, and are well
behaved. Furthermore, since functional differentiation
does not produce any new loops, higher-order multilegged
diagrams can be safely computed without introducing any
ultraviolet divergences. FIG. 4. The unrenormalized Feynman diagram (a) gives rise

to an unrenormalized vertex diagram.

V. FEYNMAN DIAG'. MS

The higher-order terms can be computed by iteration:
from the two- and four-point propagators to second order,
we construct the S matrix, and hence the currents to the
same order, using Eqs. (2.3} and (2.5). At the same time,
we can compute the third-order contributions to the ver-
tex by taking the functional derivative 5X/5a„which
yields the S matrix and the currents to third order. Sub-
stituting these expressions for the currents in the spectral
representations for the photon and electron proper ener-
gies, Eqs. (3.13) and (3.26), gives their correct expression
to fourth order, and the process can be iterated.

The results obtained in this way coincide with the usual
perturbation expansion, once the latter has been properly
renormalized (3}. It seems then more illustrative to repro-
duce the Feynman diagrain expressions directly instead of
following in detail the iterative procedure discussed above.
It is evident from Eqs. (2.4) and (3.17), however, that
Wick's theorem cannot be applied in the expressions as
they stand, since the arguments of the step functions do
not refer to the same variables as the currents. We can
rewrite both proper energies in terms of T products, if we
are willing to tolerate the presence of divergent integrals
(compensated by divergent contact terms}, namely, express
the propagators in terins of "unrenormalized" functions.

In the case of the photon, we define formally II as

is a T product.
Let us now compute Eq. (5.6) to second order,

X 'z'(x —x') = ie i—( T:a'(x)P(x)::P(x')cr(x'):)

ie—y"S'(x x')y—„D'(x —x'),
or, lil p space

2
X"'(p)=—,J r"S'(p e)r,D—'(e)d'e

(5.7)

(5.8)

r"~'J' —er„'s —er 'e e.

which corresponds to the (unrenormalized) Feynman dia-
gram in Fig. 4(a}. Substituting this in expression (5.5), we
obviously get the correct renormalized proper energy, Eq.
(4.11).

Let us now calculate the corresponding contribution of
Eq. (5.7) to the vertex, taking the functional derivative

eA„(x,y; f)= 5X(x,y)
5a"(g)

(5.9)

Using Eq. (4.2), we obtain the third-order diagram in Fig.
4(b} as

~ 3
eA' '(p';p)=-

(2m )

—ki e y" J(A)dA,
k2 ie—— (5.1)

(5.10)

[Eq. (5.1) should be understood as a regularized quantity,
since it diverges, written as it is' ' ] and write Eq. (3.13)
as

II(k~)=II(k )—II(0}—k II'(0) .

From Eqs. (5.5}and (5.9) we get

eA& '(p', p) =eA& '(p', p)+ey&B' ',
where

(5.11)

to which Wick's theorem does apply.
Similarly, for the electron proper energy, we define

~ pR (A, i)+R (A,i)
X(p) = — dA,

2m' 0 g —p2 —jp

and rewrite Eq. (3.26) as

(5.4)

Although each term in Eq. (5.2) would diverge if calculat-
ed directly, the definition (5.1) has the advantage that in x
space it has the simple form

~ 2

II(x —x') = ( Tj „(xj)"(x')) (5.3)

B'"=X'"(p=m) . (5.12)

B =X'(p=m) . (5.13)

VI. DISCUSSION

This is obviously the usual renormalized result for the
lowest-order radiative vertex correction. (The vacuum po-
larization term in the vertex appears in this instance from
the bubble diagram in X(x„xz,5a„],which does not van-
ish for an external field. ' ' )

We notice, en passant, that, from Eq. (5.9) the Ward
identity is fu1filled:

X(p)=X(p) —X(p=m) —(p —m)X'(p=m}

and again,

X(x —x') = ie ( Tf(x—)f(x') )

(5.5)

(5.6)

The LSZ formulation has been used as a starting point
to obtain a consistent renormalized field theory in the
past. The usual starting point is the generalized uni-
tarity condition ' ' from which a parametric dispersion
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relation can be obtained. ' In order to define the theory
uniquely, one has to impose the number of subtractions in
the dis ersion relations. A similar approach is used by
Fried, deriving a perturbation theory for retarded propa-
gators, instead of subtracted dispersion relations. An al-
ternative approach was followed by Pugh, s Chen, and
Wray, who start off with the asymptotic conditions for
the free fields, together with the causality condition. In
this case, the nonuniqueness appears in terms of the solu-
tions to the homogeneous equations for the (amputated)
propagators, and an infinite number of boundary condi-
tions have to be imposed in terms of the asymptotic
values of the momenta s or on the mass shell. The
work of Steinmann gives a rigorous mathematical justi-
fication to these approaches, in the framework of pertur-
bation theory, exploiting the generalized unitarity condi-
tions for the retarded propagators, and relating the atnbi-
guities to the renormalization-group approach, 3 corre-
sponding to finite renormalizations of the mass and the
coupling constant.

Our own approach shares with the above-mentioned
ones the advantage of yielding a simple, logical, and
coherent picture, without having to introduce (unphysical)
cutoffs or renormalizations, dealing directly with the
physical propagators and fields. In the present paper we
have shown, however, that the physical condition of parti-
cle stability„derivable from the LSZ postulates, is enough
to develop a coherent formulation of quantum electro-
dynamics, with no need to impose any further boundary
or normalization conditions. It should also be evident
that similar results are obtained for the retarded propaga-
tors, by simply using the corresponding definition. The
causal propagators enjoy the advantage of being related to
the functional derivatives in a straightforward fashion.

Our approach seems also to be related to Schwinger's
source theory, who uses first quantized fields in an itera-
tive way. Schwinger shows (at least to second order) that
the correct expressions for the electron and the photon
propagators are obtained by expressing them in terms of
external sources. The "source coupling" form intro-
duces subsequently a product of two free propagators in
the respective spectral representations, much in the same
way as they appear in Eqs. (3.13) and (3.26) of the present

paper. The use of the Yang-Feldman equation for the
field, in terms of the interaction (instead of external
sources) allows us, however, to obtain a closed result, in-

dependent of perturbation theory.
A final point which we would like to emphasize is the

fact that, in our case, the starting point for the chain of
functional derivatives is not the vacuum-vacuum ampli-
tude (or generating functional). ' ' Instead, we have
started with the two-point propagators. In this way, the in-
teraction is defined in a unique way' and what we com-
pute is the modification of the free propagators due to the
interaction. It is not clear how to define a vacuum-

vacuum amplitude free of ambiguities (even with a renor-
malized Lagrangian), since the renormalization conditions
are imposed on the two-point propagators in the usual

theory.
In conclusion, a coherent and systematic picture of

@ED has been obtained by defining current densities
which obey the one-particle stability condition, and taking
the integral form of the equations of motion as a starting
point. The commutation relations for the interacting
fields are computed a posteriori, instead of being assumed,
as is done in canonical theory. In this way we work with
"renormalized" fields from the very beginning. The re-

sulting expressions for the two-point causal propagators
turn out to be the correct ones. They are obtained as spec-
tral representations of the source-source correlation func-
tions with the appropriate subtractions. These expressions
do not have any ambiguities and fulfill automatically the
"renormalization conditions. "' This result is a direct
consequence of the use of the vacuum and the one-particle
stability conditions.

In order to have a closed system of equations, the
source terms are expressed in terms of the S-matrix,
which in turn follows from the propagators through the
usa& reduction formulas.

The rest of the n-point functions are computed by tak-
ing the appropriate functional derivatives, thus inheriting
the correct boundary conditions, and no quasilocal opera-
tors remain undetermined. 3' "29

We should also add that we have not made use of the
generalized unitarity relations for the propagators in our
procedure.
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